Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Guest Post Page 1 of 8

Sharing a Love of Electrical Engineering With Her Students

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the seventh of eight posts.

“As a young girl, I always knew I wanted to be a scientist,” Dr. Tania Roy shares as she sits in her Duke Engineering office located next to state-of-the-art research equipment.

Dr. Tania Roy of Duke Engineering

The path to achieving her dream took her to many places and unique research opportunities. After completing her bachelor’s in India, she found herself pursuing further studies at universities in the United States, eventually receiving her Ph.D. from Vanderbilt University. 

Throughout these years Roy was able to explore and contribute to a variety of fields within electrical engineering, including energy-efficient electronics, two-dimensional materials, and neuromorphic computing, among others. But her deepest passion and commitment is to engage upcoming generations with electrical engineering research. 

As an assistant professor of electrical and computer engineering within Duke’s Pratt School of Engineering, Tania Roy gets to do exactly that. She finds happiness in mentoring her passionate young students. They work on projects focused on various problems in fields such as Biomedical Engineering (BME) and Mechanical Engineering, but her special focus is Electrical Engineering. 

Roy walks through the facilities carefully explaining the purpose of each piece of equipment when we run into one of her students. She explains how his project involves developing hardware for artificial intelligence, and the core idea of computer vision. 

Roy in her previous lab at the University of Central Florida. (UCF photo)

Through sharing her passion for electrical engineering, Roy hopes to motivate and inspire a new generation. 

“The field of electrical engineering is expected to experience immense growth in the future, especially with the recent trends in technological development,” she says, explaining that there needs to be more interest in the field of electrical engineering for the growth to meet demand. 

The recent shortage of semiconductor chips for the industrial market is an example of this. It poses a crucial problem to the supply and demand of various products that rely on these fundamental components, Roy says. By increasing the interest of students, and therefore increasing the number of students pursuing electrical engineering, we can build a foundation for the advancement of technologies powering our society today, says Roy.

Coming with a strong background of research herself, she is well equipped for the role of advocate and mentor. She has worked with gallium nitride for high voltage breakdowns. This is when the insulation between two conductors or electrical components fails, allowing electrical current to flow through the insulation. This breakdown usually occurs when the voltage across the insulating material exceeds a certain threshold known as the breakdown voltage.

In electric vehicles, high breakdown voltage is crucial for several reasons related to the safety, performance, and efficiency of the vehicle’s electrical system, and Roy’s work directly impacts this. She has also conducted extensive research on 2D materials and their photovoltaic capabilities, and is currently working on developing brain-inspired computer architectures for machine learning algorithms. Similar to the work of her student, this research utilizes the structure of the human brain to model an architecture for AI, replicating the synapses and neural connections.

As passionate as she is about research, she shares that she used to love to go to art galleries and look at paintings, “I could do it for hours,” Roy says. Currently, if she is not actively pursuing her research, she enjoys spending time with her two young children. 

“I hope to share my dream with this new generation,” Roy concludes.

Guest post by Sutharsika Kumar, North Carolina School of Science and Mathematics, Class of 2024

International Experience Shaped Epidemiologist’s Career Path

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the sixth of eight posts.

In the complex world of scientific exploration, definitive answers often prove elusive, and each discovery brings with it a nuanced understanding that propels us forward. Dr. Dana Kristine Pasquale’s journey in public health serves as a testament to the intricate combination of exploration and redirection that have shaped her into the seasoned scientist she is today.

Pasquale said her scientific path has been  “…a nonlinear journey, that’s been a series of over-corrections. As I’ve gone from one thing to another, that hasn’t turned out to be what I expected.”

Dana Pasquale Ph.D.

Anchored in her formative years in a study abroad experience in Angola, Africa during undergraduate studies, Pasquale’s exposure to clinical challenges left an indelible mark. She keenly observed the cyclic nature of treating infections by shadowing a local physician. 

“We would treat the same people from month to month for the same kinds of infections,” she recalled. 

Things like economic and social barriers weren’t as stark there – everyone was at the same level, and there was no true impact that she could make investigating them. This realization sparked a profound understanding that perhaps a structural, community-focused intervention could holistically address healthcare needs – water, sanitation, etc. It set the course for her future research endeavors.

Upon returning to the U.S., she orchestrated a deliberate shift in her academic trajectory, choosing to immerse herself in medical anthropology at the University of North Carolina-Chapel Hill. Her mission was clear: to unravel how local communities conceptualize health. Engaging with mothers and child health interventionists, she delved into health behavior, yet found herself grappling with persistent frustrations. 

“I found [health behavior] frustrating because there were still a lot of structural issues that made things impossible,” she says. “And even when you think you’re removing some of the barriers, you’re not removing the most important ones.”

 Rather than being a roadblock, this frustration became a catalyst for Pasquale, propelling her toward the realms of epidemiology and sociology. Here, the exploration of macro and structural factors aligned seamlessly with her vision for sustainable public health, providing the missing pieces to the intricate puzzle she was trying to solve. She didn’t expect to end up here until her mentor suggested going back to school for it.

As principal investigator of Duke’s RDS2 COVID-19 Research and Data Services project during the early months of the pandemic, Pasquale navigated the challenges associated with transitioning contact-tracing efforts online. Despite hurdles in data collection due to the project’s reliance on human interaction and testing, the outcome was an innovative online platform, minimizing interaction and invasiveness. This accomplishment beautifully intertwines with her ongoing work on scalable strategies to enhance efficiency in public health activities during epidemics. 

“We had a lot of younger people say that they would prefer to enter their contacts online rather than talk to someone… something that could be a companion to public health, not subverting contact-tracing, which is an essential public health activity.”

Pasquale’s expansive portfolio extends to an HIV Network Analysis for contact tracing and intelligent testing allocation. Presently, she is immersed in a project addressing bacterial hospital infections among patients and hospital personnel, a testament to her unwavering commitment to tackling critical health challenges from various angles.

When queried about her approach to mentoring and teaching, Pasquale imparts a valuable piece of wisdom from her mentor: “If you’re not completely embarrassed by the first work you ever presented at a conference, then you haven’t come far enough.” 

Her belief in the transformative power of mistakes and the non-linear trajectory in science resonates in her guidance to students, encouraging them to not only accept but embrace the inherent twists and turns in their scientific journeys. As they navigate their scientific journeys, she advocates for the importance of learning and growing from each experience, fostering resilience and adaptability in the ever-evolving landscape of scientific exploration.

Guest Post by Ashika Kamjula, North Carolina School of Math and Science, Class of 2024

Scientific Passion and the Aspirations of a Young Scientist

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the fifth of eight posts.

Meet Dr. Oyindamola Adefisayo – Oyinda to her friends – a Postdoctoral Research Fellow at Duke. She’s exploring bacterial factors in host-pathogen interactions using mice. 

During our interview, parallels in our journeys became clear. Even as a high school senior, I could strongly identify with Dr. Adefisayo’s work and share similar passions. I envisioned myself evolving into an inspiring scientist just like her and felt a strong connection with my aspirations as a high school senior.

Originally from Lagos, Nigeria, Dr. Adefisayo came to the U.S. via the African Leadership Academy in Johannesburg. Like me, she left home at 16 for a two-year residential program for teenagers. It was filled with passionate and driven students like I’m with at NCSSM. Oyinda earned her B.A. in Biology at Clark University, specializing in the genetic basis of wing and eye development in the fruitfly Drosophila melanogaster.

Her Ph.D. at Memorial Sloan Kettering in New York City focused on Immunology and Microbial Pathogenesis.  She studied mycobacteria, examining DNA damage response pathways, antibiotic resistance, and mutagenesis. The work connected with her knowledge of Nigeria’s high tuberculosis burden as she sought practical applications. She found that a delay in the machinery of DNA copying itself triggered a damage repair pathway called PafBC. 

Beyond the lab, Oyinda’s passion for ballroom dancing reflects her belief that science is an art, since there’s so much creativity and artistic sense that goes into being a scientist. This resonated with me too. I use painting as an outlet during my research on environmental stressors and antibiotics at NCSSM.

I was inspired by Dr. Adefisayo’s beliefs and passions. She continues her scientific career by delving deeper into protocol development, data analysis, and global knowledge-sharing. Her goal is to learn from bacterial and host genetics and contribute to  simplifying and expediting life science research for professionals worldwide.

Guest post by Emily Alam, North Carolina School of Math and Science, Class of 2024.

How Do Animals – Alone or in Groups – Get Where They’re Going?

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the of fourth eight posts.

In the intricate world of biology, where the mysteries of animal behavior unfold, Dr. Jesse Granger emerges as a passionate and curious scientist with a Ph.D. in biology and a penchant for unraveling the secrets of how animals navigate their surroundings.

Her journey began in high school when she posed a question to her biology teacher about the effect of eye color on night vision. Unable to find an answer, they embarked together on a series of experiments, igniting a passion that would shape Granger’s future in science.

Jesse Granger in her lab at Duke

Granger’s educational journey was marked by an honors thesis at the College of  William & Mary that delved into the potential of diatoms, single-cell algae known for their efficiency in capturing light, to enhance solar panel efficiency. This early exploration of light structures paved the way for a deeper curiosity about electricity and magnetism, leading to her current research on how animals perceive and use the electromagnetic spectrum.

Currently, Granger is involved in projects that explore the dynamics of animal group navigation. She is investigating how animals travel in groups to find food, with collective movement and decision-making.  

Among her countless research endeavors, one project holds a special place in Granger’s heart. Her study involved creating a computational model to explore the dynamics of group travel among animals.  She found that agents, a computational entity mimicking the behavior of an animal, are way better at getting where they are going as part of a group than agents who are traveling alone.

Granger’s daily routine in the Sönke Johnson Lab revolves around computational work. While it may not seem like a riveting adventure to an outsider, to her, the glow of computer screens harbors the key to unlocking the secrets of animal behavior. Coding becomes her toolkit, enabling her to analyze data, develop models, and embark on simulations that mimic the complexities of the natural world.

Granger’s expertise in coding extends to using R for data wrangling and NetLogo, an agent-based modeling program, for simulations. She describes the simulation process as akin to creating a miniature world where coded animals follow specific rules, giving rise to emergent properties and valuable insights into their behavior. This skill set seamlessly intertwined with her favorite project, where the exploration of group dynamics and navigation unfolded within the intricate landscapes of her simulated miniature world.

In the tapestry of scientific exploration, Jesse Granger emerges as a weaver of knowledge, blending biology, physics, and computation to unravel the mysteries of animal navigation. Her journey, marked by curiosity and innovation, not only enriches our understanding of the natural world but also inspires the next generation of  scientists to embark on their unique scientific odysseys.      

Guest Post by Mansi Malhotra, North Carolina School of Science and Math, Class of 2025.

Solving More Medical Device Challenges by Teaching Others How

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the third of eight posts.

Eric Richardson is a professor of the practice in Biomedical Engineering and founding director of Duke Design Health. His research and teaching centers around medical device design and innovation, with a focus on underserved communities. 

Eric Richardson, Ph.D.

Richardson has always had a strong desire to enhance people’s wellbeing. Growing up, he wanted to be a doctor, but during high school, he was drawn towards the creative and problem-solving aspects of engineering. After earning a bachelor’s degree in mechanical engineering, he pivoted to biomedical engineering for graduate work. While pursuing his PhD degree, he developed a profound interest in cardiac devices. 

Through technology, Richardson has been able to impact the lives of many. He first worked in industry as a Principal R&D Engineer at Medtronic, where he helped develop transcatheter heart valves that have now helped over a million patients. However, it was his love for teaching that brought him to academia. Over the past decade as a professor, his interests have shifted towards global health and helping underserved communities. 

Richardson aims to design technology to fit the needs of people, and bridge the gap of “translation” between research and product development. During his time in industry, Richardson realized that the vast majority of medical device research doesn’t go anywhere in terms of helping patients. 

“That point of translation… is really where most technology and research dies, so I really wanted to be at that end of it, trying to figure out that pipeline of getting research, getting technology, all the way into the clinic,” Richardson says. “I would argue that is probably the hardest step of the whole process is actually getting a product together, developing it, doing the clinical trials, and doing the manufacturing and regulatory steps.” 

A prototype of Richardson’s latest device.

Through his teaching, Richardson emphasizes product design, interdisciplinary approaches, and industry-academia partnerships to best meet the needs of underserved communities. One of his favorite courses to teach is the Design Health Series, a four-course sequence that he was brought to Duke to develop. In this class, interdisciplinary teams of graduate students, ranging from medicine to business, work together to design medical devices. They learn how to identify problems in medicine, develop a solution, and translate that into an actual product. 

Richardson also encourages engineers to look at the broader picture and tackle the right problems. According to Richardson, challenges in global and emerging markets often aren’t due to a particular device, but rather, a multilayered system of care, ranging from a patient’s experience within a clinic to a country’s whole healthcare system. From this vantage point, he believes it’s important for engineers to determine where to intervene in the system, where the need is greatest, and to consider any unintended consequences. 

“I think that there is so much great talent in the world, so many exciting problems to go after. I wish and hope that people will think a little more carefully and deliberately about what problems they go after, and the consequences of the problems that they solve,” he says. 

Richardson is currently working on an abdominal brace for Postural Tachycardia Syndrome (POTS) patients – people who feel lightheaded after standing up – that is currently in clinical trials. While he is always eager to tackle different projects, as an educator, he believes the most important part of academia is training the next generation of engineers. 

“I can only do a couple projects a year, but I can teach a hundred students every year that can then themselves go and do great things.”

Guest Post by Arianna Lee, North Carolina School of Science and Mathematics, Class of 2025.

Pioneering New Treatments in Deep Brain Stimulation for Parkinson’s Disease

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the second of eight posts.

Meet a star in the realm of academic medicine – Dr. Kyle Todd Mitchell!

A man who wears many hats – a neurologist with a passion for clinical care, an adventurous researcher, and an Assistant Professor of Neurology at Duke – Mitchell finds satisfaction in the variety of work, which keeps him “driven and up to date in all the different areas.”

Dr. Mitchell holds a deep brain stimulation device.

Dr. Mitchell’s educational journey is marked by excellence, including a fellowship at the University of California San Francisco School of Medicine, a Neurology Residency at Washington University School of Medicine, and an M.D. from the Medical College of Georgia. Beyond his professional accolades, he leads an active life, enjoying running, hiking, and family travels for rejuvenation. 

Dr. Mitchell’s fascination with neurology ignited during his exposure to the field in medical school and residency. It was a transformative moment when he witnessed a patient struggling with symptoms experience a sudden and remarkable improvement through deep brain stimulation. This therapy involves the implantation of a small electrode in the brain, offering targeted stimulation to control symptoms and bringing relief to individuals grappling with the challenges of Parkinson’s Disease.

“You don’t see that often in medicine, almost like a light switch, things get better and that really hooked me,” he said. The mystery and complexity of the brain further captivated him. “Everything comes in as a bit of a mystery, I liked the challenge of how the brain is so complex that you can never master it.” 

Dr. Mitchell’s research is on improving deep brain stimulation to alleviate the symptoms of  Parkinson’s disease, the second most prevalent neurodegenerative disorder, which entails a progressive cognitive decline with no cure. Current medications exhibit fluctuations, leading to tremors and stiffness as they wear off. Deep brain stimulation (DBS), FDA-approved for over 20 years, provides a promising alternative. 

Dr. Mitchell’s work involves creating adaptive algorithms that allow the device to activate when needed and deactivate so it is almost “like a thermostat.” He envisions a future where biomarkers recorded from stimulators could predict specific neural patterns associated with Parkinson’s symptoms, triggering the device accordingly. Dr. Mitchell is optimistic, stating that the “technology is very investigational but very promising.”

A key aspect of Dr. Mitchell’s work is its interdisciplinary nature, involving engineers, neurosurgeons, and fellow neurologists. Each member of the team brings a unique expertise to the table, contributing to the collaborative effort required for success. Dr. Mitchell emphasizes, “None of us can do this on our own.”

Acknowledging the challenges they face, especially when dealing with human subjects, Dr. Mitchell underscores the importance of ensuring research has a high potential for success. However, the most rewarding aspect, according to him, is being able to improve the quality of life for patients and their families affected by debilitating diseases.

Dr. Mitchell has a mindset of constant improvement, emphasizing the improvement of current technologies and pushing the boundaries of innovation. 

“It’s never just one clinical trial — we are always thinking how we can do this better,” he says. 

The pursuit of excellence is not without its challenges, particularly when attempting to improve on already effective technologies. Dr. Mitchell juggles his hats of being an educator, caregiver, and researcher daily. So let us tip our own hats and be inspired by Dr. Mitchell’s unwavering dedication to positively impact the lives of those affected by neurological disorders.

Guest post by Amy Lei, North Carolina School of Science and Math, Class of 2025.

From Occupational Therapy to Stroke Research

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the first of 8 posts.

Dr. Kimberly Hreha’s journey to studying stroke patients was not a straightforward one, but it started very early.

“My mom was a special ed teacher, and so I would go into her class and volunteer. There was an occupational therapist I met and they really kind of drove my decision to become an occupational therapist.” 

After earning a masters degree in occupational therapy, Hreha worked as an OT for 5 years and became fascinated by stroke survivors and ways to help them live their lives normally again. She was able to do this when she moved to the Kessler Institute for Rehabilitation and began working with a neurologist to study spatial neglect.

Kimberly Hreha and her Prism Adaptation goggles.

“If a stroke happens in the right hemisphere of the brain, the person neglects the left side of space,” Hreha said. “Imagine yourself standing in a room, and I want you to describe to me what the space is. [You would say] Oh my dresser’s on the right side, my bed’s on the right, my picture frame’s on the right. And you would not tell me anything on the left.” 

She further explained that this is not due to blindness in the left eye, the left eye usually can see just fine, it’s simply that the brain ignores the entire left side of space. 

Hreha co-developed a solution and treatment for this issue. It uses a pair of goggles with modified lenses, to move you into left space. I got to try it out to see how it worked.

Hreha first had me touch my hand to my chest and then touch a pen she was holding. I did this easily without the goggles on. When I tried again with the goggles on, I completely missed and put my finger too far to the right. I kept trying to touch the pen with the goggles on until I had retrained my brain to touch it consistently. Next, she had me take the goggles off and try touching the pen again. I went to touch the pen, but I missed it because my finger went too far to the left! 

Hreha explained to me that she had just gotten me into left space. In stroke patients with left spatial neglect, she told me, they could use the goggles to help train them to stop neglecting left space, helping them to vastly improve their lives. 

The goggle therapy, formally called prism adaptation, is a simple treatment that is practiced for 20 minutes a day for 10 days. For this Hreha won the Young Investigator Award in Post-Acute Stroke Rehabilitation in 2018 for her contribution to stroke research. Seeing her passion for her treatment and her happiness to have created something that helps stroke patients was very gratifying for me.

Hreha is also working on finding a connection between stroke patients and dementia, something that she hopes will further help the stroke survivor community. This is a research project that is ongoing for her, and one that she hopes to gain valuable data analysis and research practices skills from.  

Finally, she talked to me about her goals for the future. Hreha hopes to do a collaborative study with people at the low-vision clinic, get a grant for her prism adaptation research, and create a right brain stroke clinic at Duke to be able to do large scale research to help right brain stroke patients. 

As a researcher, she still also finds time to keep up her OT practice, by working as an OT one full day each month. Keeping true to her love of helping others, she said, “That little part of that clinical time just reminds me why I’m doing the research I’m doing. And that when I’m doing the data work, it is, at the end of the day, about that person who is in front of me in the clinic.”

Guest Post by Prithu Kolar, Class of 2025, North Carolina School of Science and Math.

How Our Brain Deconstructs A World in Constant Motion

It’s a miracle that people aren’t constantly getting into car accidents.

Whizzing by at 65 miles per hour in a car, the brain rapidly decodes millions of photons worth of information from the eyes, and then must use that information to instantly figure out where it is and where it needs to go. Is that a pedestrian approaching the sidewalk or a mailbox? Do I need to take this offramp or the next one? What color is the traffic light up ahead?

Was it a stop sign? I didn’t notice. (US Marine Corps, via Wikimedia Commons.)

Most motorists, miraculously, get to work or school without a scratch.

After nearly a decade worth of research, Duke scientists have figured out how the brain juggles all of this so effortlessly and tirelessly in a surprisingly inefficient way: by making quick, low-level models of the world to help form a clear view of the road ahead. The new findings expand the understanding of how the brain sees the world, and might one day help clinicians better understand what goes awry in people with psychiatric issues defined by perceptual problems, like schizophrenia.

Most neuroscientists think our brain cells figure out what we’re looking at by quickly comparing what’s in front of us to past experience and prior knowledge. Like a biological detective, they might determine you are looking at a house by using past experiences of neighborhoods you have been in and houses you have lived in. Enthusiasts of this Bayesian theory have long reasoned that these quick, probability-based analyses are what help people see a stable world despite sensory and motor noise from eye movement and constant environmental uncertainties, like a glare from the sun or a backdrop of a moving crowd.

A recent paper in the online journal eNeuro however, suggests neuroscientists have overlooked a simpler explanation: that brain cells are also rapidly decoding a constant stream of information from the eyes using simple pattern recognition, like determining you’re looking at a house from the visual evidence of windows, a tall rectangular opening, and a manicured lawn.

Marc Sommer

“That discriminative model has some advantages because it’s really quick, logical, and flexible,” said Marc Sommer, Ph.D., a professor of biomedical engineering at Duke and senior author of the new study. “You can learn the boundaries between decisions, and you can apply all sorts of statistical pattern-matching at a very low level. You don’t have to create a model of the world, which is a big task for a brain.”

Sommer initially hoped to confirm the general consensus in neuroscience—that the brain builds on a working model of the world instead of recognizing patterns from the ground up. But after putting the Bayesian theory to the test with Duke neurobiology alumna Divya Subramanian, Ph.D., now a postdoctoral researcher at the National Institutes for Health, he’s hoping to extend their newfound results to other processes in the brain.

To ferret out which theory would hold up, Sommer and Subramanian recruited 45 adults for an eye test. Participants looked at a computer screen and were quizzed about where a shape on the screen moved to, or if it moved at all. Throughout the test, Subramanian subtly made movements trickier and less obvious to tease out how the brain compensates when there is increasing uncertainty, from changing the contrast of the shape to the shape itself.

After scoring the eye exams, Sommer and Subramanian were surprised to find that the brain didn’t solely rely on a Bayesian approach.

People scored worse when the visual noise was dialed up, but only when they were asked where the target moved to. Test scores were mostly unaffected with noisier scenes when people were asked if a shape moved on the screen, suggesting that—to the team’s surprise—people don’t always use prior experiences when they are more uncertain about what they are seeing, like our biological detective would.

The team spent the next several years parsing through results and replicating their findings “three times to believe it,” Subramanian said, but it always led them to the same conclusion: for some forms of perception, brain cells stick to low-level patterns to draw conclusions about the world around them.

“You can collect data forever and ever. And at some point, you just realize you have enough,” Sommer said.

Sommer now plans to disrupt the dogma for other sensory systems, like spoken language, to see if beloved theories hold up to the scrutiny of testing.

The hope is that by understanding how the brain solves other perceptual problems, Sommer and others can better understand psychiatric and motor disorders, like Parkinson’s disease, schizophrenia, or obsessive-compulsive disorder, and develop more effective treatments as a result.

“There are some sub-circuits of the brain that are probably pretty well-understood to be involved with these disorders. That’s a biological description,” Sommer said. “And there’s also neurotransmitter deficits, like lacking dopamine in Parkinson’s. That’s a chemical explanation. But there are very few big-picture, explanations of why people have certain psychiatric or motor disorders.”

CITATION: “Bayesian and Discriminative Models for Active Visual Perception Across Saccades,” Divya Subramanian, John Pearson, Marc A. Sommer. eNeuro, July 14, 2023. DOI: 10.1523/ENEURO.0403-22.2023

Guest post by Isabella Kjaerulff, Class of 2025

Blue is The New Color of Sustainable Investing

The green bond market’s remarkable success, currently valued at over US $500 billion[i], shows how bond finance is an effective way to raise substantial capital for climate-related investments. Following on this success, blue bonds are emerging as the newest trend in sustainability investing and they’re poised to make waves.

Introduced in 2008, green bonds commit to using the funds they raise exclusively for environmentally friendly projects, assets, or business activities[ii]. Since then, the green bond market has seen explosive growth and helped to shape investor attitudes toward sustainable investing.

The blue bond market — blue as in oceans — is where green bonds were 15 years ago[iii]. Blue bonds are a relatively new type of sustainability designed to finance the conservation and sustainable management of ocean and coastal resources[iv].

The Republic of Seychelles issued the first blue bond in 2018, with funds dedicated to expanding Marine Protected Areas (MPAs) and improving fisheries governance[v]. To date, only 25 other blue bonds have been issued[vi]. Although in its infancy in comparison to green bonds, the blue bond market is poised to follow a similar trajectory as governments, companies, and investors begin to realize the importance of the blue economy and the relationship between climate change and our oceans[vii].

The Ocean’s Big Role

The ocean covers 70% of the Earth’s surface, comprises 97% of all water on earth, and contains 99% of all living space on the planet[viii]. It plays a vital role in absorbing carbon dioxide and producing the oxygen we breathe, it is a significant component of the global economy, and a key element in fighting climate change. However, governments and organizations around the world continue to abuse the ocean rather than protect it. But with over three billion people reliant on a healthy ocean for their livelihoods, and more than 350 million ocean-related jobs, continued exploitation of our oceans will have catastrophic consequences[ix].

Commitments without Capital

The past few years have seen numerous commitments to restoring and protecting the long-term health our oceans. The United Nations declared 2021-2030 as “The Ocean Decade” and the 30×30 campaign pledges to protect at least 30% of the ocean by 2030[x]. Despite these commitments, the ocean remains chronically underfunded. Sustainable Development Goal (SDG) 14 “Life Under Water” receives the least amount of long-term funding of any of the SDGs. Recent reports suggest that $175 billion per year is needed to achieve SDG 14 by 2030; and yet, between 2015 and 2019, just below USD $10 billion was invested.[xi]

Source: https://icg.citi.com/icghome/what-we-think/citigps/insights/sustainable-ocean-economy

Not only does this gap prevent any meaningful progress, the cost of inaction is devastating. Failing to invest in our oceans could result in a total bill of USD $200 billion to $1 trillion a year by 2100 in loss of land, people relocation, and coastal protection[xii]. To put it simply, we cannot afford to underinvest in our oceans.

Mobilizing Capital Through Blue Bonds

Current ocean funding comes primarily through public and philanthropic sources, which are essential, however incredibly insufficient. Enabling the increased use of private finance is critical to achieving ocean conservation goals, and the use of blue bonds can play an essential role.

Bonds are a debt instrument that facilitates an interaction between a borrower and an investor. The investor provides capital to the borrower, and the borrower is required to pay back that capital within a certain period. In the case of blue bonds, the borrower is also required to use the capital to create positive impact on the marine environment. Such an arrangement enables the borrower to access significant amounts of capital upfront and provides the investor with a predictable income stream. This relationship is of particular use within the climate landscape. Green and blue bonds effectively unlock additional sources of capital for climate-related investments and enable private investors to participate in markets that would otherwise be considered too risky.

Source: https://enviroaccounting.com/green-bonds-and-pay-for-performance/

Successful Green Bonds as a Blueprint

To enable the rapid and responsible scaling of the blue bond market, we can leverage existing frameworks from green bonds as models. The green bond market has seen numerous innovative bond structures that support investment in traditionally underserved markets and align financial incentives with sustainability-focused outcomes. Three of these innovative bond issuances are outlined below and offer unique opportunities to apply similar structures to the blue bond market.

Blue is the New Green: A deep dive into three green bond structures and how they can turn blue

The Wildlife Conservation Bond

In 2022, The World Bank and Global Environment Facility issued a first-of-its-kind Wildlife Conservation Bond (WCB) which channels investment into conservation outcomes. This five-year $150 million bond contributes to protecting and increasing black rhino populations in two protected areas in South Africa[xiii]. The WCB is a great example of an innovative green bond that unlocked new financing streams for biodiversity protection and conservation initiatives.

Using the Wildlife Conservation Bond as a model, we can replicate this template across new geographies and species and transform how conservation is funded. Investors in the WCB do not receive coupon payments. Instead, the issuer makes conservation investment payments to help fund rhino conservation initiatives. In a similar manner, blue bonds can be created that enable coupon payments to be channeled to protect critical marine species.

Uruguay’s Sustainability-Linked Bond

In 2022, Uruguay issued a USD $1.5 billion sustainability-linked bond which includes a pricing feature designed to reward progress made on emissions-reduction targets. Coupon payments received by investors would decrease if the Uruguay government met pre-determined emissions targets, but if targets were missed there was a required increase in payment[xiv]. This arrangement aligned financial and environmental incentives and offered a signal to borrowers that more affordable finance is available in return for performing – or exceeding – sustainability strategies[xv].

Similar financing structures could be applied across a range of sustainability goals within the ocean landscape. Rather than reward progress on emissions reductions, blue bonds could be structured to offer favorable financing for biodiversity, establishing marine protected areas (MPA ) reducing plastic pollution, or fisheries management.

The Forests Bond

The Forests Bond was issued by the International Finance Corporation in 2016 to help unlock private finance for reducing deforestation. Investors in the USD $152 million Forests Bond could choose to receive coupons in the form of verified carbon credits, rather than cash payments[xvi]. This arrangement helped to boost demand for carbon credits and demonstrated investor interest in sustainability-focused investments.

The Forests Bond model can be repeated to support conservation of blue carbon ecosystems such as mangroves, salt marshes, and seagrasses. Blue carbon ecosystems sequester two to four times the amount of carbon of terrestrial forests, however, it is estimated that these ecosystems are being destroyed at four times the rate of tropical forests[xvii]. Designing a bond to act as a catalyst for the blue carbon market could offer the critical incentives needed to protect these essential environments.

Building the Blue Bond Wave

In all three of the above cases, investor demand for the green bond far exceeded initial expectations or the planned bond offering. This indicates that there is high investor interest for innovative bond models that provide both positive financial and climate returns. The main challenge is then providing investors with enough attractive opportunities to participate. With just 25 blue bonds issued to date, the blue bond market is nascent. Establishing a robust blue bond market requires transparency, standardization, and accountability. Clear Key Performance Indicators (KPIs) must be developed to demonstrate the tangible benefits of blue bond investments in terms of ocean conservation and sustainable resource management. Additionally, collaboration between governments, financial institutions, and environmental organizations is essential to create a supportive ecosystem that encourages blue bond issuance. Ultimately, the future of the blue bond market hinges on aligning financial incentives with environmental objectives, fostering innovation, and building a robust infrastructure that inspires trust and commitment from a diverse set of stakeholders[xviii].

Guest Post by Mackenzie Audino, 2024 Masters candidate in business administration and environmental management. This project was completed as part of the ClimateCap Fellowship, a program of the ClimateCap Initiative led by Duke University’s Fuqua School of Business and supported by the Hearst Foundations.


[i] https://www.sciencedirect.com/science/article/pii/S0308597X22002664#bib26

[ii] https://www.oecd.org/environment/cc/Green%20bonds%20PP%20%5Bf3%5D%20%5Blr%5D.pdf

[iii] https://unglobalcompact.org/take-action/ocean/communication/blue-bonds-accelerating-sustainable-ocean-business

[iv] https://www.undp.org/indonesia/blog/indonesia-launches-worlds-first-publicly-offered-sovereign-blue-bond-undps-support

[v] https://www.worldbank.org/en/news/press-release/2018/10/29/seychelles-launches-worlds-first-sovereign-blue-bond

[vi] https://www.mdpi.com/1911-8074/16/3/184

[vii] https://www.wellington.com/en-gb/intermediary/insights/blue-bonds-marine-ecosystem

[viii] https://oceanliteracy.unesco.org/our-blue-planet/

[ix] https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/risk/ocean-financing.pdf

[x] https://marine-conservation.org/30×30/

[xi] https://www.weforum.org/whitepapers/sdg14-financing-landscape-scan-tracking-funds-to-realize-sustainable-outcomes-for-the-ocean/

[xii] https://www.nature.com/articles/s41467-021-23168-y

[xiii] https://www.worldbank.org/en/news/press-release/2022/03/23/wildlife-conservation-bond-boosts-south-africa-s-efforts-to-protect-black-rhinos-and-support-local-communities

[xiv] https://www.reuters.com/markets/rates-bonds/bank-floats-10-bln-brazilian-bond-plan-halt-amazon-deforestation-2022-12-19/

[xv] https://www.ifre.com/story/3661444/latin-america-bond-uruguays-us15bn-sustainability-linked-bond-wh65f7xrlp

[xvi] https://www.conservation.org/docs/default-source/peru/forests-bond_factsheet.pdf?Status=Master&sfvrsn=867eadb8_3

[xvii] https://siwi.org/latest/what-are-we-getting-wrong-about-blue-carbon/

[xviii] OpenAI. “The future of the blue bond market and what needs to happen to increase the amount of capital that is invested.” ChatGPT, 2023, [https://chat.openai.com/c/ba58a2d7-1129-465c-9fa5-f4815f08aa91]. Accessed [September 27, 2023]

Shifting from Social Comparison to “Social Savoring” Seems to Help

The face of a brown-eyed girl with freckles, bangs and new adult teeth fills most of the frame. Superimposed to the right are the icons of multiple real and imagined social media apps in a semicircular arrangement. Image by geralt, via Pixabay.
Image by geralt, via pixabay.

The literature is clear: there is a dark side to engaging with social media, with linkages to depressive symptoms, a sense of social isolation, and dampened self-esteem recently revealed in the global discourse as alarming potential harms.

Underlying the pitfalls of social media usage is social comparison—the process of evaluating oneself relative to another person—to the extent that those who engage in more social comparison are at a significantly higher risk of negative health outcomes linked to their social media consumption.

Today, 72 percent of Americans use some type of social media, with most engaging daily with at least one platform.(1) Particularly for adolescents and young adults, interactions on social media are an integral part of building and maintaining social networks.(2-5) While the potential risks to psychosocial well-being posed by chronic engagement with these platforms have increasingly come to light within the past several years, mitigating these adverse downstream effects poses a novel and ongoing challenge to researchers and healthcare professionals alike.

The intervention aimed to supplant college students’ habitual social comparison … with social savoring: experiencing joyful emotions about someone else’s experiences.

A team of researchers led by Nancy Zucker, PhD, professor in Psychiatry & Behavioral Sciences and director of graduate studies in psychology and neuroscience at Duke University, recently investigated this issue and found promising results for a brief online intervention targeted at altering young adults’ manner of engagement with social media. The intervention aimed to supplant college students’ habitual social comparison when active on social media with social savoring: experiencing joyful emotions about someone else’s experiences.

A cartoon depicts a small man in a ball cap standing on a table with a smartphone nearby. A larger person on the right with a cat-like nose regards him with tears in her eyes.
Image from Andrade et al

Zucker’s team followed a final cohort of 55 college students (78 percent female, 42 percent White, with an average age of 19.29) over a two-week period, first taking baseline measures of their mental well-being, connectedness, and social media usage before the students returned to daily social media usage. On day 8, a randomized group of students received the experimental intervention: an instructional video on the skill of social savoring. These students were then told to implement this new skill when active on social media throughout days 8 to 14, before being evaluated with the rest of the cohort at the two-week mark.

For those taught how and why to socially savor their daily social media intake, shifting focus from social comparison to social savoring measurably increased their performance self-esteem—their positive evaluation—as compared with the control group, who received no instructional video. Consciously practicing social savoring even seemed to enable students to toggle their self-esteem levels up or down: those in the intervention group reported significantly higher levels of self-esteem on days during which they engaged in more social savoring.

Encouragingly, the students who received the educational intervention on social media engagement also opted to practice more social savoring over time, suggesting they found this mode of digesting their daily social media feeds to be enduringly preferable to that of social comparison. The team’s initial findings suggest a promising future for targeted educational interventions as an effective way to improve facets of young adults’ mental health without changing the quantity or quality of their media consumption.

Of course, the radical alternative—forgoing social media platforms altogether in the name of improved well-being—looms in the distance as an appealing yet often unrealistic option for many; therefore, thoughtfully designed, evidence-based interventions such as this research team’s program seem to offer a more realistic path forward.

Read the full journal article.

References

  1. Auxier B, Anderson M. Social media use in 2021: A majority of Americans say they use YouTube and Facebook, while use of Instagram, Snapchat and TikTok is especially common among adults under 30. 2021.
    2. McKenna KYA, Green AS, Gleason MEJ. Relationship formation on the Internet: What’s the big attraction? J Soc Issues. 2002;58(1):9-31.
    3.Blais JJ, Craig WM, Pepler D, Connolly J. Adolescents online: The importance of Internet activity choices to salient relationships. J Youth Adolesc. 2008;37(5):522-536.
    4. Valkenburg PM, Peter J. Preadolescents’ and adolescents’ online communication and their closeness to friends. Dev Psychol. 2007;43(2):267-277.
    5. Michikyan M, Subrahmanyam K. Social networking sites: Implications for youth. In: Encyclopedia of Cyber Behavior, Vols. I – III. Information Science Reference/IGI Global; 2012:132-147.

Guest Post by Eleanor Robb, Class of 2023

Page 1 of 8

Powered by WordPress & Theme by Anders Norén