Research Blog

Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

How to be a Global Inventor

Sticky post

Gadgets, devices, doo-dads, oh my! The Duke Global Health Institute (DGHI)  recently hosted three of its members to lead a panel on creating medical devices for low- and middle-income countries. The event was called “Global Medical Device Innovation: Three Models for Creation and Commercialization.”

Each sought to decrease costs and increase scalability for medical procedures. In short, they are expert inventors who are doing good in the world. 

Two of the most prominent inventors of our era. Image courtesy of Disney.

We’ll go step-by-step in a moment, but to start you on your journey to being just like our panelists, here’s a short glossary:

Standard-of-care: a public health term for the way things are usually done.

IRB: institutional review board, a group of people, usually based in universities, that protect human subjects in research studies. 

Screening: when doctors look at signs your body might show to determine
whether you need to be tested for certain conditions. 

Supply-chain: the movement of materials your product goes through before, during, and after manufacturing. It is a general term for a group of different suppliers, factories, vendors, advertisers, researchers, and others that work separately. 

Regulatory pathways: supply-chain for government approvals and other paperwork you need to have before introducing your product to the public.

Step 1: Meet your Mentors

Walter Lee is Chief of Staff of the Department of Head and Neck Surgery & Communication Sciences, Co-Director of the Head and Neck Program, and an affiliate faculty member at the Duke Global Health Institute. He presented ENlyT (pronounced like en-light), a newfangled nasopharyngoscope – a camera that goes down your nose and down your throat to screen for cancer. He wants to expand with partners in Vietnam and Singapore. 

Marlee Kreiger helped found the Center for Global Women’s Health Technologies at Duke in 2007. Since then, she has led the Center in many interdisciplinary and international ventures. In fact, the Center for Global Women’s Health Technologies spans both the Pratt School of Engineering and the Trinity College of Arts and Sciences. She presented on the Callascope, a pocket-sized colposcope – a camera device for cervical cancer screening. 

Julias Mugaga will soon be a visiting scholar at Duke – until then, he heads Design Cube at Makerere University in Uganda. He presented his KeyScope, a plug-and-play surgical camera with 0.3% of the cost of standard-of-care cameras. 

Kreiger’s presentation slides

Step 2: Name your Audience

DGHI has “global” in the name, so it is no surprise that these presenters serve communities around the world. Perhaps something that inventors like Dr. Doofenshmirtz often get wrong is that new innovation should come at the benefit of underserved communities, not at the cost of them. For Lee, that focus would be in his collaborations in Vietnam; for Mugaga it was his community in Uganda; and for Kreiger, it was the many studies conducted in Zambia, Tanzania, Kenya, Costa Rica, Honduras, and India.

Each of the presenters could agree that the main strategy is simple: find partners. Community members on the ground. Organizations that can benefit from your presence.

Another prominent–albeit villainous–inventor, Dr. Doofenshmirtz. Image courtesy of Disney.

Another notable aspect of your audience will be the certification you vie for. Depending on your location, you may need different permissions to distribute your product, or even begin on the journey to secure funding from certain sources.

In the United States, the most relevant regulatory pathway is FDA clearance, which is notably less restrictive than the CE mark distributed in the European Union. Both certifications are accepted in other countries, but many of the inventors on the panel opted to secure a CE mark to potentially appeal to a wider variety of governments around the world.

ISO is an international organization that is also necessary for certification, particularly if you are looking to test a medical product. No reason to be dragged down by the paperwork, though! When asked about securing Ugandan product certification, Mugaga declared, “This is one of the most exciting journeys I have taken.” His path to clearance was even more wrought with uncertainty – without steady sources of material in the Ugandan economy, it is harder to earn FDA or CE approval, two of the most widely-acknowledged certifications in the world. 

Mugaga’s presentation slides

Step 3: Test 

Now that you have permission, you can start changing lives. Many participants in our panelists’ studies were patients in community health clinics across the globe. Their partners in these clinics also had the opportunity to save tens to hundreds of thousands of dollars in equipment. While it seems like a no-brainer, there are ethical concerns that need to be addressed first. For that, you need to fill out…. You guessed it: more paperwork. IRB approval is usually granted by educational institutions (as you should recall from my handy glossary), and is crucial to secure before any testing with humans is started. In fact, the government (and most private investors) won’t even give you a second glance if you ask them for money without IRB approval. 

One big hurdle many of the panelists noted was a distrust of the technology and institution it came from – a foreign entity testing their products on you does not always invoke fear, but it certainly does not always promote trust. Kreiger noted that the work of their community health partners does the heavy lifting on that front; not only are they known community pillars, but they have authority to promote health technology through their existing relationships. If you run into trouble identifying partners in your inventorship journey–never fear. Lee has a message for you: “Ask around. At Duke, there’s always an expert around who’s willing to lend you their time.”

Step 4: Distribute

Now that you are an expert, your invention works, and you’re saving lives, you can attempt to cement your design as standard-of-care. This may look different depending on where in the world you want to distribute, but the next step is to contract a large-scale manufacturer. Your materials have been sourced by now (FDA says they better be) — so finding someone to put them together at an industrial scale should be easy! Your cost may fluctuate at this scale with the increased labor costs, but bulk production and distribution altogether should provide you, your institution, and your clients the best possible chance at changing the world. 

Lee did not receive NIH funding until his fourth attempt at applying. Kreiger did not settle on the first manufacturer contracted. Mugaga is still in the process of securing a CE mark. And yet, all of them are success stories. You can see the ENlyT saving lives in hospitals in Vietnam; you can track the reallocation of $18,000 in savings from purchasing a Calloscope; and if you’re lucky, you’ll catch Mulgaga on campus next year as a visiting scholar at Duke!

Post by Olivia Ares, Class of 2025

Putting Stronger Guardrails Around AI

Sticky post
AI regulation is ramping up worldwide. Duke AI law and policy expert Lee Tiedrich discusses where we’ve been and where we’re going.
AI regulation is ramping up worldwide. Duke AI law and policy expert Lee Tiedrich discusses where we’ve been and where we’re going.

DURHAM, N.C. — It’s been a busy season for AI policy.

The rise of ChatGPT unleashed a frenzy of headlines around the promise and perils of artificial intelligence, and raised concerns about how AI could impact society without more rules in place.

Consequently, government intervention entered a new phase in recent weeks as well. On Oct. 30, the White House issued a sweeping executive order regulating artificial intelligence.

The order aims to establish new standards for AI safety and security, protect privacy and equity, stand up for workers and consumers, and promote innovation and competition. It’s the U.S. government’s strongest move yet to contain the risks of AI while maximizing the benefits.

“It’s a very bold, ambitious executive order,” said Duke executive-in-residence Lee Tiedrich, J.D., who is an expert in AI law and policy.

Tiedrich has been meeting with students to unpack these and other developments.

“The technology has advanced so much faster than the law,” Tiedrich told a packed room in Gross Hall at a Nov. 15 event hosted by Duke Science & Society.

“I don’t think it’s quite caught up, but in the last few weeks we’ve taken some major leaps and bounds forward.”

Countries around the world have been racing to establish their own guidelines, she explained.

The same day as the US-led AI pledge, leaders from the Group of Seven (G7) — which includes Canada, France, Germany, Italy, Japan, the United Kingdom and the United States — announced that they had reached agreement on a set of guiding principles on AI and a voluntary code of conduct for companies.

Both actions came just days before the first ever global summit on the risks associated with AI, held at Bletchley Park in the U.K., during which 28 countries including the U.S. and China pledged to cooperate on AI safety.

“It wasn’t a coincidence that all this happened at the same time,” Tiedrich said. “I’ve been practicing law in this area for over 30 years, and I have never seen things come out so fast and furiously.”

The stakes for people’s lives are high. AI algorithms do more than just determine what ads and movie recommendations we see. They help diagnose cancer, approve home loans, and recommend jail sentences. They filter job candidates and help determine who gets organ transplants.

Which is partly why we’re now seeing a shift in the U.S. from what has been a more hands-off approach to “Big Tech,” Tiedrich said.

Tiedrich presented Nov. 15 at an event hosted by Duke Science & Society.

In the 1990s when the internet went public, and again when social media started in the early 2000s, “many governments — the U.S. included — took a light touch to regulation,” Tiedrich said.

But this moment is different, she added.

“Now, governments around the world are looking at the potential risks with AI and saying, ‘We don’t want to do that again. We are going to have a seat at the table in developing the standards.’”

Power of the Purse

Biden’s AI executive order differs from laws enacted by Congress, Tiedrich acknowledged in a Nov. 3 meeting with students in Pratt’s Master of Engineering in AI program.

Congress continues to consider various AI legislative proposals, such as the recently introduced bipartisan Artificial Intelligence Research, Innovation and Accountability Act, “which creates a little more hope for Congress,” Tiedrich said.

What gives the administration’s executive order more force is that “the government is one of the big purchasers of technology,” Tiedrich said.

“They exercise the power of the purse, because any company that is contracting with the government is going to have to comply with those standards.”

“It will have a trickle-down effect throughout the supply chain,” Tiedrich said.

The other thing to keep in mind is “technology doesn’t stop at borders,” she added.

“Most tech companies aren’t limiting their market to one or two particular jurisdictions.”

“So even if the U.S. were to have a complete change of heart in 2024” and the next administration were to reverse the order, “a lot of this is getting traction internationally,” she said.

“If you’re a U.S. company, but you are providing services to people who live in Europe, you’re still subject to those laws and regulations.”

From Principles to Practice

Tiedrich said a lot of what’s happening today in terms of AI regulation can be traced back to a set of guidelines issued in 2019 by the Organization for Economic Cooperation and Development, where she serves as an AI expert.

These include commitments to transparency, inclusive growth, fairness, explainability and accountability.

For example, “we don’t want AI discriminating against people,” Tiedrich said. “And if somebody’s dealing with a bot, they ought to know that. Or if AI is involved in making a decision that adversely affects somebody, say if I’m denied a loan, I need to understand why and have an opportunity to appeal.”

“The OECD AI principles really are the North Star for many countries in terms of how they develop law,” Tiedrich said.

“The next step is figuring out how to get from principles to practice.”

“The executive order was a big step forward in terms of U.S. policy,” Tiedrich said. “But it’s really just the beginning. There’s a lot of work to be done.”

Robin Smith
By Robin Smith

Who Really Benefits from Big Bucks College Athletics?

Sticky post

The furious dribbles across the hardwood floors. The seas of blue consuming the stands. Anyone who has ever attended, or even heard of the legendary Duke Vs UNC basketball game likely holds a vivid picture of the intense nature of this game.

While there is little question that this multi-million dollar event is the most beneficial of the year for both programs, a recent collaboration between the faculty from both schools raised the question: Beneficial for whom? 

Friday, Nov. 10, I had the pleasure of attending a sports symposium organized by Duke and UNC with a focus on the exploitive nature of collegiate athletics. Duke hosted, but both schools brought in a multitude of faculty members, attorneys, and media professionals to discuss a wide range of topics regarding the relationship between college sports and the detrimental effects on athletes. Despite the immense range of topics, there was a common consensus among all speakers and attendees of the event: Some things must change. 

Panelists (l-r) Victoria Jackson, Maddie Salamone, Olu Kopano, and Payton Barish.

They said there are three major problems that currently plague the world of college athletics: the lack of representation, the lack of long-term benefits, and most importantly, the illusion of success portrayed to these athletes.  

Among athletes, a lack of representation in decision-making spheres appears to be a double-sided problem. Any remedy seems far-fetched without major structural changes.

A number of decision-making bodies exist for the purpose of addressing athletic issues and decisions. One of the most notable is the NCAA’s Student-Athlete Advisory Committee (SAAC), a representative body created for the purpose of granting athletes a voice. However, its limited scope, the athletes’ lack of knowledge on certain issues, and the lack of authority granted to the athletes’ decisions highlight the conference’s inability to serve as a proper representative body.

Many attribute this lack of representation to the fact that athletes are stretched far too thin, stripping them of the time needed to truly understand the expectations of the rules established by the NCAA. Symposium speakers argued that time and resources need to be built into their schedules, and not used as an extra burden, to grant them clarity on their rights, structural changes, and shifts in power that affect them. 

Panelists also said many athletes emerge from college without developing fundamental life skills such as being able to do their own taxes. Many are left unable to properly afford to manage injuries sustained in college as they aren’t granted any long-term/lifelong healthcare services. And many international athletes are unequipped to deal with the visa-based issues  that may arise from an inability to not only manage expectations set by their sport but also those set by their schools, and even ICE.

Throughout the symposium, a common point made was the fact that there are abundant staff present for the development of the game, but few staff for the development of the athletes as individuals.

This idea formed the second consensus of the discussion: there needs to be a more intentional focus on the resources for athletes, not only based in athletic performance, but also within the scope of mental, physical and long-term health across the board. 

Finally, the illusion of success offered to athletes was a major grievance expressed during the symposium. When signing athletes on to the team, it is customary for recruiters to essentially promise athletes an idea of future success, whether it be through going pro or earning financial liberation. This, however, has proven to not be the case for everyone, as most careers end after those four years of college. This idea is detrimental to athletes who’s intense dedication and tunnel vision toward these goals often prevent them from developing a Plan B. Many become susceptible to difficulties recovering from this, fueled by a lack of resources and representation. 

While athletes are now able to receive compensation for their “names, images and likenesses” (NIL), it is still breadcrumbs compared to the amount going to coaches and staff. This illusion is fueled by scholarships and third-party sponsorships that allow the parties currently bringing in million dollars salaries to under-compensate the source of this income: the athletes themselves. Many at the symposium concluded that this was a job for the athletes to fix, while others claimed that this problem belonged to the coaches, recruiters, and universities. Both parties, however, agreed that this change must come immediately, or these issues will continue to hurt many more athletes in the long run. 

Keynote speaker Dr. Victoria Jackson of Arizona State University during her opening statements.

By Gabrielle Douglas, Class of 2027

Most Highly Cited: 30 for ’23

Sticky post

It’s that most wonderful time of the year: The official list of Clarivate’s Most Highly Cited Scientists came out this morning.  Scientists all over the world came racing down the stairs in their PJs to see if Clarivate had left a treat under the tree for them.

L-R: Odgers, Scolnic, Dong, Hernandez, Harrington, Smith, Ostrom and Lopes.

Good news – there are 30 Duke names on the list!

Being highly cited is a point of pride for researchers. To make the cut, a paper has to be ranked in the top 1 percent for its field for the last decade. Clarivate’s “Institute for Scientific Information” crunches all the numbers.

Mostly, the names on this year’s list of Duke authors are the usual titans. Oddly, some returning names have changed categories since last year — but that’s okay, they’re still important.

And there are three fresh faces: Cardiologist Renato Delascio Lopes, MD Ph.D., who studies atrial fibrillation; David R. Smith Ph.D. of physics and electrical engineering, who’s a leading light in the field of metamaterials; and Dan Scolnic Ph.D. of physics, who’s measuring the expansion of the universe and trying to figure out the dark energy that apparently drives it.

Five of the Duke names on the list this year are co-authors in the Terrie Moffit and Avshalom Caspi lab, a hugely influential group of psychologists and social scientists. Honnalee Harrington, Renate Houts, Caspi, Moffitt, and UC Irvine professor and Duke adjunct Candice Odgers are studying human development from cradle to grave using two cohorts of life-long study participants in New Zealand and England.

Two other longitudinal scientists, Jane Costello and William Copeland of the Great Smoky Mountains Study, are also on the list.

There are 6,938 highly cited scientists this year, from 69 countries and regions. Several appear in more than one division. The United States still dominates with 38 percent of the honorees, but Chinese scientists are on the rise at 16 percent.

The most highly cited Duke authors are:

Biology and Biochemistry

Charles A. Gersbach

Clinical Medicine

Christopher Bull Granger             

Adrian F. Hernandez      

Renato D. Lopes              

Cross-Field

Stefano Curtarolo

Xinnian Dong    

HonaLee Harrington

Renate Houts   

Tony Jun Huang               

Ru-Rong Ji

Robert Lefkowitz

Jason Locasale  

David B. Mitzi    

Christopher B. Newgard               

Michael J. Pencina    

Bryce B. Reeve                      

Pratiksha I. Thakore       

Mark R. Wiesner              

Microbiology    

Barton F. Haynes

Neuroscience and Behavior

Quinn T. Ostrom                              

Pharmacology and Toxicology

Evan D. Kharasch             

Physics

David R. Smith  

Plant and Animal Science

Sheng Yang He                 

Psychiatry and Psychology

Avshalom Caspi                

E. Jane Costello

Terrie E. Moffitt

Space Science  

Dan Scolnic        

Duke Affiliated:

Cross Field

Po-Chun Hsu – University of Chicago, Adjunct Assistant Professor in Mechanical Engineering and Materials Science at Pratt School of Engineering

Candice Odgers, UC Irvine, Adjunct at Duke

Environment and Ecology

Robert B. Jackson, Stanford University, Adjunct Professor of Earth and Ocean Science at Nicholas School of the Environment

William E. Copeland, University of Vermont, adjunct in psychiatry and behavioral sciences, School of Medicine.

An Ode to Refrigerated Insects

Sticky post

Imagine lying on your back, legs flailing, unable to flip yourself over. To make matters worse, there is a rope attached to your head that you can’t remove. Meanwhile, a giant is prodding at you with a long metal stick, and you can’t figure out if she’s trying to hurt you or help you.

Earlier this semester, I was that giant.

A tiny insect on its back under a microscope. Note the strand of lint caught on its beak.

I was in the entomology lab in the basement of the biology building on a Friday night, photographing insects under a microscope. One of them, so tiny that I could barely see it with the naked eye, had ended up on its back with its beak-like mouth caught on a miniscule thread of lint. I was using a pin to try to remove the lint, but my efforts were dragging the insect haphazardly across the leaf it was on, and I gave up out of fear of hurting it. Under the microscope, the insect’s situation was dramatic and hard to watch, but when I walked to the Duke Gardens later that night to release it, it was just a dark speck in my palm.

A candy-striped leafhopper viewed through a microscope.

Photographing insects for the entomology class I am taking this semester gives me perspective on a world that operates on a smaller scale, with obstacles humans don’t have to contend with—like pieces of lint ensnaring our mouths. But in order to photograph insects, I need them to stay reasonably still. Fred Nijhout, Ph.D., who teaches the entomology course, taught us that you can keep live insects in a refrigerator temporarily, which doesn’t kill them but slows their metabolism down significantly, making them easier to photograph. In the past few months, I have spent many hours with refrigerated insects.

As much as I love insects, I was terrified of this class. I thought it would require making a physical insect collection—which, in turn, would require me to kill insects, and I simply didn’t think I’d be able to do that. Fortunately, there was an option to create a photography collection with living insects instead, which is why I’ve spent so much time catching, photographing, and releasing insects over the past several weeks. We need to collect or photograph twelve insect orders and twenty families, which has led to some unusual situations — like sheer delight upon finding a termite or cockroach. (Both represent orders that, until recently, I didn’t have in my collection.)

A fly under a microscope.

The first insect I refrigerated was a tiny lace bug I found wandering across my pants one afternoon. I coaxed it onto my hand and ran to my dorm to get a vial. (I have since learned to keep small containers with me nearly everywhere I go.) I put the lace bug inside the vial and stuck it in the common room refrigerator overnight, wrapped discreetly in a plastic bag. I had serious misgivings. Could such a small creature really survive an entire night in a refrigerator? And what if someone found it and threw it away? The next morning, I retrieved it with much apprehension. The insect wasn’t moving. It seemed somehow lighter, more desiccated, and I was certain it was dead. What had I done?

A lace bug, the first insect I refrigerated. I didn’t notice the intricate structures protruding from its body until I saw it under a microscope.

I brought the lace bug to class and put it back in the refrigerator. Later that day, Nijhout showed me how to photograph it with the microscope camera. It remained motionless while we maneuvered it this way and that. But then, just as we were about to take another picture, one of its tiny antennae wiggled. It was alive. After all those hours in the refrigerator, it was still alive. I won’t soon forget that wiggling antenna. It felt miraculous in the most literal sense of the word.

Watching a refrigerated insect “wake back up” never ceases to amaze me. When a butterfly that was lying on its side suddenly flaps its wings and rights itself, or a curled-up damselfly begins to twitch after several minutes of total stillness, or a lace bug regains the ability to wiggle an antenna, I always feel like I am witnessing something remarkable. But my favorite part of the whole process might be what happens next.

After I’ve finished photographing an insect, I always try to release it, ideally wherever I found it. It is always a relief to put them back where they belong, alive and moving and hopefully unharmed. But it can be hard to let them go. Spending enough time with one creature, any creature, turns it into an individual, and once you’ve become acquainted with an individual, it’s hard not to care what happens to it. After I release an insect, I will never know its fate. But if cooperating with refrigeration and photography is the insects’ part of the deal, then releasing them afterward is mine.

An ailanthus webworm moth eating mango syrup with its straw-like proboscis.

Sometimes, I make more literal deals with the insects. One day, I caught an ailanthus webworm moth, a bright orange insect with black and white markings, and it kept reviving before I could get a good picture. Each time I relegated it back to the refrigerator, I felt worse and worse. So I put the moth back in the fridge one more time, promising that it would be the last, and walked to the dining hall, where I squirted mango syrup onto a napkin. I tried to be subtle so no one would ask me why I was putting it on a napkin instead of in a cup of iced tea. Oh, I’m just feeding the refrigerated moth in the insect lab. Nothing unusual. Have a great day! Back in the lab, I dabbed some syrup onto the back of my notebook and offered it to the moth, partly as a reward for its patience, partly to assuage my own guilt, and partly as a last-ditch attempt to keep the moth still while I photographed it. The moth became completely focused on lapping up the syrup, but I had failed to account for its feeding process, an exuberant dance that was anything but still. Nevertheless, a deal is a deal—that moth wasn’t going back in the fridge. I walked across campus to the spot where I’d found it, and it kept eating the sugary treat the whole time. For once, my photography subject didn’t seem eager to leave.

A soldier beetle. At Nijhout’s suggestion, I left this beetle at room temperature overnight, in a jar with some water droplets, instead of refrigerating it.

The mango syrup retrieval mission probably isn’t the strangest thing I’ve done in pursuit of insects. One morning, I was standing outside in the pouring rain, already soaked and so no longer remotely concerned about getting wetter, and holding my arms above my head in an awkward position while I tried to remove the slippery cap from an insect container in order to catch a candy-striped leafhopper perched on a leaf above me.

Another time, our class was on a field trip on the Al Buehler Trail when I spotted a dainty insect almost floating through the sun-dappled swamp. Nijhout identified it as a phantom crane fly, and when I failed to catch it in a dignified manner from the boardwalk, I jumped into the mud and swooped my net, successfully capturing the cranefly. Back in the lab the next day, I found that the phantom crane fly revived even faster than the ailanthus webworm moth, seeming to regain full movement within moments of exiting the refrigerator. I snapped pictures using a lens that attaches to my phone, but just as I was about to return it to its container to release it, it drifted into the air, and—like a phantom—it disappeared. I never found it again.

A phantom crane fly, which revived almost instantly despite repeated refrigerations.

Duke does not assign an Ethical Inquiry code to the entomology class, but I feel I have done more ethical inquiry in this class than any other. Is photography a worthy reason to risk an insect’s life? Is accidentally releasing a phantom crane fly in a dark room without food or water any better than killing it outright? Is killing insects an essential part of entomology? If so, when is it justified, and when is it not?

In class, we have learned about a series of groundbreaking experiments that strike me as twisted. In one, Stefan Kopec “ligated” caterpillars by tying a very tight string around them to see if either half would still molt. Spoiler: yes, the front half containing the brain. If you cut the brain out of the head and transplant it to the abdomen, then the back half will molt instead. Conclusion: the brain is essential for molting, but it doesn’t need to be attached to the rest of the nervous system. Another experiment involved scientists cutting cecropia moth cocoons in half with a razor blade and sealing each half with wax, followed by more brain transplantation (in this case, a transplanted brain does not make the back half emerge from the cocoon—unless you also transplant a piece of the thoracic gland). Yet another involved beheading two insects and attaching their necks with a capillary tube to see if injecting a hormone into one will prompt the other to molt as well (yes, it will). I hate even imagining these experiments, and I can’t picture myself ever performing them.

My apparent inability to kill insects even in the name of science might become a real problem if I want to study entomology after college. But when I question the value of certain experiments or feel guilty for refrigerating an insect, I am not acting as a scientist. I am acting as an older version of the fourth grader who watched in distress as her classmate ripped caterpillars’ heads off or the eighth grader staring at a circle of kids surrounding a beautiful cecropia moth, distraught from just imagining that someone might hurt it. (The moth was fine—the teacher got one of the kids to agree to protect it. I was not—she sent me to the bathroom to calm down and then sent my friend to check on me.)

At times, I take this concern for the hypothetical suffering of other beings entirely too far. In a cell biology lab this semester, our TA explained that the E. coli bacteria we were working with had had a very rough day: they’d gone through a process that left holes in their membrane, then been put on ice to prevent those holes from completely destroying them. Clearly feeling bad for bacteria is not a recipe for success, but wanting to minimize insects’ suffering seems more justifiable. There seems to be an important distinction between a child pulling caterpillars’ heads off for fun and a scientist tying strings around a caterpillar to answer specific scientific questions. But is the pursuit of knowledge alone enough of a justification for killing the creatures we study? I would have an easier time justifying an experiment that kills insects to advance human medicine or insect conservation. 

Ultimately, the morality of killing insects may depend on a question we can never answer: “What does it feel like to be an insect?” I would not want to be shut in a refrigerator for several hours, prodded with a pin, or cut in half with a razor blade, so how can I justify doing that to an insect? I torture myself repeatedly with these thought experiments, but there is a glaring problem with my “golden rule” line of reasoning: I am not an insect. How can I imagine how refrigeration feels to a creature that can slow its metabolism to just 1%, as we learned in class? Perhaps my mom is right when she encourages me to think of these insect-chilling sessions as akin to medically induced comas or periods of peaceful rest rather than sustained torture sessions.

A lacewing in the refrigerator. Since it kept trying to fly away when I took it out, I stuck my head in the refrigerator to take pictures, and the lacewing and I seemed to reach a detente. Later that evening, before it got cold like a refrigerator outside, I let it go.

Where is the line between science and torture? On the flip side, where is the line between anthropomorphizing animals (problematic in science) and giving them the benefit of the doubt when it comes to sentience and capacity to feel pain? It’s not just our experience of the world, our umwelt, that is different from that of insects. We also have entirely different survival strategies. Humans are a K-selected species; we have few offspring but invest heavily into the survival of each individual. Insects, meanwhile, are r-selected; they have many babies, often hundreds or thousands, and many of them will die. If one lace bug can lay hundreds of eggs and many butterflies and moths live only a matter of days, then killing or saving a few insects probably has a negligible impact on the species as a whole. There are other initiatives, like reducing pesticide use, planting native flowers, and mowing lawns less frequently, that can benefit insects on a much larger scale. But the time and effort I spend keeping my refrigerated insects alive was never about protecting a species. It has always been about protecting an individual.

A particularly tiny insect, viewed under a microscope next to the tip of a pin.

At first, my tendency to get attached to insects made it very difficult for me to justify refrigerating them. But seeing tiny creatures under a microscope is a powerful, intoxicating thrill. Maybe refrigeration is a fair compromise, a way to observe insects without killing them and to keep them safe until I let them go.

A previously refrigerated beetle about to be released back at the Duke Pond.

Post by Sophie Cox, Class of 2025

The Controversial Birth of American Gynecology

Sticky post

As a woman, I am familiar with the gynecologist. In fact, thinking about it right now, I may need to create an appointment for one soon. However, I am not just a woman; I am a black woman, and in addition to being familiar with what the gynecologist is, I am also familiar with the dangers of the gynecologist. I know that if I were to become pregnant, I would be three times more likely to die by pregnancy-related causes compared with my white counterparts. This phenomenon is not new; in fact, it is a symptom of the racism within American Gynecology. The founding of this system is not pretty, or pure; it is ugly and distasteful, and during her lecture, historian Deirdre Cooper Owens explains it perfectly.

Dr. Deirdre Cooper Owens and I after her wonderful lecture

Cooper Owens is an associate professor of History and African studies at the University of Connecticut, and earlier this semester, she gave an insightful talk on how slavery and modern American gynecology are interconnected.

The controversial “father of gynecology” was J. Marion Sims, who experimented on enslaved women in Alabama. When talking about the racism in gynecology today and in the past, Sims mainly gets the blunt end of the stick. However, it was not just Sims; it was much bigger than him, Cooper Owens said.

Dr. Samual Cartwright was the first doctor for the Confederacy. Through his experiences with enslaved people, he believed that black people did not feel pain. Furthermore, he created a theory that if an enslaved person ran away or thought about running away, then they had a mental illness. Through the use of a spirometer (a medical tool still used today), he noted that black people have smaller lung capacity than white people. His findings were used to prove that there was a biological difference between races, which is not true.

This idea separated people and placed them in a hierarchy where white people were perceived as superior and black people inferior. The thought of this is damaging in itself, but back then, and sometimes now, they used this ideology as an excuse for the pain they caused African Americans.

Ephriam McDowell, for instance, removed a tumor from the ovaries of a white woman. From this, he then decided to “perfect” this surgery on five black women; four were enslaved, and one was freed. From this group, one person died, and other than that, there is no record of the women’s personal lives.

Dr. Francis M Prevost performed C-sections on enslaved people. These experiments did not take the pain of these women into account; due to the fact that he believed black people did not feel pain, but they did and still do. Now one would hope that a black woman’s relationship with C-sections has improved, but, from 1832 until two years ago, Louisiana was the state where a black woman’s body was used the most for a C-section. Today, that state is Mississippi.

John Peter Mettauer performed experiments on a white woman and a black woman. After the experiment, he claimed that the white woman was cured, but the black woman was not. As a result, he operated on the black woman eight times and claimed that if she did not have intercourse, she would have been cured. However, he failed to take into account that the woman was enslaved and had no control of her body autonomy. So how could she say no to both unwanted sexual encounters and to him?

Lastly, there is James Marion Sims, who is notorious for his contributions to American gynecology. However, such contributions were based on the bodies of enslaved women who had no choice. He used these experiments to advance his techniques and deepen his understanding of gynecology. In fact, it even went to the point where he built a hospital for the sole purpose of experimenting on enslaved women.

J. Marion Sims with his assistants and the victims of his experiments

While the acts and experiments that these men conducted were atrocious, they raised a question for me, why black women? At that time, black people were viewed as an inferior race; they were not equal in physical components and intelligence compared to white people. Therefore, if they are genetically different, why experiment with black women to find cures for white women? When asking that question, the answer is obvious; they knew there was no difference, so they chose to ignore it. They chose to continuously bring harm to these women, and until recently, they were rewarded for it.

Image provided by  Harvard T.H. Chan School of Public Health

I learned a lot from this lecture, but if I had to choose only one thing that stuck with me, it would be that the victims of these heinous acts were only referred to as enslaved persons with no name and no story. The only story that was told was the point of view of those committing the acts.

I hope one day, the mortality rate of black women giving birth will decrease to the point that it is simply unheard of. Still, for society and our health system to reach that point, we must understand American gynecology’s true history.

By Jakaiyah Franklin, Class of 2025

Leveraging Google’s Technology to Improve Mental Health

Sticky post

Last Tuesday, October 10 was World Mental Health Day. To mark the holiday, the Duke Institute for Brain Sciences, in partnership with other student wellness organizations, welcomed Dr. Megan Jones Bell, PsyD, the clinical director of consumer and mental health at Google, to discuss mental health. Bell was formerly chief strategy and science officer at Headspace and helped guide Headspace through its transformation from a meditation app into a comprehensive digital mental health platform, Headspace Health. Bell also founded one of the first digital mental health start-ups, Lantern, where she pioneered blended mental health interventions leveraging software and coaching. In her conversation with Dr. Murali Doraiswamy, Duke professor of psychiatry and behavioral sciences, and Thomas Szigethy, Associate Dean of Students and Director of Duke’s Student Wellness Center, Bell revealed the actions Google is taking to improve the health of the billions of people who use their platform. 

She began by defining mental health, paraphrasing the World Health Organization’s definition. She said, “Mental health, to me, is a state of wellbeing in which the individual realizes his or her or their own abilities, can cope with the normal stresses of life, work productively and fruitfully, and can contribute to their own community.” Rather than taking a medicalized approach to mental health, she argued, mental health should be recognized as something that we all have. Critically, she said that mental health is not just mental  disorders; the first step to improving mental health is recognition and upstream intervention.

Underlining the critical role Google plays in global mental health, Bell cited multiple statistics: three out of four people turn to the internet first for health information. On Google Search, there are 100 million searches on health everyday; Youtube boasts 25 billion views of mental health content. Given their billions of users, Bell intimated Google’s huge responsibility to provide people with accurate, authoritative, and empathetic information. The company has multiple goals in terms of mental health that are specific to different communities. There are three principal audiences that Bell described Google’s goals for: consumers, caregivers, and communities. 

Google’s consumer-facing focus is providing access to high quality information and tools to manage their users’ health. With regards to caregivers, Google strives to create strong partnerships to create solutions to transform care delivery. In terms of community health, the company works with public health organizations worldwide, focusing on social determinants of health and aiming to open up data and insights to the public health community. 

Szigethy followed by launching a discussion of Google’s efforts to protect adolescents. He referenced the growing and urgent mental health crisis amongst adolescents; what is Google doing to protect them? 

Bell mentioned multiple projects across different platforms in order to provide youth with safer online experiences. Key to these projects is the desire to promote their mental health by default. On Google Search, this takes the form of the SafeSearch feature. SafeSearch is on by default, filtering out explicit or inappropriate results. On Youtube, default policies include various prevention measures, one of which automatically removes content that is considered “immitable.” Bell used the example of disordered eating content in order to explain the policy– in accordance with their prevention approach, YouTube removes dangerous eating-related content containing anything that the viewer can copy. YouTube also has age-restricted videos, unavailable to users under 18, as well as certain product features that can be blocked. Google also created an eating disorder hotline with experts online 24/7. 

Jokingly, Bell assured the Zoom audience that Google wouldn’t be creating a therapist chatbot anytime soon — she asserted that digital tools are not “either or.” When the conversation veered towards generative AI, Bell admitted that AI has enormous potential for helping billions of people, but maintained that it needs to be developed in a responsible way. At Google, the greatest service AI provides is scalability. Google.org, Bell said, recently worked with The Trevor Project and ReflexAI on a crisis hotline for veterans called HomeTeam. Google used AI that stimulated crises to help scale up training for volunteers. Bell said, “The human is still on the other side of the phone, and AI helped achieve that”. 

Next, Bell tackled the question of health information and misinformation– what she called a significant area of focus for Google. Before diving in, however, Bell clarified, “It’s not up to Google to decide what is accurate and what is not accurate.” Rather, she said that anchoring to trusted organizations is critical to embedding mental health into the culture of a community. When it comes to health information and misinformation, Bell encapsulated Google’s philosophy in this phrase: “define, operationalize, and elevate high quality information.” In order to combat misinformation on their platform, Google asked the National Academy of Medicine to help define what accurate medical sources are. The Academy then put together a framework of authoritative health info, which WHO then nationalized. YouTube then launched its “health sources” feature, where videos from the framework are the first thing that you see. In effect, the highest quality information is raised to the top of your page when you make a search. Videos in this framework also have a visible badge on the watch panel that features a  phrase like “from a healthcare professional” or “from an organization with a healthcare professional.” Bell suggested that this also helps people to remember where their information is coming from, acting as a guardrail in itself. Additionally, Google continues to fight medical misinformation with an updated medical misinformation policy, which enables them to remove content that is contradictory to medical authorities or medical consensus. 

Near the end of the conversation, Szigethy asked Bell if she would recommend any behaviors for embracing wellbeing. A prevention researcher by background, Bell stressed the importance of early and regular action. Our biggest leverage point for changing mental health, she asserted, is upstream intervention and embracing routines that foster our mental health. She breaks these down into five dimensions of wellbeing: mindfulness, sleep, movement and exercise, nutrition, and social connection. Her advice is to ask the question: what daily/weekly routines do I have that foster each of these? Make a list, she suggests, and try to incorporate a daily routine that addresses each of the five dimensions. 

Before concluding, Bell advocated that the best thing that we can do is to approach mental health issues with humility and listen to a community first. She shared that, at Headspace, her team worked with the mayor’s office and community organizations in Hartford, Connecticut to co-define their mental health goals and map the strengths and assets of the community. Then, they could start to think about how to contextualize Headspace in that community. Bell graciously entered the Duke community with the same humility, and her conversation was a wonderful commemoration of World Mental Health Day. 

By Isa Helton, Class of 2026

Historic Stagville: Stories of Resilience

Sticky post

I was overwhelmed with tranquility while driving along the everlasting gravel road, encased by looming, forest green trees. This healing reconnection with nature towards the entrance nearly allowed me to forget the purpose of my visit at Historic Stagville in Durham. However, as we arrived closer to the entrance of this state protected historic site, I recalled the haunting darkness of America’s past. Approximately 25 minutes away from Duke University lies what was once the largest plantation site in North Carolina, owned by the Bennehan and Cameron families. At its height, the families owned 30,000 acres and over 900 enslaved people. 

Richard Bennehan married Mary Amis in 1776 and acquired the original 66 acres of historic land in 1787. Their home, Stagville, was built by enslaved people on this land and further renovated with an additional story in 1799. They would raise two children, Rebecca and Thomas. Rebecca married Duncan Cameron in 1803 and had two sons and six daughters. Despite their plethora of children, most of the estate was given to their son, Paul, as the other children died and/or did not have heirs. Paul would eventually marry Anne Ruffin and have seven children. These generations of Camerons along with the original Bennehans furthered their infamous and appalling familial legacy of undeserved wealth through slavery.

Despite the Bennehan/Cameron family’s power, wealth, and dominance, the enslaved people of Stagville remained resilient against their injustices. For instance, Emma Turner Henderson decided to continue working for the Camerons as a cook after their emancipation; however, she and her family were evicted on a count of “imprudence” as Emma had claimed ownership of her newfound freedom, claimed ownership of the equality she shared with the white woman who had previously owned her, and claimed ownership of the violence she endured under their regime. According to Paul’s records, Emma had told Margaret Cameron that their disrespectful treatment is not justified as “[Emma’s] skin is nearly as white as [Margaret’s]– that her hair is just as straight– and that she was quite as free”. 

Mary Walker was the fifth generation of formerly enslaved people for the Camerons, born in 1820. She was given to four of Duncan Cameron’s daughters when she was nine years old. These young daughters would eventually pass away from tuberculosis, which is why she was given to their sister, Mildred. Mary Walker would act as Mildren’s caretaker as she had an unknown illness that required a wheelchair. She would frequently travel to Philadelphia during the summer, a free state, with the Camerons for Mildred’s medical appointments. By this point, Mary Walker had three children of her own and she constantly feared their safety. Therefore, Mary Walker evaded the Camerons on her last visit to Philadelphia in 1848 as her freedom was protected under the 1847 Personal Liberty Law. She was employed as a seamstress and spent the rest of her life attempting to reunite with her children. Walker attempted to purchase them from the Camerons or even kidnap them from the estate. Even with three known rescue attempts, Walker was unable to live with her children. That is, until seventeen years later, in which a Union soldier reunited Mary Walker with two of her children, Agnes and Bryant, after the Civil War. Historians do not believe that Mary reunited with her eldest son, Frank, as it is assumed that he escaped. His escape from the plantation was a miraculous feat as it would have taken Frank around two weeks to walk off the estate alone. While the Camerons did place ads for Frank, he could have passed as a white man as he had fair skin, blue eyes, straight black hair, and freckles. The greatest act of resilience from Mary Walker was her success as a seamstress after she settled in Cambridge as she created a strong reputation and a healthy life for herself and her family, despite the evil conditions of her past because of the Camerons. 

As I explored Stagville and Horton Grove, where the enslaved laborers built their homes and lived as they worked for the plantation, I felt the looming presence of their horrifying traumas throughout the estate. I spent time in each room of the luxurious (for its time period) Stagville home in which enslaved people were constantly beside those who committed the most injustice against them. I compared this to the unlivable conditions of the enslaved family homes in Horton Grove where eight people would stay in each room per building. Along the brick walls of these homes remain fingerprints from enslaved people from the creation of the bricks. One brick, in particular, encased the toe-prints of a small child from hundreds of years ago. 

Despite the unimaginable injustice generations of enslaved people endured from the Camerons, their resilient legacy continues with dignified honor. A number of formerly enslaved families continued to sharecrop at Stagville until the 1970s, when it became a state protected site, or settled in nearby locations as a testament to their familial heritage.

Bennehan/Cameron Stagville home

Average dwelling on Horton Grove

A child’s toe prints on the right-side of the third brick from the bottom of a brick on Horton Grove

By Samera Eusufzai, Class of 2026

How Our Brain Deconstructs A World in Constant Motion

Sticky post

It’s a miracle that people aren’t constantly getting into car accidents.

Whizzing by at 65 miles per hour in a car, the brain rapidly decodes millions of photons worth of information from the eyes, and then must use that information to instantly figure out where it is and where it needs to go. Is that a pedestrian approaching the sidewalk or a mailbox? Do I need to take this offramp or the next one? What color is the traffic light up ahead?

Was it a stop sign? I didn’t notice. (US Marine Corps, via Wikimedia Commons.)

Most motorists, miraculously, get to work or school without a scratch.

After nearly a decade worth of research, Duke scientists have figured out how the brain juggles all of this so effortlessly and tirelessly in a surprisingly inefficient way: by making quick, low-level models of the world to help form a clear view of the road ahead. The new findings expand the understanding of how the brain sees the world, and might one day help clinicians better understand what goes awry in people with psychiatric issues defined by perceptual problems, like schizophrenia.

Most neuroscientists think our brain cells figure out what we’re looking at by quickly comparing what’s in front of us to past experience and prior knowledge. Like a biological detective, they might determine you are looking at a house by using past experiences of neighborhoods you have been in and houses you have lived in. Enthusiasts of this Bayesian theory have long reasoned that these quick, probability-based analyses are what help people see a stable world despite sensory and motor noise from eye movement and constant environmental uncertainties, like a glare from the sun or a backdrop of a moving crowd.

A recent paper in the online journal eNeuro however, suggests neuroscientists have overlooked a simpler explanation: that brain cells are also rapidly decoding a constant stream of information from the eyes using simple pattern recognition, like determining you’re looking at a house from the visual evidence of windows, a tall rectangular opening, and a manicured lawn.

Marc Sommer

“That discriminative model has some advantages because it’s really quick, logical, and flexible,” said Marc Sommer, Ph.D., a professor of biomedical engineering at Duke and senior author of the new study. “You can learn the boundaries between decisions, and you can apply all sorts of statistical pattern-matching at a very low level. You don’t have to create a model of the world, which is a big task for a brain.”

Sommer initially hoped to confirm the general consensus in neuroscience—that the brain builds on a working model of the world instead of recognizing patterns from the ground up. But after putting the Bayesian theory to the test with Duke neurobiology alumna Divya Subramanian, Ph.D., now a postdoctoral researcher at the National Institutes for Health, he’s hoping to extend their newfound results to other processes in the brain.

To ferret out which theory would hold up, Sommer and Subramanian recruited 45 adults for an eye test. Participants looked at a computer screen and were quizzed about where a shape on the screen moved to, or if it moved at all. Throughout the test, Subramanian subtly made movements trickier and less obvious to tease out how the brain compensates when there is increasing uncertainty, from changing the contrast of the shape to the shape itself.

After scoring the eye exams, Sommer and Subramanian were surprised to find that the brain didn’t solely rely on a Bayesian approach.

People scored worse when the visual noise was dialed up, but only when they were asked where the target moved to. Test scores were mostly unaffected with noisier scenes when people were asked if a shape moved on the screen, suggesting that—to the team’s surprise—people don’t always use prior experiences when they are more uncertain about what they are seeing, like our biological detective would.

The team spent the next several years parsing through results and replicating their findings “three times to believe it,” Subramanian said, but it always led them to the same conclusion: for some forms of perception, brain cells stick to low-level patterns to draw conclusions about the world around them.

“You can collect data forever and ever. And at some point, you just realize you have enough,” Sommer said.

Sommer now plans to disrupt the dogma for other sensory systems, like spoken language, to see if beloved theories hold up to the scrutiny of testing.

The hope is that by understanding how the brain solves other perceptual problems, Sommer and others can better understand psychiatric and motor disorders, like Parkinson’s disease, schizophrenia, or obsessive-compulsive disorder, and develop more effective treatments as a result.

“There are some sub-circuits of the brain that are probably pretty well-understood to be involved with these disorders. That’s a biological description,” Sommer said. “And there’s also neurotransmitter deficits, like lacking dopamine in Parkinson’s. That’s a chemical explanation. But there are very few big-picture, explanations of why people have certain psychiatric or motor disorders.”

CITATION: “Bayesian and Discriminative Models for Active Visual Perception Across Saccades,” Divya Subramanian, John Pearson, Marc A. Sommer. eNeuro, July 14, 2023. DOI: 10.1523/ENEURO.0403-22.2023

Guest post by Isabella Kjaerulff, Class of 2025

The Second Kind of Impossible: The Thrilling Discovery of Quasicrystals

Sticky post

The finding of natural quasicrystals is a tale of “crazy stubborn people or stubbornly crazy people,” said physicist and Princeton professor, Paul J. Steinhardt, who spoke at Duke University on October 10 regarding his role in their discovery.

Quasicrystals were once thought to be impossible, as crystals were the only stable form of matter. Crystals allow for periodic patterns of atoms while quasicrystals allow for an ordered, yet non-periodic pattern that results in rotational symmetry. Crystals only allow for two-, three-, four-, and six-fold symmetry and create the geographical shapes of squares/rectangles, triangles, hexagons, and rhombuses (Figure 1). However, quasicrystals allow for ten-fold symmetry with unlimited layers of quasicrystal patterns and various shapes. The penrose tiles (Figure 2) is an example of one-dimensional quasicrystal pattern, while the kitchen tiles of your home is an example of a traditional crystal pattern. 

Figure 1

Figure 2

Steinhardt and his student, Don Levine, published a paper in 1984 attempting to prove the theory of quasicrystals

After the discovery of man-made quasicrystals from a fellow scientist, Steinhardt wanted to find quasicrystals in nature as opposed to laboratories. He began this by contacting museums with global mineral samples in case they contained undiscovered quasicrystals. This did not yield any results. 

Luca Bindi, who then worked for the Museum of Natural History at the University of Florence in Italy, discovered that Steinhardt was searching for natural quasicrystal and wanted to join his endeavors. Bindi found the first interesting sample at the museum he worked in through the rare mineral, khatyrkite, from the Koryak Mountains of Chukotka, Russia. They analyzed the tip of this sample, the width was that of a strand of hair, and discovered the most perfect ten-fold, rotationally symmetric pattern of a quasicrystal from minerals in nature. Even more interesting was that the chemical compound of this quasicrystal, Al63Cu24Fe13, was the exact composition of quasicrystals created in a Japanese laboratory, now found in a rock. 

Steinhardt then took these findings to Lincoln Hollister, a renowned geologist, for his expert opinion. Hollister proceeded to tell Steinhardt that this discovery is impossible as its chemical composition of metallic aluminum cannot be created in nature. Steinhardt wondered if this sample came from a meteorite, which was an “ignorant, stupid suggestion, but Lincoln didn’t know that,” Steinhardt said. Lincoln refers Steinhardt to Glenn Macpherson, an expert meteorologist, who further elaborated that metallic aluminum from meteorites is, once again, impossible. 

Two renowned experts in their fields describing the impossibility of Steinhardt and Bindi’s hypotheses was not enough for them to quit. Their next step was to trace Bindi’s khatyrkite to obtain more samples. Firstly, they attempted to find Nico Koekkoek, a Dutch mineral collector who had sold innumerable mineral samples to various museums. Dead end. Then they wrote to museums globally regarding their khatyrkite samples and discovered four potential samples. All fakes. Yet another dead end. Next was to analyze the legitimate sample in St. Petersburg because any sample of a newly discovered mineral must be given to a museum. The uncooperative discoverer, Leonid Razin, had immigrated to Israel and refused to let anyone touch the sample. They had hit a dead end again.

Bindi relayed this story to his sister and her friend over dinner. The friend’s neighbor shared the same common last name as the Dutch mineral collector, so the friend decided to ask his neighbor if it was an unlikely connection. Miraculously, the neighbor was the widow of the Dutch mineral collector and, after much persuading, handed over her late-husband’s secret diary. The diary reveals a mineral smuggler named Tim from Romania whom he received the khatyrkite. They were unable to locate Tim until Koekkoek’s widow relented yet another secret diary, which revealed that Tim had received these minerals from ‘L. Razin.’ The same Leonid Razin who refused them to view the sample! Eventually, Steinhardt discovered that Leonid Razid had sent a man named Valery Kryachko on an expedition for platinum. While he did not find platinum, he gave his samples to Leonid Razin, which astoundingly contained the natural quasicrystals that Steinhardt had searched for decades. Kryachko was completely unaware of its journey and even provided the remaining sample, which Steinhardt and his team used for testing. 

Steinhardt’s original “ignorant, stupid suggestion” proved remarkably accurate, as they discovered that a meteorite hit Chukotka and resulted in natural metallic aluminum. 

Steinhardt and his dream team needed more samples of khatyrkite to conduct further research. Therefore, seven Russians, five Americans, one Italian, and a cat named Buck set forth the scientific Mission Impossible for natural quasicrystals. They came back with several million grains and after a few weeks, found a sample of clay layer that had not been touched in 10,000 years. This was the first quasicrystal to be declared a natural mineral. They ultimately discovered a total of nine quasicrystal samples, each from a different part of the meteorite. 

Steinhardt and his team’s analysis of quasicrystals is still not over and his book, “The Second Kind of Impossible,” delves further into the outlandish details of the over 30 years of research. This extraordinary journey of passion and ambition allows for the thrilling hope for the future of scientific discovery.

By Samera Eusufzai, Class of 2026

New Blogger Ana Lucia Ochoa: Straying From My Path

“What is a gene?”

At 12 years old, I scribbled in my brand new pink notebook, covered in owls. I dubbed it my “question notebook,” filled with about twenty other easily-googleable questions. “A blueprint to our bodies,” was the result of my first internet search for the definition of a gene. But this blueprint had failed so many, even my own grandfather. Could it fail me down the road? Could I one day find an explanation?

By 16, I had been steadfast for years in my decision to pursue medicine. But, on the other side of perseverance is tunnel-vision. At Lyons Township High School in Western Springs, Illinois, I refused to stray the path I had meticulously designed for myself. I confined myself to chemistry, math, and biology. I bounded my limits to only APs, and only extracurriculars that “made sense.”

Perhaps the only time I strayed from the path was by pursuing competitive gymnastics until I graduated, despite 20-hour weeks and numerous insistences from my parents to quit. I was determined to keep something that did not belong to my future.

It wasn’t until class selection for my first Duke semester that I allowed myself to magnify this idea of straying from my path. I wasn’t loading up my schedule with Organic Chemistry or Physics, seeking to check off requirements for the MCAT. Instead, I was selecting Computer Science 101.

Upon beginning my new life at Duke, I felt a strange taste in my mouth whenever I was asked what I was studying. I was no longer “pre-med.” My years spent taking rigorous STEM classes and conducting independent research projects felt like a waste. I wasn’t even a gymnast anymore.

Two huge pieces of my identity had been excised, leaving gaping holes that I felt clueless at how to fill.

Sophomore year, I have been seeking out more ways in which I can stray. In pursuit of the elusive software engineering internship, I felt myself settling into a familiar mindset of: “What is most practical?” I refuse to enter this rut again. So, I enrolled in film editing, a class that has long-since sparked my interest.

I love the quote: “the best ideas are the most disruptive.” This summer, I fell in love with hiking, the solitude enveloping me in a cocoon of my wildest ideas. Alone, I can craft a business idea, or conceive an unusual plot for a movie. I can weave together the bits and pieces of my imagination.

I was drawn to film editing because of the analogy that the editor clears a path in a forest. With so many directions to go, they are responsible for compelling emotion out of the audience. I’ve found that a disruptive idea will do the same.

My draw to the Duke Research Blog stemmed from two places. First, I wanted to continue to stray from my path by re-exploring my childhood love for writing. Second, I craved time to learn about other’s disruptive ideas, in hopes of getting inspiration for some of my own.

Post by Ana Lucia Ochoa, Class of 2026

Page 1 of 100

Powered by WordPress & Theme by Anders Norén