“My name is Meg Stalter I’m 5’7 I’m living in LA and a fun fact about me is something bad happened to my cousin.”
As made evident by her Twitter profile, my favorite comedian, Megan (“Meg”) Stalter, knows how to make an introduction. Stalter is best known (as far as I know) for her role in the HBO comedy “Hacks,” in which she plays Kayla (whoever that is).
I do not have a Twitter account and I have never seen the show. While we are talking about me, I will explain that I do not really watch TV, with the one exception of West Wing.
Since we are still talking about me, you should know that I fibbed. There are two exceptions. The other one is Grantchester, a Masterpiece Mystery about a hot priest who solves crime (but that was sort of a given, no?).
I share Stalter’s bio for a few reasons. For starters, it makes me smile, and sharing a smile is a tried-and-true way to score a friend (cha-ching!).
On top of that, it is a good example of someone who knows how to make a first impression. I expect to have made a great impression by the time I finish this, but to ensure things got started on the right foot, hedging my bets if you will, I thought it best to leave the preamble to someone at the top of the trade.
Stalter’s bio also proves a simple point; it is not merely what you say that counts, but how you say it.
I am something of a sub-par reader. I love to read, it is just not my biggest strength (doesn’t mean it can’t be (growth mindset)! Just facing today’s facts). I don’t think I read enough as a child, so now I am slow and I usually fall asleep.
But I get by. I power through my class readings, I keep a book on my bedside table, and I get my news through the radio (that and two free tickets to the Hoppin’ John’s Fiddler’s Convention–it pays to be tuned into WUNC on Saturday nights at 10. Cha-ching!).
This relationship with reading influences my writing style. When I write, I try to keep my readers awake. Not with what I write — I have full faith in the topic at hand’s capacity to speak for itself — but with the way I write it.
My past experience writing for a published paper was in high school, where I spent four years as co-editor of the “Hustle and Bustle” page. I authored a satirical advice column in which troubled high schoolers (me) could send their personal woes to someone who would publish them for the whole school to read (also me). I like writing as a secondary form of chatting.
And so it is with this laudable writing background that I report to you on the groundbreaking discoveries from one of the top research universities in the U.S.
Why write for a research blog? Research is interesting. Research makes the world go round. Just ask a freshman. They all came here for the “research opportunities,” as did all the other freshmen at all the other universities.
Before I sign off, I will let you know where you might catch me in my free time. This is a key element of the standard student bio, and I am prone to severe FOMO, so let me get right to it.
I am a sophomore from Hickory, North Carolina hoping to major in Public Policy and minor in Math. In my free time you might catch me listening to NPR, jogging, potting, singing to myself, making a smoothie, telling people about my smoothie, spamming my contacts for an ice cream date, or for the not-so-lucky, trying my best at Appalachian-style fiddle.
When I write about myself, it always reads like a poorly crafted match.com zinger. Boring, awkward, and something along the lines of:
I’m Alex. Aquarius. Love dogs, classic rock, old NCIS episodes. $1 Goodwill paperback thrillers, marked with “Happiest 53rd Richard! All my love, Janet” and “8/17/2005, Saw this and thought of you!” And I like to ask myself why Steven King’s Carrie conjures up thoughts of said person? Who’s Richard? How’s Janet?
I also love coffee. And tea. Peppermint, of course. Irish breakfast, sure. Chamomile, why not. But I think I really just like collecting mugs — hearty ceramics, dainty porcelain, hand-painted, non-dishwashable, chipped, stained monstrosities. It might be a problem though (as I don’t have much shelf space).
Favorite genre of film? It’s got to be anything in the Meg Ryan romcom cinematic universe. Or the Brat Pack coming-of-age cannon. Breakfast Club, St. Elmo’s Fire, About Last Night, Pretty in Pink. Really just the Judd Nelson je ne sais quoi.
I think my 2nd grade superlative was “Wormiest Bookworm,” whatever that means. That might’ve been the year I read every Nancy Drew book in the library and founded the neighborhood’s first and only detective business. I do wish I could say I’ve Jules Verne’d the world in 80 days — circumnavigating all five nebulous oceans, frozen Arctic plains, Swiss peaks, and continental slopes; Phileas Fogging my way through the Mediterranean, aperitivo in hand. But I’m a bit unworldly in the geographic sense. I’ve only been out of the country once to boat up next to Niagara Falls, wearing a thin, plastic poncho and an I <3 Canada tee (though I’ve possibly made it a second time to Canada after getting lost on the circumference of a lake in Vermont).
I’ve only ever lived in Charleston, SC, never straying too far from its labyrinth of intercostals and waterways, its Theseus-like shrimpers, gliding into port. At Duke, I spend half my time majoring in molecular/cellular biology and the other lamenting my landlockedness, missing Charleston’s temperate sea breeze.
Growing up there was all briny inlet and Waffle House, midnight bacon, butter pats, cordgrass, molting blue crab, churches on every street corner and in every denomination, weak coffee and greasy hash brown breakfast, September hurricanes, salt, cicadas, farm stands packed with peaches, a once-in-a-hundred year 6-inch snowfall that closed school for two weeks.
On Saturdays, I sharktooth-hunted with my sisters in pluff mud plots now developed (strangers tend to find the smell of the marsh pungent, but I think it’s character building). Fished for red drum. Searched for pearls in half-mooned oyster mouths. Kayaked down creeks.
Charleston’s a literary city, or so I’ve always heard. I think Edgar Allen Poe’s ghost haunts a cobble-stoned alley downtown or something like that. And if not an alley then a quaint B&B, its porch bearing creaky rocking chairs and purple coneflower. I went to an arts-specialized middle and high school for creative writing, wrote some bad poetry in my formative years and a couple of questionable short films, then went to college and somehow fell into the field of cell bio and now I spend a decent chunk of my free time researching genetic heart disease in a campus lab. Feeding cardiomyocytes via gentle pipette like they’re sea monkeys.
I like to picture the act of writing and that of science as similar — fraternal twins or first cousins — and I don’t think it a coincidence that early philosophers were our first physicians, mathematicians, physicists, chemists, etc. Both fields challenge us to pose questions about our world, about its inhabitants, its oddities, its nuances. We just go about answering them differently.
For this reason, I’m incredibly excited to join Duke’s Research Blog, to write about science and innovation, to poeticize protein structures or to search for lyricism in neuronal action potentials the way a deep sea troller searches for the elusive giant squid. I just think there’s something so wonderful about learning new things, cradling little curiosities that often lead nowhere, and doing so through an accessible, enjoyable medium.
Hello, my name is Jakaiyah Franklin, and I am a sophomore here at Duke University. In terms of my major, I am undecided, but I do know my passion lies in biology, science communication, and environmental science.
Outside of classes, I am the treasurer for the Duke Chapter of the NAACP and LLC leader for the Stem Pathways for Inclusion, Readiness, and Excellence (SPIRE) program. Last year I was the stage manager for two Hoof n Horn productions.
This year, I will start a research position along with this research blogging position.
In a more personal sense, I am the youngest of three and a proud aunt. Right now, I say I am from Texas, even though I have lived in Georgia, South Carolina, Germany, and presently North Carolina. If someone ever asked me, I would say that Germany holds my most memorable memories; however, I have grown into a better version of myself in each place I have lived. Other than school, I like to read and watch House of the Dragon and the earlier seasons of The Game of Thrones. I prefer to study outside or in a place where natural light is abundant. I also love learning new things pertaining to science, specifically infectious diseases.
I find diseases fascinating, and I believe they are our natural predators. I want to be able to not only understand them, but also, I want to help prevent them. If one were to have a favorite type of disease to study, mine would be zoonotic diseases. They are interesting because the act of a virus being able to jump from a host like a rat to a human is captivating to me.
After graduating from Duke, I want to earn a master’s in public health or a Ph.D. in epidemiology, virology, or infectious disease to feed my curiosity about diseases. However, before I can even decide what Ph.D. or master’s I want to earn, my current goal is to decide on my major.
I do like to think ahead, so, for my very distant career, I know I want to be able to see infectious diseases in both the lab and in the places where they are infecting populations. I want my research to be digestible for the general population because, as seen with both COVID and Monkeypox, science can be easily misinterpreted if not delivered appropriately. I want to prevent this occurrence from happening to me by learning more about science communication and actively improving my communication skills.
I hope this blogging position will expose me to infectious disease research or general public health research. With this new understanding of the research, I hope this position will also educate me on how to inform others so that they can enjoy and understand the science.
It may be hard to put your finger on it, but Duke often allows students to connect their classes to something more personal.
The university’s emphasis on interdisciplinary education is a major initiative that colors students’ academic experiences. While there are many examples of these connections between people, classes, fields, and departments, few so tangibly represent those connections like The SCOPES Project, which connects arts and humanities to medical education at Duke.
Art and medicine can exist in entirely different worlds. They can appeal to different people and tell different stories. But why be simple when you can be, well… stunning? They can be integrated to form something powerful, and that’s precisely what SCOPES leadership members Isa DeLaura, Raluca Gosman, Mason Seely, David Stevens, and Lindsay Olson aimed to do.
“It is encouraging as an upperclassman who previously participated in this program to see rising students continue the tradition of incorporating the humanities into medical practice,” Mason Seeley says. The generational aspect of the project seems to contribute to its personality; participants bring their own perspectives to their work only to walk away with dozens more.
“Having a creative outlet has helped me process interactions with patients and the difficulties of the profession, and celebrate happy moments as well,” says Isa DeLaura.
“The goal is to give artists creative freedom to explore their relationships with their patients with whatever medium and in whatever style works best for them. As such, every year the feel is entirely based on the decisions of the artists.”
Isa DeLaura, MS3+
David Stevens insists that the artists “resist… forces of depersonalization in compelling and beautiful ways.”
The project is inspired and supported by yet another interdisciplinary Duke initiative called APPLE (Appreciating Patient Perspectives through Longitudinal Encounters), which connects medical students with patients living with chronic illnesses. The artists/medical students/empaths-in-training then attended multiple creative workshops and developed art pieces to reflect their patients’ personal experiences. But this year’s 6th annual SCOPES exhibition looks a bit different from past years’ (which are conveniently available online for your viewing pleasure).
Having attended many an art opening myself, I am unashamed to say that much of my enjoyment comes from the cheeseplates (and the excitement in the air, but that’s besides the point). Some exhibitions opt for a traditional charcuterie, some marked Kirkland Signature and others displayed on a handmade butcherblock. The point of fingerfoods is to encourage the attendees to stand up, walk around, and interact with the masses. But it also encourages attendees to “just stop by,” making the affair all the less intimate.
Following limitations on group gatherings Duke enforced during COVID, the SCOPES team decided to apply their newfangled interdisciplinary/revolutionary/innovative thinking to the art opening itself: They held a banquet.
“I loved the way this turned out,” says DeLaura. “It was very personal and made for great discussion and comradery.”
“SCOPES has provided an opportunity to reflect on my experiences as a first-year medical student while also exploring new ways to combine various art forms to create my vision,” says Taylor Yoder, who created Fences, Rivers, Walls, pictured above. “I hope to continue shooting film throughout my medical education and career.”
I was particularly (although wrongfully) surprised about the variety in the exhibit. While the artists attended the same workshops and worked with patients through the same program, they took radically different approaches to their creations. Esme Trahair, a second-year medical student, was a humanities major in undergrad. Her piece combines historical perspectives with modern (although antiquated) mechanisms, emphasizing “the importance of remembering and learning from historical, outdated medical teachings.”
The work features a variety of perspectives, but also some clear motifs that could be key takeaways for future medical providers. Like Yoder, artist Kreager Taber explores the patient’s value of “home.” Exploring these motifs could allow for more personal, “upstream” healthcare.
This year’s SCOPES exhibition is held in the Mars Gallery in the Duke University Hospital Concourse. It is an initiative of the Trent Center for Bioethics, Humanities & History of Medicine at the Duke University School of Medicine. It will be on display August 9-September 29, and available for viewing online at this link.
P.S. If you are an MS1 student interested in participating in SCOPES, I have a link for you!
What lies at the intersection of mathematics and biology? Freshly-minted math PhD Ruby Kim and her work on mathematically modeling human dopamine cycles.
Kim’s work has centered around her creation of a math model to predict how a person’s dopamine levels ebb and flow over the course of a day “to understand the general mechanics of how disruptions in the (biological) clock lead to disruptions in dopamine.”
She said there is a pretty long history of mathematicians using differential equations to see how different clock genes and proteins change over the course of a day’s circadian cycle. Yet, no previous models have connected the circadian clock – controlled by the brain’s suprachiasmatic nucleus – to dopamine levels. And Kim tells me that work suggesting dopamine changes throughout the day are likely controlled by the internal circadian clock itself is “relatively new.”
The first step in Kim’s work was validating scientists’– or “experimentalists,” as Kim dubs them – hypotheses about dopamine and dopaminergic enzyme cycling.
“But I’d like this work to help experimentalists go one step further and be able to test out hypotheses more easily.” For example, Kim says that her model has the potential to reveal other fascinating phenomena, such as how drug treatments or different genetic mutations may impact circadian rhythm or dopamine. This is thanks to the multifaceted layers of Kim’s model.
“From a mathematical perspective, the math model is very interesting. It has a lot of interesting dynamics,” she says. “Not only does it show nice, 24-hour rhythms, it shows both steady state behavior… but then also behavior that’s really wild – something called quasi-periodic behavior, where the internal clock is significantly different than the external 24-hour light-dark cycle.”
“This leads to oscillatory behavior that’s not periodic,” she says. These sorts of quasi-periodic behaviors have been observed in experiments and misunderstood, but they can be computed.
Kim emphasized the experimental and clinical implications of her work. Dopamine is involved in learning and motivation and is also linked a plethora of psychiatric conditions like Parkinson’s, ADHD, and schizophrenia. “Patients with these conditions often also experience circadian disruptions,” Kim says. “That’s a pretty big symptom.”
Kim began her academic career in her home state of California at Pomona College as a pre-med math major. “I had always been intrigued by human physiology. And math was one of the subjects I was also pretty drawn to. I just didn’t appreciate it much because throughout high school and the beginning of undergrad, I didn’t see any direct applications,” Kim told me.
The marriage of her love for math with her intrigue in biology actually began at Duke when Kim attended a mathematical biology workshop during the summer after her sophomore year. “I had never heard of math biology before that.”
After working on a brief project to model sleep apnea in infants at the workshop, Kim returned to California and took up math modeling courses in her following semesters of undergrad. One of her professors, Ami E. Radunskaya, PhD, was extremely supportive and introduced Kim to a lot of “cool biological problems.” Kim went on to do research with Radunskaya, modeling tumor-immune interactions. This experience, Kim says, “kind of just threw me into academia.” The project gave way to an undergraduate thesis with Radunskaya that analyzed the long-term behavior of this tumor growth and treatment model.
Radunskaya then suggested that Kim pursue grad school. “I kind of applied on a whim,” Kim said, “It wasn’t something I had specifically imagined for myself.” Kim mentioned how no one from her home community had really ever gone to grad school and so it was not something she had ever “explicitly” thought about before.
In her search for a graduate program, Kim applied to math programs, as well as those that were interdisciplinary. “I ended up choosing Duke because I really liked my advisor,” Kim told me. While Kim’s advisor Michael Reed, PhD “does a lot of interesting math,” Kim wanted to work with him because math isn’t his focus – understanding “really complex biological systems using mathematical language is.”
“A lot of times you see people who do things at the intersection of math and biology that are more motivated from a mathematical standpoint … that’s just not what I’m interested in personally. I’m very interested in finding an interesting biological problem and then applying whatever mathematical tools I have.”
While at Duke, Kim was foundational to founding the university’s chapter of the Association for Women in Math (AWM). During her undergrad, Kim “had a really great experience with AWM,” finding both a community of women mathematicians and a network of women professors who were involved in the chapter.
At Duke, there wasn’t a chapter “but quite a few people who were interested in starting and being part of one.” This organization, which is open to people of any gender identity, heads mentorship programming that brings undergrads, grad students, postdocs, and professors together, organizes conferences, and contributes to their central focus of community building in math.
Outside of her research, Kim spends most of her free time taking care of foster pups, which she describes as “extremely rewarding but also very tiring.” Her most recent foster, a four-month-old puppy, eavesdropped on our interview as he took a nap.
This fall, Kim will begin a post-doc with the University of Michigan’s math department as she “wanted to keep studying circadian rhythms with faculty who are really great in that area.”
The massive Keeler Oak, a white oak (Quercus alba) in New Jersey.
An April symposium at Grainger Hall, People and Nature, brought a diverse set of speakers, both from Duke and other U.S. institutions, to examine the relationship between human culture and land and to discuss pressing issues such as environmental justice. The session was organized by PhD students Nicholas School of the Environment and the biology department.
Paul Manos of Duke Biology
Professor Paul Manos of Duke Biology told us how oaks, ubiquitous tree species in temperate regions, can make people think about nature. A walk in the woods looking at the different oaks can result in a fascinating journey of natural history. For those who are curious enough, an inquiry into the lives of oaks will take them deep into topics such as evolutionary history, leaky species boundaries, plant-animal interactions, among others, Manos said. Keeping true to the theme of the symposium, Manos explored some hypotheses about the first time that humans had contact with oaks, and how this relationship unfolded ever since.
Orue Gaoue of Tennessee-Knoxville
Associate Professor Orou G. Gaoue of the University of Tennessee, Knoxville, took us through a detailed case study of human and plant interactions with long-term data from the country of Benin, in Africa. He showed how the harvest of the African mahogany (Khaya senegalensis) affects human demography and even the marriage dynamics of the Fulani people, with many other insights into the intertwined relationship of the locals and their harvest.
Andrew Curley of Arizona
Central to the morning sessions were the rights of nature and the granting of personhood to non-humans, which is common in the cosmology of many indigenous cultures. For instance, Andrew Curley, assistant professor at the University of Arizona, mentioned in his talk that the O’odham people in the Sonoran Desert confer the Saguaro cactus personhood status. His talk exposed how colonial dynamics have created climate catastrophes and drought around the Colorado River, how indigenous peoples have to navigate these foreign systems, and how they understand their relationship with the land and water.
Michelle Carter, a first-year Masters of Environmental Management (MEM) student at Duke, examined the feasibility of the rights of nature in the US legal system. These rights allow certain natural features (e.g. rivers) to stand as a sole party in litigation and recover damages on their behalf. However, effective application and the enforcement of policy have been lacking.
The second part of the symposium focused on environmental justice. Duke Ph.D. student Maggie Swift presented a land acknowledgement which was divided into three parts: recognition of the violent history of the past; an understanding of the present with a celebration of the lives and achievements of current indigenous peoples; and a call to action so that participants were encouraged to financially support native-led organizations. Links for donations and more information can be found on the symposium website. The land acknowledgement was followed by a brief presentation on the project Unearthing Duke Forest that explores the human history surrounding Duke Forest.
Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?
People & NAture
Christine Folch of Duke Cultural Anthropology
Assistant professor Christine Folch, from Duke’s Department of Cultural Anthropology provided an analysis of the discourse around climate change. At the center was the question “do you believe in climate change?” which has ingrained the element of doubt and the ability of the speaker to say “no, I don’t.”
Associate professor Louie Rivers III, from NC State University, gave a talk on perceived environmental risks and their influence on social justice. He pointed out that these questions could be dismissed by certain groups such as black farmers, who are concerned and disproportionally affected by environmental issues but might not relate to how the question is addressed.
Sherri White-Williamson, Environmental Justice Policy director at NC Conservation Network, explained the concept of environmental justice and provided concrete examples of how certain policies (e.g. federal housing/lending policies or interstate highway systems) can create inequalities that leave communities of color to bear the exposure of environmental degradation. She also made us aware that this year is the 40th anniversary of the birth of the US environmental justice movement that started when an African-American community in Warren County, North Carolina organized to fight a hazardous waste landfill.
No exploration of people and nature would be complete without including the seas. A team of three students at the Duke University Marine Lab, undergrad Maddie Paris, second-year MEM Claire Huang, and Ph.D. student Rebecca Horan, presented two case studies of social and ecological outcomes linked to education and outreach interventions conducted in tropical marine environments.
Their first case study was on turtle education in Grenada, West Indies. Here a 10-week summer program for local children ages 9-12 created an improved understanding of marine turtle biology and its connection to the health of the ocean and their communities. The second case study was a 4-week training course for fisher people and fisheries officers in Mtwara, Tanzania. These participants increased their skills in monitoring the local reefs and were better equipped to educate their communities on marine environmental issues.
The symposium ended with two open questions for the audience, which should be considerations for anyone doing environmental research: Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?
Guest post by Rubén Darío Palacio, Ph.D. 2022 in Conservation Biology from the Nicholas School of the Environment, and science director of conservation non-profit Fundacion Ecotonos in Colombia.
It’s May! Time for our 2022 Duke graduates to endure Pomp and Circumstance on repeat, shed a tear, and then take wing. Always bittersweet for those of us who work with students.
This year, the Duke Research Blog celebrates the graduation of three outstanding student-bloggers. This class produced some real gems and we will be greatly diminished by their commencement.
Most memorably, Anna took us along when she spent the summer of 2019 at an archaeology dig in Italy.
Her other topics were a liberal arts education in themselves: she wrote about invisible malaria, climate change, dance, drinking water standards, snow leopards, muscular dystrophy, cybercrime, autism and some fascinating classmates. This year, as she readied for her career, she wrote a three-part series about blockchain and bitcoins.
After graduating with a psychology major, an econ minor and an innovation and entrepreneurship certificate, Anna will be moving to Atlanta to work as an associate consultant at Bain and Company. She plans to continue learning about the web3 space in her “free time” and hopes to find an outlet to continue writing about cryptocurrency as well.
Cydney Livingston, the pride of Anson County, NC, joined us as a sophomore and proceeded to shoot out the lights with 31 career posts.
Cydney Livingston
Cydney’s biggest hit, by far, was her first-person account of trying to continue with college after the pandemic shut down Spring Term, 2020. “Wednesdays, My New Favorite Day,” appealed to Duke alumni, family and friends everywhere who were wondering what the heck was going on in Durham. Short answer: It was weird.
She was integral to our (mostly virtual) coverage of the COVID crisis, and helped the campus keep up with some of the larger questions the emerging virus presented, including social inequity and vaccine hesitancy. She also profiled some grad students, sharing a look inside their worlds from a student’s perspective. And in between, Cydney saw paleontologist Richard Leakey in one of his last public appearances and wrote about space junk, cervixes, lead poisoning, dog smarts, visual perception and North Carolina’s pungent pork industry.
Cydney is graduating with a BS in Biology and an AB II in History and is moving to Boston in the fall to begin work as an analyst with ClearView Healthcare Partners. But she is leaving open the possibility of a return to academia in history of science, technology and medicine, or science and technology studies. “I’m excited to spend a few years working and reflecting on my time at Duke and what lies ahead in my life journey.”
Nicki Cagle, Ph.D., with perfoliate bellwort, an ephemeral forest plant also known as wild oats (Uvularia perfoliata).
“Ephemeral” is one of my favorite words. It conjures up images of vernal pools and fireflies and flowers in spring. It comes from ephēmeros, a Greek word meaning “lasting a day.” English initially used it in a scientific sense, to refer to fevers and then in reference to short-lived organisms like flowers or insects. Today “ephemeral” is most often used to describe anything fleeting or short-lived.
The term “spring ephemeral,” for instance, refers to flowers that are visible for only a short time each spring before they disappear.
Nicki Cagle, Ph.D, a senior lecturer in the Nicholas School of the Environment, led a spring ephemeral workshop in the Korstian Division of Duke Forest on a Friday afternoon in late March. The workshop was hosted by DSER, the Duke student chapter of the Society for Ecological Restoration. We focused on identifying herbaceous plant species and families, particularly spring ephemerals.
“Spring ephemerals are perennials that emerge early in the spring and then grow, reproduce, and disappear from the surface of the forest floor in just a few short weeks,” Cagle explains. We also found several species that aren’t technically ephemerals but still bloom in early spring — before the tree canopy emerges and plunges the floor into shade.
Oxalis violacea, a species of wood sorrel.
The first plant Cagle points out is Oxalis violacea, a type of wood sorrel. “This particular species will have purple flowers,” she says. The genus name, Oxalis, refers to the plant’s oxalic acid content. “You can nibble on it,” but “you don’t want to nibble on it too much.” Oxalic acid, which is also found in common foods like spinach, gives the leaves a pleasant, lemony taste, but it can cause problems if eaten in excess.
Common bluet (Houstonia caerulea).
When we come across a patch of lovely, pale violet flowers with yellow centers, Cagle challenges the workshop participants to determine which family it belongs to. She offers two options: Rubiaceae, a large family that often has either opposite or whorled leaves and four to five petals and which includes familiar plants like coffee, or Violaceae, a very small plant family whose members “tend to have everything in fives” (like petals, stamens, and sepals) and often have basal leaves. Answer: Rubiaceae. This particular species is Houstonia caerulea, the common bluet. Its yellow centers help distinguish it from related species like the summer bluet, tiny bluet, and purple bluet. If anything, Cagle says, the plant’s presence is “an indicator of disturbance,” but it’s still good to have around.
Here’s the little brown jug (Hexastylis arifolia).
Next we come across two species in the Hexastylis genus. They are sometimes called wild ginger, but the name is misleading. Hexastylis species are not related to the ginger you buy in the store, which is in a completely different family. Hexastylis is, however, in the same family as the Asarum genus, which Cagle thinks of as “proper” wild ginger. Asarum and Hexastylis have traditionally been used as food and medicine, but they also contain toxins. According to Cagle, they belong to “one of the few plant families that have fossilized remains in the United States,” even dating back to the late Cretaceous Period.
The two species we see are Hexastylis arifolia, the little brown jug, and Hexastylis minor which looks similar but “tends to have a much more rounded form.” Like many spring ephemerals, Hexastylis is often dispersed by ants. The seeds have elaiosomes, fatty deposits that ants find attractive.
“We have a lot of different violets of varying origins” in this area. According to Cagle, this one is likely to be a common blue violet, Viola sororia.
There’s a patch of violets near the Hexastylis plants. “We have a lot of different violets… of varying origins” around here, Cagle says. Many of the native species have both a purple form and a variety that’s white with purple striping. Other species in the violet family come in different colors altogether, and Cagle says many of those are of European origin.
The Johnny-jump-up pansy, for instance, can have “funkier colors,” like yellow or pinkish purple and is native to Europe and Asia. Violets can be hard to identify. Some species are distinguished mainly by characteristics like the lobes (projections in leaves with gaps between them) or the hairiness of the leaves. The bird’s foot violet and wood violet, for example, “tend to have really deep lobes.”
Cagle says the violet we’re looking at is likely the common blue violet, characterized by smooth leaves and petals, purple or purple-and-white flowers, and rounded or slightly arrow-shaped leaves.
The Cranefly orchid (Tipularia discolor) reproduces later in the year. The purple on the bottom of the leaves, and sometimes on the top as well (see right), helps protect the plant from sunlight and herbivores.
The orchid family, Orchidaceae, is one of the largest families of flowering plants in the world. Many of its members are tropical, including the Vanilla genus, but “we do have a number of native orchids” here as well, including yellow and pink lady’s slipper orchids, putty-root, and the cranefly orchid.
The cranefly orchid, Tipularia discolor, isn’t yet in bloom, but we come across the leaves several times on our walk. According to Cagle, Tipularia discolor “isn’t actually a spring ephemeral” because it reproduces later in the year. However, “it’s ephemeral in its own way,” the leaves disappear by the time it flowers. Cagle says the plant’s scientific name can remind you what to look for: “‘Tip-’ because you’re going to tip this leaf over” to look at the underside and “discolor” because the leaves are a striking purple underneath. Some of the ones we see are purple on top as well. Cagle explains that the purple coloration serves as sunscreen and protection from critters that eat plants.
The plant gets its common name (and its scientific genus name, interestingly) from its delicate flowers, which are supposed to resemble craneflies. When the plant blooms, “the flowers are so delicate and so subtle that most of the time you miss them.” Pollinators like Noctuid moths, on the other hand, find the flowers easily and often. Cranefly orchids even have “specialized seed structures” that “get fused onto insects [such as the moths]… and carried off.”
Rue anemone (Thalictrum thalictroides or Anemonella thalictroides).
Cagle with giant chickweed (Stellaria pubera).
The rue anemone, unlike the cranefly orchid, is a true spring ephemeral. It belongs to a more “primitive” family and has lots of petals in a spiral arrangement. The species is also known as windflower “because they flutter and dance as the breeze comes through.” Cagle mentions that the plant is “usually pollinated by flies and little bees” and serves as an important food source for insects in early spring. But “how do these even exist” in a forest with so many plant-eating deer? Many spring ephemerals, Cagle explains, have “some really potent toxins” that protect them from large herbivores.
We stop briefly to examine perfoliate bellwort, also known as wild oats (Uvularia perfoliata), and giant (or star) chickweed. Chickweed is in the pink family, named not for the color but because “the petals… [look] as if they’re cut by ‘pinking shears,’” which have saw-toothed blades that leave notches in fabric.
Trout lily (Erythronium umbilicatum). According to Cagle, “No spring ephemeral walk is actually complete without finding some trout lilies.”
Near the end of our walk, we find several trout lilies. That’s fortunate. “No spring ephemeral walk is actually complete without finding some trout lilies,” Cagle says.
Unsurprisingly, trout lilies belong to the lily family. “Their flower structure,” Cagle says, “is very symmetrical” with three petals and three sepals. In trout lilies, the sepals resemble petals, too. This particular species is Erythronium umbilicatum. The species name, umbilicatum, refers to its “really long peduncle,” or flower stalk, which “allows the seed to actually touch the ground.” The seed is dimpled, Cagle says, “like a little belly button.” The name “trout lily,” meanwhile, refers to the mottled pattern on the leaves.
Spring beauty (Claytonia virginica), “a quintessential spring ephemeral.”
At the base of a tree near a small river, Cagle points out a flower called spring beauty (Claytonia virginica), “a quintessential spring ephemeral.” Some flowers, like the common bluet we saw earlier, thrive in disturbed areas, but plants like the spring beauty need rich, undisturbed habitat. That makes them good indicator species, species that can help scientists gauge environmental conditions and habitat quality. When a natural area is being restored, for example, scientists can measure restoration progress by comparing the “restoration site” to an undisturbed “reference site.”
According to Cagle, the spring beauty is pollinated by “bee flies… flies that kind of look like bees.” After pollination, the flowers turn pink. Cagle says this is common among ephemerals. One theory is that the color change signifies which flowers have already been pollinated, but others think it’s just a result of senescence, or aging.
Spring beauties are also “photonastic,” meaning they open and close in response to changing light conditions. “There is some evidence that the Iroquois would eat this plant in order to prevent conception,” Cagle says, but today the plant—like many spring ephemerals—is under protection in some areas. Human activities, sadly, have contributed to the decline of too many spring ephemerals.
Alum root (Heuchera americana) near the end of the walk. According to Cagle, its roots can be used “to form mordant for dyes.” Members of the Saxifrage family, which includes alum root, often have five petals, five sepals, and five stamens.
Not all of the plants we saw are spring ephemerals. Some, although they bloom in early spring, “wouldn’t technically be considered ephemeral because their leaves stick around even if their blooms don’t last long.” True ephemerals, on the other hand, “are plants that just seem to disappear off the face of the planet (or the forest floor) after a few weeks,” Cagle says. Only three of the species we found during the workshop are true ephemerals: the windflower, trout lily, and spring beauty. However, these aren’t the only spring ephemerals found in the area. Cagle’s personal favorite is bloodroot, with its “bright white petals” and pollen “that looks like it’s glowing.”
Next time you’re in the woods, keep your eyes out for ephemerals and other early spring flowers, but look quickly. They won’t be here for long.
From shot-putting, to helping conduct two research studies, to being selected for a cardiology conference, meet: Kinsie Huggins. She is from Houston, Texas, currently majoring in Biology and minoring in Psychology with a Pre-Med track here at Duke. With such a simple description, one can already see how bright her future is!
“I want to be a pediatrician and work with kids,” Huggins says. “When I was younger, I lived in Kansas, and in my area, there were no black pediatricians. My mother decided to go far to find one and I really bonded with my pediatrician. One day, I made a pact with her in that I would become a pediatrician too so that I can also inspire other little girls like me of my color and other minority groups.”
Having such a passion to let African-American and minority voices be heard, Huggins is also part of the United Black Athletes, using her shot-put platform to make sure these voices are heard in the athletics department.
And while she may be a top-notch sportswoman, she is also just as impressive when it comes to her studies and research. One of her projects focuses on the field of nephrology – the study of kidneys and kidney disease. She and a pediatric nephrologist are currently working on studying rare kidney diseases and the differences in DNA correlating to these diseases.
Kinsie is also a researcher at GRID (Genomics Race Identity Difference), which studies the sickle cell trait in the NCAA. With the sudden deaths of college athletes from periods of over-exhaustion during conditioning, there has been a rise in attention of sickle cell trait and its impact on athletes. At first, the NCAA implemented a policy that made it mandatory for college athletes to get tested for sickle cell in 2010, but some were wary about the lack of scientific validity in such claims. Now, the NCAA has funded GRID to conduct such research.
The difference of Normal red blood cell and sickle cell (CDC).
“We are analyzing the policy (athletes need to be tested for sickle cell), interviewing athletes in check-ups, and looking at data to see if the policy is working out for athletes and their performance/health,” Huggins explains.
With such an impressive profile, it doesn’t go without saying that Huggins didn’t go unnoticed. The American College of Cardiology (ACC) select high school and college students interested in the field of medicine and have them attend a conference in Washington D.C. to hear about research presentations, groundbreaking results of late-breaking clinical trials, and lectures in the field. Having worked hard, Huggins was selected to be part of the Youth Scholars program from the ACC and was invited to the conference on April 2-4.
Let’s wish Kinsie the best of luck at the conference and on her future research!
“Crypto is scaling so quickly but security systems are still the same as they were in 2013.” Those are the words of Daniel Chong, a recent Duke student whose new startup aims to change that.
One of the largest challenges within cryptocurrency is security. The most impactful application of cryptocurrency thus far is decentralized finance (DeFi). DeFi eliminates intermediaries by allowing people and businesses to conduct financial transactions through blockchain technology as opposed to working through banks or other corporations. However, as a result, people are personally responsible for securing their assets.
When engaging with cryptocurrency people generally use a trading platform and a wallet. Cryptocurrency trading platforms like Coinbase, Binance, and Crypto.com allow people to buy and sell cryptocurrencies using USD or other cryptocurrencies. However, in order to use crypto, one must transfer some of it into a wallet.
As with conventional currency, crypto wallets are not required in order to use cryptocurrency but they allow individuals to store their tokens in one place, easily retrieve them and send it to other individuals or organizations (i.e. buying non-fungible tokens). Some of the most popular wallets include Coinbase wallet, Metamask, and Electrum.
Screenshot of a Metamask Wallet
These wallets are not only password-protected but provide each user with a seed phrase or a series of words generated by one’s cryptocurrency wallet. This phrase, like a password, provides access to the crypto associated with that wallet.
An example seed phrase
The catch is, if an individual gets locked out of their wallet and cannot remember or does not have access to their seed phrase, all of their money will be lost. This is a major problem in the space and people have lost millions of dollars to lost seed phrases and inaccessible wallets. In fact, 20% of all existing Bitcoin tokens have been misplaced.
Furthermore, in the past, it was already hard enough to secure one’s crypto wallets but now people have several wallets, each with their own unique seed phrase and passcodes making it all the more difficult.In the Fall of 2020, Daniel Chong, a Duke first-year at the time, identified this wallet security problem.
“Crypto is scaling so quickly but security systems are still the same as they were in 2013.”
Daniel Chong
Having grown up in Las Vegas, Chong was used to fast-paced environments and unique challenges. During high school, Chong started coding as a hobby.
“I just wanted to build something,” he explained
The first project he built was a website for a research paper he had in his high school psychology class. In 2018 Chong was introduced to solidity, a programming language that’s main purpose is to develop smart contracts for the Ethereum blockchain. If you are unfamiliar with blockchain, please refer to my previous article here.
Chong matriculated to Duke during a period of transition, the Fall of 2020. As a result of being sent home due to COVID-19 in the Spring and having to shift to online meetings, many on-campus clubs were struggling. Early on Chong met Manmit Singh, a Junior at the time and the President of the Duke Blockchain Lab.
Even though Chong was only a first-year, he had experience coding in solidity and ended up aiding Singh in revamping Duke Blockchain Lab so students could continue engaging with and learning about blockchain despite the pandemic. Additionally, he ran a virtual course on web3 and solidity development for other club members.
Despite the fact that Chong was attending classes, involved in clubs, and working part-time, he began talking to his brother Noah who was a senior at Georgia Tech about once again, building something.
After working on building a security solution for crypto wallets for about a year, Chong and his brother received venture capital funding for their startup Harpie: a simple crypto protection plan that scales with you.
Chong explained that venture capitalists are very excited about crypto right now, especially back in November of 2021 when crypto was in a bull market and bitcoin was at a market high of 60,000.
Harpie is a web app that allows users to connect all of their wallets to individualized protection plans. This means that if you have a Harpie protection plan and someone hacks your wallet or you get locked out, you can go to the Harpie web app and transfer your funds from the unusable wallet to a new one.
Additionally, users are able to choose the degree of security their Harpie account has. Users can regain access to their fund via email, phone, or (personal recommendation) 2-factor authentication. Ultimately, for $8.99/month you can protect as many wallets, with any sum of funds, as you want.
Why Harpie is a better backup Solution
After working for just over a year, Harpie launched on February 14th, 2022. The next weekend Chong and his brother headed to ETHDenver, the largest Ethereum conference, to promote Harpie and compete in the Hackathon. For those who are unfamiliar, hackathons are competitive, sprint-like events where computer programmers and others are involved in software development work to build something over a condensed period of time.
Over 10,000 people participated in the ETHDenver hackathon in person and over 30,000 participated virtually for over $1 million in bounties and prizes, as well as up to $2 million in investment capital.
While the teams had 36 hours to build a project, Chong and his brother managed to build there’s in 4-5 hours. They did this by quickly creating a front-runner bot/flash bot to help people avoid getting hacked by detecting and halting transactions to unauthorized addresses.
The brothers not only successfully built the bot but also placed top 10 in the overall hackathon and had the opportunity to present their project.
While presenting, Chong also received questions from Vitalik Buterin, the founder of Ethereum. He explained this as a very “nerve-wracking experience” and added that Buterin asked very technical questions such as what the miners’ extractable value would be.
Chong and his brother (left) onstage with Vitalik Buterin (right) presenting at ETHDenver
In the future, Chong would be open to entering more hackathons but right now is more interested in growing his startup. Currently, Chong is taking time off from school to focus on Harpie and to, ultimately, revolutionize security systems as they relate to online assets.