Research Blog

Following the people and events that make up the research community at Duke

Students Dance Their Way Out of “AI Bias”

Martin Brooke is no ordinary Engineering professor at Duke University. He teaches computer scientists, engineers, and technology nerds how to dance.

Brooke co-teaches Performance and Technology, an interactive course where students create performance projects and discuss theoretical and historical implications of technologies in performance. In a unique partnership with Thomas DeFrantz, a professor of African and African American Studies and Dance students will design a technology based on “heart,” for example, in order to understand how human expression is embedded in technology. Two weeks later, they’ll interact with motion-sensing, robotic trees that give hugs; and 3D printed hearts that detect colors and match people, sort of like a robotic tinder.

Thomas DeFrantz (left) and Martin Brooke  watch their students perform in the Performance and Technology course .

Brooke loves that this class is fun and interactive, but more importantly he loves that this class teaches students how to consider people’s emotions, facial expressions, cultural differences, cultural similarities and interactions when designing new technologies.

Human interface is when a computerized program or device takes input from humans — like an image of a face — and gives an output — like unlocking a phone. In order for these devices to understand human interface, the programmer must first understand how humans express themselves. This means that scientists, programmers, and engineers need to understand a particular school of learning: the humanities. “There are very, very few scientists who do human interface research,” Brooke said.

The students designed a robotic “Tinder” that changes colors when it detects a match.

Brooke also mentioned the importance of understanding human expressions and interactions in order to limit computer bias. Computer bias occurs when a programmer’s prejudiced opinions of others are transferred into the computer products they design. For example, many recent studies have proven that facial recognition software inaccurately identifies black individuals when searching for suspects of a criminal case.

“It turns out one of the biggest problems with technology today is human interface,” Brooke said. “Microsoft found out that they had a motion sensitive Artificial Intelligence that tended to say women, [more often than men], were angry.”  Brooke said he didn’t consider the importance of incorporating the arts and humanities into engineering before coming to Duke. He suggested that it can be uncomfortable for some scientists to think and express themselves artistically. “[When] technologists [take Performance and Technology], for example, they are terrified of the performance aspects of it. We have some video of a guy saying, ‘I didn’t realize I was going to have to perform.’ Yeah, that’s what we were actually quite worried about, but in the end, he’s there in the video, doing slow motion running on stage — fully involved, actually performing, and really enjoying it.

Duke has a strong initiative to promote arts and humanities inclusion in science, technology, engineering, and mathematics. Brooke plans to bring Bass Connections, a research program that focuses on public outreach and cross-disciplinary work, to his Performance and Technology class before the end of the semester to demonstrate bias through a program he calls AI Bias In the Age of a Technical Elite.  

“You give it someone’s name and it will come up with a movie title, their role, and a synopsis of the movie,” Brooke said. “When I put in my name, which is an English name, it said that the movie I would be in is about a little boy who lives in the English countryside who turns into a monster and terrorizes the town.” This program shows even something as simple as a name can have so much stigma attached to it.

Bass Connections Students working on technology and engineering projects. (From the official Duke page for Bass Connections.)

Brooke’s hope is that his class teaches students to think about technology and human interface. “Hopefully that’s a real benefit to them when they get out actually designing products.”

Guest post by Jordan Anderson, a masters student in Science & Society

A Day of STEM for Girls

On any average weekday at Duke University, a walk through the Engineering Quad and down Science Drive would yield the vibrant and exciting sight of bleary-eyed, caffeine-dependent college students heading to labs or lectures, most definitely with Airpods stuck in their ears.

But on Saturday, February 22nd, a glance towards this side of campus would have shown you nearly 200 energetic and chatty female and female-identifying 4th to 6th graders from the Durham area. As part of Capstone, an event organized by Duke FEMMES, these students spent the day in a series of four hands-on STEM activities designed to give them exposure to different science, technology, engineering, and math disciplines.

Nina MacLeod, 10, gets grossed out when viewing fruit fly larvae through a microscope while her guide, Duke first-year Sweta Kafle, waits patiently. (Jared Lazarus)

FEMMES, which stands for Females Excelling More in Math, Engineering, and Science, is an organization comprised of Duke students with the aim of improving female participation in STEM subjects. Their focus starts young: FEMMES uses hands-on programming for young girls and hosts various events throughout the year, including after-school activities at nearby schools and summer camps. 

Capstone was a day of fun STEM exposure divided into four events stationed along Science Drive and E-Quad — two in the morning, and two in the afternoon, with a break for lunch. Students were separated into groups of around eight, and were led by two to three Duke undergraduates and a high school student. The day started bright and early at 8:45 A.M with keynote speaker Stacy Bilbo, Duke professor of Psychology and Neuroscience. 

Staci Bilbo

Bilbo explained that her work centers around microglial cells, a type of brain cell. A series of slides about her journey into a science career sparked awe, especially as she remarked that microglial cells are significant players in our immune system, but scientists used to know nearly nothing about them. Perhaps most impactful, however, was a particular slide depicting microglial cells as macrophages, because they literally eat cellular debris and dead neurons.

A cartoon depiction of this phenomenon generated a variety of reactions from the young audience, including but not limited to: “I’m NEVER being a doctor!”, “I wish I was a microglial cell!”, “Ew, why are brains so gross?”, and “I’m so glad I’m not a brain because that’s SO weird.”

Even in 2020, while fields like medicine and veterinary science see more women than men, only 20% of students that earn bachelor’s degrees in physical sciences, math, and engineering disciplines are female. What accounts for the dramatic lack of female participation in STEM disciplines? The reasons are nuanced and varied. For example, according to a 2010 research report by the American Association of University Women, girls tend to have more difficulty acquiring spatial thinking and reasoning skills – all because of the type of play young female children are more likely to engage in. 

Durham area students learned how to perform a blood pressure check during a FEMMES session taught by Duke EMS, an all-volunteer, student-run division of the police department and Duke Life Flight. Duke senior Kayla Corredera-Wells (center) put the blood pressure cuff on sophomore Pallavi Avasarala. (Jared Lazarus)

This creates a chicken-and-egg story: girls don’t enter STEM at the same rate as their male counterparts, and as a result, future generations of girls are discouraged from pursuing STEM because they don’t see as many accomplished, visibly female scientists to look up to. Spaces like Capstone which encourage hands-on activity are key to exposing girls to the same activities that their male counterparts engage in on a regular basis – and to exposing girls to a world of incredible science and discovery led by other females. 

After Bilbo’s talk, it was off to the activities, led by distinguished female professors at Duke — a nod to the importance of representation when encouraging female participation in science. For example, one of the computer science activities, led by Susan Rodger, taught girls how to use basic CS skills to create 3-D interactive animation.

An introduction to categorizing different minerals based on appearance was led by Emily Klein, while one of the medicine-centered activities involved Duke EMS imparting first aid skills onto the students. 

For one of the biology-themed activities, Nina Sherwood and Emily Ozdowski (dubbed “The Fly Ladies”) showed students fruit flies under a microscope. The activity clearly split the group: girls who stared in glee at unconscious flies, shrieking “It’s SO BIG, look at it!” and girls who exchanged disgusted looks, edging their swivel chairs as far as physically possible from the lab benches. Elizabeth Bucholz, a Biomedical Engineering professor, led one of the engineering activities, showing students how CT scans generate images using paper, a keychain light and a block (meant to represent the body). In math, meanwhile, Shira Viel used the activity of jump-roping to show how fractions can untangle the inevitable and ensuing snarls.

The day definitely wasn’t all science. During lunch in LSRC’s Love Auditorium, most groups spread out after scarfing down pizza and spent intense focus over learning (and recording) TikTok dances, and when walking down Science Drive under blue and sunny skies, conversations ranged from the sequins on someone’s Ugg boots to how to properly bathe one’s dog, to yelling erupting over someone confidently proclaiming that they were a die-hard Tar Heel.

Nina Sherwood, Associate Professor of Biology, showed Emma Zhang, 9, some fruit flies, which we study because they share 75% of their genes with humans. (Jared Lazarus)

A raffle at the end of the day for the chance to win Duke merchandise inspired many closed eyes and crossed fingers (“I want a waterbottle so bad, you have no idea!”) And as newfound friends said goodbye to each other and wistfully bonded over how much fun they had at the end of the day, one thing was clear: events like Capstone are crucial to instilling confidence and a love of STEM in girls. 

By Meghna Datta

Medicine’s ‘Digital Health’ Future

“How often do we get to see a new field [of medicine] grow?” asked Satasuk “Joy” Bhosai (MD MPH), the chief of digital health and strategy for the Duke Clinical Research Institute.

Bhosai offered insights to the rapidly emerging and expanding field of digital health in her talk “Digital Health: How Do We Scale?” at Duke’s School of Nursing on Wednesday, March 4th.

Joy Bhosai, MD MPH

Digital health is a blanketing term that refers to a wide – and growing – array of services and products that merge digital technologies with healthcare to improve its quality, efficiency, and personalization. To put it simply: Digital health is the computerization of healthcare. Some of the largest, current digital trends of health care, according to Bhosai, are Artificial Intelligence (AI)/Machine Learning (ML), digital therapeutics, and innovations in delivery models. However, she presented a graphic (shown below) that shows the reach of the field.

Digital health is an expansive field that encompasses many types of products and services in the field of healthcare.

Bhosai focused on the challenges to digital health’s progress and the role that academia and research play in addressing these issues. “Having an idea and the technology are only the beginning,” Bhosai said.

To prove her point, Bhosai highlighted the company Proteus. Once valued at $1.5 billion, they are now struggling to stay afloat because they haven’t provided the data on effectiveness that investors needed.

She also pointed out the collaboration between Google and Ascension.  The duo teamed up with great technological potential to work on digital healthcare, but they received major pushback because Ascension released patients’ medical records to Google without patient knowledge or consent.

In the life cycle of developing and implementing digital health tools, Bhosai said that most companies falter or fail between beta testing and scaling. “To reach scale, evidence, and the right partners are needed.”

She proposed three main challenges as current limiters to breaking through the difficult transition that crushes so many digital health companies: 1) translating ideas to action, 2) evaluation and validation, and 3) adoption and scale.

Bhosai believes that there are many ways that academia and research could play a role in addressing these issues. Academics and researchers could give insight to the applicability of products, offer guidance on clinical utility, provide networks of contacts and support, materialize solutions, and build innovations at the front of business and growth models.

Bhosai’s proposed life cycle of digital health innovations.

This could help with things such as workflow, which may not be actualized in the product design of digital health products. One venture-backed attempt at putting information into a wearable, glasses-like device caused physicians to become very dizzy and disoriented – a problem that could have been avoided if medical specialists were integrated in the design process.

One success story is the company Akili, a digital therapeutic company that addresses cognitive impairments. A team at Duke, led by Scott Kollins, PhD, conducted a controlled clinical trial using the therapeutics and proved that the software led to improvements in treatment groups. The results of the study were submitted to the Federal Drug Administration (FDA) so that Akili can make claims around these findings in support of their service. Many other digital health products could benefit from these types of trials that provide evidence of their potential impacts in healthcare.

“Providers and academics are needed in health tech,” said Bhosai. This is a crucial connection to make for the future of the digital health field. Bhosai also pointed out that digital health tool users are not always a customer. For example, hospital systems are often the intended users of digital health services, but most hospitals have technical requirements that must be met in order to adopt a service. A product may be amazing but be barred from consideration for use because it would fail system security audits.

Products that are directly consumed by customers also must integrate into a patient’s lifestyle. “When products are high-touch, you may lose engagement,” Bhosai stated, “Patients don’t want to log onto three different apps when they could just log onto one.”

As digital health grows rapidly, companies in the field should work to navigate the health policies in place, understand the landscape of healthcare, and collaborate with academics and researchers to be successful and provide the best services for this new field of medicine.

World Bank takes on big data for development

Apparently, data is the new oil.

Like oil, data might be considered a productive asset capable of generating innovation and profit. It also needs to be refined to be useful. And according to Haishan Fu, Director of the World Bank’s Development Data Group, data is, much like oil, a development issue. She was the keynote speaker for a Feb. 25 program at Duke, “Rethinking Development: Big Data for Development.”

Image
Haishan Fu, Director of the World Bank Development Data Group

While big data is… well, big, Fu explains that it has a more focused quality as well. “When you go deeper, you can see something really personal,” she says. Numbers don’t have to be quite so intimidating in their largesse and clutter: everything is integrated in some way. All of the numbers address the same questions: who, what, when, where?

That’s why the World Bank and countless other organizations and individuals across the globe have begun moving toward big data for the purpose of social and economic development studies. It helps tackle the whowhat-when-where of real and complex global issues with increased precision, greater efficiency, and a fresh perspective.

For example, the World Bank’s 2019 Tanzania Poverty Assessment integrated household survey results and geospatial data to estimate poverty within a small region of Tanzania. Despite lacking exact data for that area, using big data to make this estimation was still extremely powerful. In fact, its precision increase was equivalent to doubling the survey’s sample size.

A bit further northwest in Africa, the World Bank has also been using big data in Cote d’Ivoire to predict population density based on cellphone subscriber data.

In Cote d’Ivoire, making predictions from big data (figure on right) has actually allowed for more precision than predictions from census data (left).

In Yemen, integrated data from multiple sources is being used to determine road networks and physical accessibility of hospitals. The World Bank can estimate this kind of information without actually having any ground contact, improving both time- and money-efficiency. Studies have made it evident that less road access is linked to poverty, so they’re hoping to improve road networks as well as update population estimates and further other local developments.

And Brazil has served as a case study in “how social media can provide economic insight,” Fu explains. There, the World Bank has been using Twitter to detect early variations in labor market activities, searching for key words and hashtags in tweets and determining if users’ later employment statuses future have any sort of relationship to the content of their earlier tweets. Interestingly, the Twitter index and unemployment rates in Brazil display similar trends.

These examples are just a few of many big data initiatives the World Bank has been working toward. And though they have proven valuable for lower-income countries across the world, the lack of data in certain areas still poses a huge problem. The data deficit has been contributing to global inequalities, with higher-income countries being able to provide and have access to more data and thus also new improvement technologies. Ending poverty requires eradicating data deprivation, Fu says.

Image result for world bank twin goals
The World Bank’s twin goals: (1) end poverty, (2) promoted shared prosperity.
Image from the World Bank

Eradicating data deprivation is a collaborative effort between the public and private sectors, which is also an issue of its own. On the one hand, there’s a major under-investment in public sector data. On the other, today’s winner-take-most economics and the dominance of select superstar firms have led some private companies to avoid sharing data and favored only those companies able to produce the biggest of datasets.

Fu says working toward data partnerships is a learning process for everyone involved; it’s still a work in progress and probably will be for a while. The potential of big data is already there—it’s just waiting to be totally harnessed. “We will collectively have this platform to increase efficiency, promote responsible use, and come up with sustainable initiatives,” Fu says of the future.

In other words, the World Bank is just getting started.

by Irene Park

Squirmy Science

Unearthing A New Way Of Studying Biology

Yes, students, worms will be on the test. 

Eric Hastie, a post-doctoral researcher in the David Sherwood Lab, has designed a hands-on course for undergraduates at Duke University in which biology students get to genetically modify worms. Hastie calls the course a C.U.R.E. — a course-based undergraduate experience. The proposed course is designed as a hands-on, semester-long exploration of molecular biology and CRISPR genome editing.

An image taken of the adult gonad structure of a C. elegans worm in the Sherwood Lab,

In the course, the students will learn the science behind genome editing before getting to actually try it themselves. Ideally, at the course’s end, each student will have modified the genome of the C. elegans worm species in some way. Over the course of the semester, they will isolate a specific gene within one of these worms by tagging it with a colored marker. Then they will be able to trace the inserted marker in the offspring of the worm by observing it through a microscope, allowing for clear imaging and observation of the chosen characteristic.

When taught, the course will be the third in the nation of its kind, offering undergraduates an interactive and impactful research experience. Hastie designed the course with the intention of giving students transferrable skills, even if they choose careers or future coursework outside of research.

“For students who may not be considering a future in research, this proposed class provides an experience where they can explore, question, test, and learn without the pressures of joining a faculty research lab,” he told me.

Why worms? Perhaps not an age-old question, but one that piqued my interest all the same. According to Hastie, worms and undergraduate scientific research pair particularly well: worms are cost-effective, readily available, take up little space (the adults only grow to be 1mm long!), and boast effortless upkeep. Even among worms, the C. elegans species makes a particularly strong case for its use. They are clear, giving them a ‘leg up’ on some of their nematode colleagues—transparency allows for easy visibility of the inserted colored markers under a microscope. Additionally, because the markers inserted into the parent worm will only be visible in its offspring, C. elegans’ hermaphroditic reproductive cycle is also essential to the success of the class curricula.  

Undergraduate researcher David Chen studying one of his worm strains under a microscope.

“It’s hard to say what will eventually come of our current research into C. elegans, but that’s honestly what makes science exciting,” says undergraduate researcher David Chen, who works alongside Hastie.  “Maybe through our understanding of how certain proteins degrade over time in aging worms, we can better understand aging in humans and how we can live longer, healthier lives.”

The kind of research Hastie’s class proposes has the potential to impact research into the human genome. Human biology and that of the transparent, microscopic worms have more in common than you might think— the results derived from the use of worms such as C. elegans in pharmaceutical trials are often shown to be applicable to humans. Already, some students working with Hastie have received requests from other labs at other universities to test their flagged worms. So perhaps, with the help of Hastie’s class, these students can alter the course of science.

“I certainly contribute to science with my work in the lab,” said junior Ryan Sellers, a research contributor. “Whether it’s investigating a gene involved in a specific cancer pathway or helping shape Dr. Hastie’s future course, I am adding to the collective body of knowledge known as science.”

Post by Rebecca Williamson

Polymath Mae Jemison encourages bolder exploration, collaboration

Photo from Biography.com

“I don’t believe that [going to] Mars pushes us hard enough.” This was just one of the bold, thought-provoking statements made by Dr. Mae Jemison, who came to speak at Duke on Monday, February 24 as part of the 15th annual Jean Fox O’Barr Distinguished Speaker Series, presented by Baldwin Scholars.

Dr. Jemison is at the pinnacle of interdisciplinary engagement—though she is most famous for serving as a NASA astronaut and being the first African American woman to go into space, she is also trained as an engineer, social scientist and dancer. Dr. Jemison always knew that she was going to space—even though there were no women or people or color participating in space exploration as she was growing up.

Dr. Jemison says that simply “looking up” brought her here. As a child, she would look up at the sky, see the stars and wonder if other children in other places in the world were looking at the same view that she had. Growing up in the 1960’s instilled into Dr. Jemison at an early age that our potential is limitless, and the political culture of civil rights, changing art and music and decolonization were all about “people declaring that they had a right to participate.” 

Photo courtesy of Elizabeth Roy

One of the biggest pieces of advice that Dr. Jemison wanted to impart on her audience was the value of confidence, and how to build confidence in situations where people are tempted to feel incapable or forget the strengths they already possess. “They told me if I wanted to lead projects I needed an M.D.,” Dr. Jemison explained. “I went to medical school because I know myself and I knew I would want to be in charge one day.” 

At 26 years old, Dr. Jemison was on call 24 hours a day, 7 days a week, 365 days a year as the Area Peace Corps Medical Officer for Sierra Leone and Liberia. She described a case where a man came back with a diagnosis of malaria from Senegal. When Dr. Jemison first took a look, the diagnosis seemed more likely to be meningitis. After making an “antibiotic cocktail,” from what she had on site, she realized this man might lose his life if they didn’t get him to a better hospital. At this point, Dr. Jemison wanted to call a military medical evacuation, and she had the authority to do it. However, another man working with her suggested calling a doctor in Ivory Coast, or a doctor at the hospital in Germany to see what he thought before making the evacuation. Dr. Jemison knew what the patient needed in this situation was to be flown to Germany regardless of the cost of the evacuation. In reflecting on this experience, she says that she could have given someone else her authority, but letting her confidence in herself and what she knew was the right thing to do would have negatively impacted her patient. 

So, how do you maintain confidence? According to Dr. Jemison, you come prepared. She knew her job was to save people’s lives, not to listen to someone else. Dr. Jemison also admonished the audience to “value, corral and protect your energy.” She couldn’t afford to always make herself available for non-emergency situations, because she needed her energy for when a patient’s life would depend on it. 

Photo courtesy of Elizabeth Roy

Dr. Jemison’s current project, 100 Year Starship, is about  trying to ensure we have the capabilities to travel to interstellar space. “The extreme nature of interstellar hurdles requires we re-evaluate what we think we know,” Dr. Jemison explained. Alpha Centauri, the next closest star, is more than 25 trillion miles away. Even if we go 10% the speed of light, it will still take us 50 years to get there. We need to be able to travel faster, the vehicle has to be self-replenishing, and we have to think about space-time changes. What Dr. Jemison calls the “long pole in the tent” is human behavior. We need to know how humans will act and interact in a small spaceship setting for possibly decades of space travel. Dr. Jemison is thinking deeply about how we can apply the knowledge we already possess to fix world problems, and how we can start preparing now for problems we may face in the future. For example, how would health infrastructure in deep space look different? How would we act on a starship that contains 5,000 people when we can’t figure out how to interact with each other on the “starship” we’re on now?

Returning to the childhood love for stargazing that brought her here, Dr. Jemison discussed towards the end of her talk that a stumbling block for the majority of people is insufficient appreciation of our connection across time and space. She has worked with a team to develop Skyfie, an app that allows you to upload photos and videos of your sky to the Sky Tapestry and explore images other people in different parts of the world are posting of their sky. Dr. Jemison’s hope is this app will help people realize that we are interconnected with the rest of the universe, and we won’t be able to figure out how to survive as a species on this planet alone. 

By Victoria Priester

#UniqueScientists Is Challenging Stereotypes About Who Becomes a Scientist

University of North Carolina cell biologist Efra Rivera-Serrano says he doesn’t look like a stereotypical scientist: he’s gay, Puerto Rican, and a personal trainer.

Known on Twitter as @NakedCapsid or “the guy who looks totally buff & posts microscopy threads,” he tweets about virology and cell biology and aims to make science more accessible to the non-science public.

But science communication encompasses more than posting the facts of viral transmission or sending virtual valentines featuring virus-infected cells, Rivera-Serrano says. As a science communicator, he’s also committed to conveying truths that are even more rarely expressed in the science world today. He’s committed to diversity.

Rivera-Serrano’s path through academia has been far from linear — largely because of the microaggressions (which are sometimes not so micro) that he’s faced within educational institutions. He’s been approached while shopping by a construction work recruiter and told by a graduate adviser in biology to “stop talking like a Puerto Rican.”

Efra Rivera-Serrano, Ph.D.
He’s a scientist at UNC—and also a personal trainer.
Photo from @NakedCapsid Twitter

And the worst part is that he’s far from being the only one in this kind of position. That’s why Rivera-Serrano holds one simple question close to heart:

What would a cell do?

“I use this question to shape the way I tackle problems,” Rivera-Serrano says. After all, a key component of virology is the importance of intercellular communication in controlling disease spread. Similarly, a major goal of diversity-related science communication is “priming” others to fight stereotypes and biases about who belongs in science.

Virology’s “herd immunity” theory operates under the principle that higher vaccination rates mean fewer infections. For some viruses, a 90% vaccination rate is all it takes to completely eradicate an infection from existing in a population. Rivera-Serrano, therefore, hopes to use inclusive science communication as a vaccination tool of sorts to combat discriminatory practices and ideologies in science. He isn’t looking for 100% of the world to agree with him—only enough to make it work.

Herd immunity places value on community rather than individuals.
Image by Tkarcher via Wikimedia Commons

This desire for “inclusive science communication” led Rivera-Serrano to found Unique Scientists, a website that showcases and celebrates diverse scientists from across the globe. Scientists from underrepresented backgrounds can submit a biography and photo to the site and have them published for the world’s aspiring scientists to see.

Some Unique Scientists featured on Rivera-Serrano’s site!

Generating social herd immunity needs to start from an early age, and Unique Scientists has proven itself useful for this purpose. Before introducing the website, school teachers asked their students to draw a scientist. “It’s usually a man who’s white with crazy hair,” according to Rivera-Serrano. Then, they were given the same instructions after browsing through the site, and the results were remarkable.

“Having kids understand pronouns or see an African American in ecology—that’s all something you can do,” Rivera-Serrano explains. It doesn’t take an insane amount of effort to tackle this virus.

What it does take, though, is cooperation. “It’s not a one-person job, for sure,” Rivera-Serrano says. But maybe we can get there together.

by Irene Park

Predictive maps in the brain

How do we represent space in the brain? Neuroscientists have been working to understand this question since the mid-20th century, when researchers like EC Tolman started experimenting with rats in mazes. When placed in a maze with a food reward that the rats had been trained to retrieve, the rats consistently chose the shortest path to the reward, even if they hadn’t practiced that path before.

Sam Gershman is interested in how we encode information about our environments.

Over 50 years later, researchers like Sam Gershman, PhD, of Harvard’s Gershman Lab are still working to understand how our brains encode information about space.

Gershman’s research questions center around the concept of a cognitive map, which allows the brain to represent landmarks in space and the distance between them. He spoke at a Center for Cognitive Neuroscience colloquium at Duke on Feb. 7.

Maps are formed via reinforcement learning, which involves predicting and maximizing future reward. When an individual is faced with problems that have multiple steps, they can do this by relying on previously learned predictions about the future, a method called successor representation (SR), which would suggest that the maps we hold in our brain are predictive rather than retroactive.

One specific region implicated in representations of physical space is the hippocampus, with hippocampal place cell activity corresponding to positions in physical space. In one study, Gershman found, as rats move through space, that place field activity corresponding to physical location in space skews opposite of the direction of travel; in other words, activity reflects both where the rodent currently is and where it just was. This pattern suggests encoding of information that will be useful for future travel through the same terrain: in Gershman’s words, “As you repeatedly traverse the linear track, the locations behind you now become predictive of where you are going to be in the future.”

Activation patterns in place cells correspond to both where the animal is and where the animal just was, pointing to the construction of a predictive map during learning. Graphic courtesy of Stachenfield et al., 2017.

This idea that cognitive activity during learning reflects construction of a predictive map is further supported by studies where the rodents encounter novel barriers. After being trained to retrieve a reward from a particular location, introducing a barrier along this known path leads to increased place cell activity as they get closer to the barrier; the animal is updating its predictive map to account for the novel obstacle.

This model also explains a concept called context preexposure facilitation effect, seen when animals are introduced to a new environment and subsequently exposed to a mild electrical shock. Animals who spend more time in the new environment before receiving the shock show a stronger fear response upon subsequent exposures to the box than those that receive a shock immediately in the new environment. Gershman attributes this observation to the time it takes the animal to construct its predictive map of the new environment; if the animal is shocked before it can construct its predictive map, it may be less able to generalize the fear response to the new environment.

With this understanding of cognitive maps, Gershman presents a compelling and far-reaching model to explain how we encode information about our environments to aid us in future tasks and decision making.

If Netflix Died, Culture Might Die With It

What happens when Netflix dies? To open Duke Libraries’ Fair Use Week, Kyle Courtney, copyright advisor for Harvard University, and Will Cross, director of the Copyright and Digital Scholarship Center at North Carolina State University, spoke at Duke about the threats that licensing and copyright pose to cultural heritage on February 24th.

One responsibility – among many – of modern-day librarians is that of preservation. However, streaming services like Netflix and Hulu change the ways that librarians are able to do their jobs. Though Cross said that the constraints of copyright may actually help librarians archive culture in its many forms, licensing has introduced the need to negotiate preservation work.

Consumer-licensed materials, such as those provided on streaming services, have a bias of economic efficiency and make the mission of archiving nearly impossible, leaving many wondering, “How do we librarian? How do we scholar?”

Cross offered that modern-day culture is being built behind paywalls and that terms of service and contract laws prioritize the gain of individual companies and minimize the ways in which digital culture manifested on Netflix, Hulu, and other streaming companies are able to serve society. In other words, culture is becoming privately owned.

Cross also argued that if libraries didn’t already exist, there would no longer be any way to create them because even freely available items such as certain e-books are being made exclusively available through consumer licensed spaces.

Enter Fair Use. Fair Use is a doctrine in US copyright law that allows certain copyrighted materials to be used without permission from or payment to copyright holders if the use complies with four factors of use. The policy benefits scholars, students, and the general public in many ways by facilitating information-sharing and knowledge-creation. It can grant the use of copyrighted works for particular purposes and limits the monopoly of a copyright owner over the work in question. Courtney and Cross believe that Fair Use could provide a potential solution to the limitations currently being put on librarians’ ability to preserve content from streaming services.

The Fair Use logo

The current lack of a market for preserving streaming service content is a positive for people like Courtney and Cross who are advocating the need to archive these types of work. Not having a market means preservation poses little to no harm to the business of streaming services. Several case studies offer additional hope for the potential to circumvent preservation restrictions by using the rights of Fair Use.

However they said, there is little time to waste. So far, companies like Netflix are currently hesitant or completely reluctant to engage in the conversations about archival preservation that Courtney and Cross bring to the table.

Courtney says that companies like Hulu or Disney+ are not thinking about having scholars watch “Black Mirror” 100 years from now, but rather about earnings from fiscal quarter-to-quarter. Licensing does not address preservation or access concerns, and if all the streaming services suddenly went belly-up it’s probable that some of the unique content from these companies would be lost forever.

“If we don’t act … we may be losing culture left, right, and center,” Courtney said.

Post by Cydney Livingston

Artificial Intelligence Innovation in Taiwan

Taiwan is a small island off the coast of China that is roughly one fourth the size of North Carolina. Despite its size, Taiwan has made significant waves in the fields of science and technology. In the 2019 Global Talent Competitiveness Index Taiwan (labeled as Chinese Taipei) ranked number 1 in Asia and 15th globally.

However, despite being ahead of many countries in terms of technological innovation, Taiwan was still looking for further ways to improve and support research within the country. Therefore, in 2017 the Taiwan Ministry of Science and Technology (MOST), initiated an AI innovation research program in order to promote the development of AI technologies and attract top AI professionals to work in Taiwan.

Tsung-Yi Ho, a professor at the Department of Computer Science of National Tsing Hua University in Hsinchu, Taiwan came to Duke to present on the four AI centers that have been launched since then: the MOST Joint Research Center for AI Technology, All Vista Healthcare (AINTU), the AI for Intelligent Manufacturing Systems Research Center (AIMS), the Pervasive AI Research (PAIR) Labs, and the MOST AI Biomedical Research Center (AIBMRC) at National Taiwan University, National Tsing Hua University, National Chiao Tung University, and National Cheng Kung University, respectively. 

Within the four research centers, there are 79 research teams with more than 600 professors, experts, and researchers. The centers are focused on smart agriculture, smart factories, AI biomedical research, and AI manufacturing. 

The research centers have many different AI-focused programs. Tsung-Yi Ho first discussed the AI cloud service program. In the last two years since the program has been launched, they have created the Taiwania 2 supercomputer that has a computing capacity of 9 quadrillion floating-point operations per second. The supercomputer is ranked 20th in computing power and 10th in energy efficiency.

Next, Tsung-Yi Ho introduced the AI semiconductor Moonshot Program. They have been working on cognitive computing and AI chips, next-generation memory design, IoT System and Security for Intelligent edge, innovative sensing devices, circuits, and systems, emerging semiconductor processes, materials, and device technology, and component circuit and system design for unmanned vehicle system and AR/VR application. 

One of the things Taiwan is known for is manufacturing. The research centers are also looking to incorporate AI into manufacturing through motion generation, production line, and process optimization.

Keeping up with the biggest technological trends, the MOST research centers are all doing work to develop human-robot interactions, autonomous drones, and embedded AI on for self-driving cars.

Lastly, some of the research groups are focused on medical technological innovation including the advancement of brain image segmentation, homecare robots, and precision medicine.

Beyond this, the MOST has sponsored several programming, robotic and other contests to support tech growth and young innovators. 

Tsung-Yi Ho’s goal in presenting at Duke was to showcase the research highlights among four centers and bring research opportunities to attendees of Duke.

If interested, Duke students can reach out to Dina Khalilova to connect with Tsung-Yi Ho and get involved with the incredible AI innovation in Taiwan.

Post by Anna Gotskind

Paleo Fact and Fiction: the Key to Being Healthy

Humans have conquered smallpox and drastically reduced child mortality rates, yet we now face problems never seen before. Conditions like heart disease, obesity, cancer, and diabetes pose serious threats to our health. How can we overcome them? The answer may lie in our past.

Herman Pontzer, an associate professor of evolutionary anthropology at Duke, thinks we have something to learn by looking at hunter gatherers.

For most of human evolution, we had to work for our food. Recent developments like supermarkets and cities are strange and have flipped the script on daily life. Pontzer believes if we could live more like our ancestors, maybe we wouldn’t get sick.

Pontzer started off by studying a hunter gatherer group in Tanzania known as the Hadza. The Hadza cling tight to cultural traditions and live off the land in the African savannah. There are no domesticated animals, no guns, and no vehicles. Women spend their days digging for fibrous tubers and gathering berries and baobab fruits. When men aren’t hunting game, they collect honey. Honey plays a major role in the Hadza diet — around 15-20% of their caloric intake.

The Hadza live a very active lifestyle. They walk between 13,000 and 20,000 steps a day, compared to the generic Fitbit goal of 10,000 steps (which most of us don’t even meet, if we’re being honest).

Curious to see if the Hadza’s vigorous activity levels had something to do with their superior health, Pontzer used the doubly labeled water technique to measure total energy expenditure. Shockingly, he found that Hadza and Americans burn the same amount of calories on average.

All our lives we’ve been told exercise converts to burned calories. But evidence from the Hadza tells us this is not the case. What really happens is natural systems in our body adjust to suppress other activity, keeping total expenditure constant. This means that exercise alone is an ineffective tool for weight loss. But don’t quit the gym quite yet — while the Hadza spend most of their total energy being active, an inactive body will spend it on unhealthy things such as inflammation and stress reactivity. This constrained energy mechanism makes exercise essential for overall health. But in the words of Pontzer, “in order to end obesity, we need to fix our diet.”

Image result for paleo diet

The idea that the “paleo diet” is necessarily low-carb is a myth, Pontzer says. Hadza rely heavily on starches and fructose for sustenance. Furthermore, what you eat as a hunter gatherer is entirely dependent on geographical location. Hunter gatherer diets do things in common, though: they eat no processed foods, and energy dense foods are hard to come by. 

Never before have we had so much food high in energy available at such a low effort. In supermarkets, the cheapest food is the most rich in energy. In the wild, it’s the complete opposite. Pontzer says, “traditional diets are diverse, modern diets are perverse.”

Image result for supermarket cereal aisle

He calculated that an American can get twenty times as much food energy in an hour’s work as a Hadza could with the same effort. Plus, the Hadza don’t have irresistible Doritos they can’t stop eating. When the Hadza are full, they’re full.

The Hadza are naturally protected from the same “diseases of civilization” that we are likely to die from. A beautiful combination of diet and how they expend energy provides a shield that modernization seems to have taken from us. Energy has become too available. But staying healthy is still in our control. It’s about finding the right balance of exercise and eating right.  

There is still a lot to be learned from hunter gatherer societies. For now, let the Hadza inspire you to get outside, get active, and cut out processed foods!

Page 1 of 76

Powered by WordPress & Theme by Anders Norén