Duke Research Blog

Following the people and events that make up the research community at Duke.

Chronicling Migrant Deaths Along the US-Mexico Border

Science, especially social science, is rarely apolitical. Nonetheless, researchers are often hesitant to engage with the political implications of their work. Striving to protect their objective, scientific stance, they leave the discussing and at times the fighting to the politicians and legislators.

University of Michigan anthropologist Jason de León is not one of those researchers. Politics is not merely implicated in his work, but rather drives it. De León studies undocumented migration between Mexico and the United States.

University of Michigan anthropologist Jason De León directs the Undocumented Migration Project.

University of Michigan anthropologist Jason De León directs the Undocumented Migration Project.

As director of the Undocumented Migration Project, De León studies what happens to the bodies of migrants crossing the desert to reach the U.S. using “any genre I can steal from,” he told an audience at Duke University on April 5. Using tools from archeology, forensics, photography, and ethnography, de León and his team have been providing novel insights into one of the most urgent political challenges currently facing the nation.

De León acknowledged the political reality of his work immediately by opening his talk with a quote from President Trump about building a “great wall.” However, he was quick to clarify that the problem of missing migrants is not partisan. Rather, it has a long history that he argues started with the 1993 immigration enforcement policy, “Prevention through Deterrence.” This policy’s aim was to redirect illegal immigration to the desert rather than to stop it. Politicians hoped that in the desert, where security is weak and the terrain treacherous, the natural terrain would serve as a border wall. Inherent in this policy is the assumption that migrant life is expandable.

In the wake of this policy, the human smuggling industry in northern Mexico experienced a swift influx and the number of known migrant deaths began to rise. Since the 1990s, over 600 migrant bodies have been recovered from the Sonoran Desert of Arizona where de León conducts his research. Until his team conducted the first forensic experiments on the site, people could only speculate as to what was happening to the bodies of missing loved ones hoping to make it across the border. Now, de León can offer some helpful if heartbreaking data.


De León examines the human consequences of U.S. immigration policy in his book, “The Land of Open Graves”

De León’s archeological method, “desert taphonomy,” examines both the natural and cultural processes that determine what happens to a dead body. Anthropologists studying the body’s decomposition were initially interested only in natural factors like the climate and scavenging animals. Recently, they have realized that the decomposition process is as social as it is natural, and that the beliefs and attitudes of the agents involved affect what happens to human remains. According to this definition, a federal policy that leaves dead bodies to decompose in the Arizona desert is taphonomy, and so is the constellation of social, economic, and political factors that drive people to risk their lives crossing a treacherous, scorching desert on foot.

Guided by this new approach, de León studies social indicators to trace the roots of missing bodies, such as “migrant stations” made up of personal belongings left behind by migrant groups, which he says can at times be too big to analyze. De León and his team document these remnants with the same respect they pay to any traditional archeological trail. Items that many would dismiss as trash, such as gendered items including clothes and hygiene products, can reveal much needed information about the makeup of the migrant groups crossing the desert.

De León argues that human decomposition is a form of political violence, caused by federal policies like Prevention through Deterrence. His passion for his research is clearly not driven by mere intellectual curiosity; he is driven by the immense human tragedy of migrant deaths. He regularly conducts searches for missing migrants that families reach out to him about as a desperate last measure. Even though the missing individuals are often unlikely to be found alive, de León hopes to assuage the trauma of “ambiguous loss,” wherein the lack of verification of death freezes the grief process and makes closure impossible for loved ones.

The multifaceted nature of de León’s work has allowed him to inspire change across diverse realms. He has been impactful not only in academia but also in the policy and public worlds. His book, “The Land of Open Graves,” is accessible and poetic. He has organized multiple art exhibitions that translate his research to educate and empower the public. Through the success of these installations, he has come to realize that exhibition work is “just as valuable as a journal article.”

Backpacks left behind by undocumented immigrants in the exhibition,
“State of Exception.”

Hearing about the lives that de León has touched suggests that perhaps, all researchers should be unafraid to step outside of their labs to not only acknowledge but embrace the complex and critical political implications of their work.

The Adolescent Brain Isn’t so Bad, Really

Adriana Galván, PHD (Photo from the Duke Center for Cognitive Neuroscience Colloquium Series, DIBS)

More often than not, teenagers are portrayed in the media as troublesome, emotionally reactive, and difficult to deal with. They are widely considered to be risk-takers, and prone to making poor choices.

But is taking risks necessarily a bad thing? Should adolescents be seen as bad people? Adriana Galván, PHD, doesn’t think so.

Galván is a neuroscientist and professor at UCLA, where she studies sleep, emotion, learning, stress, and decision-making in the adolescent brain. She came to Duke on Friday, April 5 as part of the DIBS Center for Cognitive Neuroscience’s Colloquium Series.

Humans have an extended period of adolescence, because our brains take a very long time to complete development, Galván said. Adolescence is currently defined as the period between the onset of puberty and the end of developmental plasticity. During this time, teen brains are constantly changing, and these physical changes are linked to socioemotional changes in behavior.

The Brain’s Reward System: meso-limbic pathway shown in green (Photo from WikiCommons: Oscar Arias-Carrión1, Maria Stamelou, Eric Murillo-Rodríguez, Manuel Menéndez-González and Ernst Pöppel)

One of the most prominent differences between adolescent and adult brains can be found in the brain’s reward system. Research has shown that adolescents have higher levels of activation in the mesolimbic system and ventral striatum regions of the brain, areas that are very important in reward processing.

Galván believes that this greater reward system excitability in teenagers may explain why they engage in more risky behavior than adults.

A study done by Galván and her former student, Emily Barkley-Levenson, investigated the stereotype of risk-taking in adolescents. Sure enough, when tested against adults in a gambling game, adolescents were more likely to take risks. However, a closer look at the data suggests that this might not be such a bad thing.

For disadvantageous and neutral gambles, adolescents didn’t differ from adults at all. But when it came to advantageous gambles, adolescents were far more likely than adults to accept the risk. This suggests that risk-taking behavior in teens might actually be adaptive, and put young people at an advantage when it comes to making the choices that lead to innovation and discovery.

Adolescents were also shown to exhibit better learning from outcomes than adults. Adolescence is a period of time where young people are constantly receiving feedback from their environment, and learning about the world around them from social interactions and relationships.

Another of Galván’s students, Kaitlyn Breiner, found that adolescents experienced high levels of emotional distress when their expectations of social feedback were violated. This was true regardless of whether the participants were receiving positive or negative unexpected feedback; they were just as distressed by an unexpected compliment as they were by an unexpected insult. Galván hypothesizes this is because relief is a very powerful emotion, and adolescent participants were looking to find comfort in a validation of their beliefs about their social relationships. It’s comforting to feel like your interpretation of the social world is correct, especially during the shifting world of adolescence.

Adolescents learn about their world through social interactions with friends (Photo from Wikimedia Commons: Glenn Waters)

Galván and her team have also investigated the role of mesolimbic activation in mediating distress.

Following the 2016 US Presidential election, participants in Los Angeles were asked if they felt personally affected by the election. The research team then measured the activation in their nucleus accumbens (a region of the mesolimbic system that plays a role in reward) and looked for symptoms of depression. Of those who reported feeling affected by the outcome of the election, Galván found that people with high activation in their nucleus accumbens had less depressive symptoms than those with low activation in this area. This suggests that high activation of the reward system plays a role in mediating depression. If adolescent brains experience these higher levels of reward system activation, might this protect them from depression?

The bottom line is, adolescents are not bad people, and they aren’t stupid either. In some ways, they may even be smarter than adults. Teens are better at learning from outcomes, more likely to take advantageous risks, and they experience higher levels of activation in their reward system, which could have important implications for resilience. The research shows that teenagers are far more capable – and smarter – than the world believes. Let’s give them a little more credit.

Post by Anne Littlewood, Trinity ’21

Building a Mangrove Map

“Gap maps” are the latest technology when it comes to organizing data. Although they aren’t like traditional maps, they can help people navigate through dense resources of information and show scientists the unexplored areas of research.

A ‘gap map’ comparing conservation interventions and outcomes in tropical mangrove habitats around the world turns out to be a beautiful thing.

At Duke’s 2019 Master’s Projects Spring Symposium, Willa Brooks, Amy Manz, and Colyer Woolston presented the results of their year-long Masters Project to create this map.

You’d never know by looking at the simple, polished grid of information that it took 29 Ph.D. students, master’s students and undergraduates nearly a full year to create it. As a member of the Bass Connections team that has been helping to support this research, I can testify that gap maps take a lot of time and effort — but they’re worth it.

Amy Manz, Willa Brooks, and Colyer Woolston present their evidence map (or gap map) at the 2019 Master’s Projects Spring Symposium

When designing a research question, it’s important to recognize what is already known, so that you can clearly visualize and target the gaps in the knowledge.

But sifting through thousands of papers on tropical mangroves to find the one study you are looking for can be incredible overwhelming and time-intensive. This is purpose of a gap map: to neatly organize existing research into a comprehensive grid, effectively shining a light on the areas where research is lacking, and highlighting patterns in areas where the research exists.

In partnership with World Wildlife Fund, Willa, Amy, and Colyer’s team has been working under the direction of Nicholas School of the Environment professors Lisa Campbell and Brian Silliman to screen the abstracts of over 10,000 articles, 779 of which ended up being singled out for a second round of full-text screening. In the first round, we were looking for very specific inclusion criteria, and in the second, we were extracting data from each study to identify the outcomes of conservation interventions in tropical mangrove, seagrass, and coral reef habitats around the world.

Coastal Mangroves (Photo from WikiCommons: US National Oceanic and Atmospheric Administration)

While the overall project looked at all three habitats, Willa, Amy, and Colyer’s Master’s Project focused specifically on mangroves, which are salt-tolerant shrubs that grow along the coast in tropical and subtropical regions. These shrubs provide a rich nursery habitat to a diverse group of birds and aquatic species, and promote the stability of coastlines by trapping sediment runoff in their roots. However, mangrove forests are in dramatic decline.

According to World Wildlife Fund, 35 percent of mangrove ecosystems in the world are already gone. Those that remain are facing intense pressure from threats like forest clearing, overharvesting, overfishing, pollution, climate change, and human destruction of coral reefs. Now more than ever, it is so important to study the conservation of these habitats, and implement solutions that will save these coastal forests and all the life they support. The hope is that our gap map will help point future researchers towards these solutions, and aid in the fight to save the mangroves.

This year’s team built a gap map that successfully mapped linkages between interventions and outcomes, indicating which areas are lacking in research. However, the gap map is limited because it does not show the strength or nature of these relationships. Next year, another Bass Connections team will tackle this challenge of analyzing the results, and further explore the realm of tropical conservation research.

Post by Anne Littlewood, Trinity ’21

A How-To Guide for Climate-Proof Cities

Roughly 400 miles separate Memphis and New Orleans. Interstate 55 connects the two cities, snaking south parallel to the Mississippi River. The drive is dull. There are few cars. The trees are endless.

South of the Louisiana border, the land turns flat, low, and wet. The air grows warmer, and heavy with moisture. I-55 cuts through the center of Maurepas Swamp, a 100,000-plus acre tract of protected wetlands. Groves of gumball and oak are rare here—instead, thin swamps of bald cypress and tupelo trees surround the highway on either side. At night, only their skeletal silhouettes are visible. They rise from the low water, briefly illuminated by passing headlights. Even in the dark, the trees are unmistakably dead.

*  *  *

A healthy cypress swamp in Lake Martin, Louisiana (Source: U.S. Geological Survey)

Traditionally, Maurepas Swamp serves as a natural barrier against flooding that threatens New Orleans each year. Native flora soaks up the rainfall, spreading it across a network of cypress roots and cattail. But centuries of logging and canal construction have drastically altered the swamp’s ecological composition. The Mississippi levee system compounded the issue, isolating the swamp from vital sources of fresh water and nutrients. Flooded with saltwater, much of the existing cypress withered and died. Young trees, now, are few and scattered. 

Maurepas Swamp highlights the danger of even the most well-intentioned changes to the  environment. This problem is hardly unique to the wetlands. “Many of the issues that we are experiencing today were seen as solutions in the past,” says Nancy Grimm, a professor of ecology at Arizona State University. “What we want to do now is to think about the future, so that the solutions of today don’t become the problems of tomorrow.”

Nancy Grimm addresses urban sustainability at the 2019 Henry J. Oosting Memorial Lecture in Ecology. (Source: Nicholas School of the Environment)

Grimm is the co-director of the UREx Sustainability Research Network. UREx aims to climate-proof urban municipalities without sacrificing environmental stability. To do so, UREx has partnered with several cities across the United States and Latin America. Each city hosts a workshop geared towards municipal decision makers, such as government officials,  environmental NGOS, and more. Together, these participants design different “futures” addressing their cities’ most pressing concerns. 

Phoenix, Arizona is one of the nine initial cities partnering with UREx. One of the hottest cities in the United States, Phoenix is already plagued with extreme heat and drought. By 2060, Phoenix is projected to have 132 days above 100°F—a 44 percent increase from data collected in 2010.  

UREx doesn’t dwell too much on these statistics.  “We’re bombarded constantly by dystopian narratives of tomorrow,” says Grimm, with a slight smile. “Instead, what we want to think about are ways we can envision a more positive future.”

The Phoenix workshop produced five distinct visions of what the city could look like in sixty years. Some scenarios are more ambitious than others—“The Right Kind of Green,” for example, imagines a vastly transformed city defined by urban gardens and lush vegetation. But each vision of Phoenix contains a common goal: a greener, cooler city that retains its soul. 

A visualization accompanies each scenario. In one, a family walks about a small orchard. The sky is blue, and the sun is out. But no one seems bothered by the heat. The oranges are vibrant; the trees thick, and full. It’s an idyllic future. But it’s one within grasp.  

Post by Jeremy Jacobs

Starting Over in New Neighborhoods Helps Ex-Offenders Stay Out of Jail

Are prisoners who go back to their old neighborhoods upon release more or less likely to get arrested again than those who move? That’s the question
University of Oxford sociology professor David Kirk posed in a seminar he gave at Duke March 28. Recidivism is the tendency of a convicted criminal to re-offend, and Kirk wondered if the risk of recidivism might be lower when former prisoners reside in a geographic area different from where they lived prior to incarceration.

           To test his hypothesis, Kirk first designed a study in New Orleans following Hurricane Katrina. A full 72 percent of dwellings in New Orleans were damaged in some manner following the hurricane, but the neighborhoods that were hit the hardest tended to be areas that were socioeconomically disadvantaged and home to ethnic minorities. These also tended to be areas to which released prisoners would have returned. Realizing they would not be able to return because of the damage, Kirk designed a study to compare the likelihood of recidivism in people who moved to a different parish pre vs. post-Katrina. The results of the study showed that 50 percent of people were induced to move post-Katrina, compared to 25 percent before Katrina. Parolees who moved to a new neighborhood were less likely to be rearrested.

            Based on the Moving to Opportunity (MTO) project, a government-funded housing mobility program in the 1990’s for poor families in five cities, Kirk decided to build on his Katrina results to launch a pilot program in Maryland called MOVE, or Maryland Opportunity through Vouchers Experiment. In the first design, the treatment group received a six-month housing subsidy upon release, but it had to be used in a new jurisdiction. The control group received a six-month subsidy in their home jurisdiction. In the results for this experiment, no one in either group that received free housing was rearrested. However, in the control group where released prisoners received no free housing and returned to their old neighborhoods, 22 percent were rearrested.

           The second design gave no subsidy for staying in the home jurisdiction, but incentivized moving to a new city with free housing. In the Maryland experiment, the ‘home’ jurisdiction was Baltimore, and the treatment group housing subsidy was in Prince George’s County, about forty-five minutes away in neighboring Washington, D.C. The pilot implemented four prisons in the state of Maryland and male prisoners hailing from Baltimore were eligible, with the exception of sex offenders.

Graph courtesy of David Kirk, University of Oxford

In the second design where the treatment group got free housing in a new environment and the control group moved to their old communities with no free housing, 22 percent of the treatment group was rearrested compared to 57 percent of the control group. Kirk explained that this second design is more practical than the first because only one group has to receive subsidized housing, thus it is half the cost of the first design. However, since the treatment group gets free housing and moves in the second design, it is harder to tease out the exact reason for lower rearrest rates. Other general trends Kirk has found through his research are that younger individuals who have been imprisoned tend to benefit more from district changes than older individuals. There is also a much larger gap between ‘movers’ and ‘stayers’ in rearrest rates for women, so Kirk hopes to conduct future studies involving female released prisoners.

Post by Victoria Priester

Victoria Priester

‘Death is a Social Construct’

Of the few universal human experiences, death remains the least understood. Whether we avoid its mention or can’t stop thinking about it, whether we are terrified or mystified by it, none of us know what death is really like. Turns out, neither do the experts who spend every day around it.

Nobody who sees this guy reports back, so we can only guess.

This was the overarching lesson of Dr. Robert Truog’s McGovern Lecture at Trent Semans Center for Health Education, titled “Defining Death: Persistent Problems and Possible Solutions.”

Dr. Truog is this year’s recipient of the McGovern Prize, an award honoring individuals who have made outstanding contributions to the art and  science of medicine. Truog is a professor of medical ethics, anesthesiology and pediatrics and director of the center for bioethics at Harvard Medical School. He is intimately familiar with death, not only through his research and writings, but through his work as a pediatric intensive care doctor at Boston Children’s Hospital. Truog is also the author of the current national guidelines for end-of-life care in the intensive care unit.

In short, Truog knows a lot about death. Yet certain questions about the end of life remain elusive even to him. In his talk, he spoke about the biological, sociological, and ethical challenges involved in drawing the boundary between life and death. While some of these challenges have been around for as long as humans have, certain ones are novel, brought on by technological advancements in medicine that allow us to prolong the functioning of vital organs, mainly the brain and the heart.

The “irreversible cessation of function” of these organs results in brain and cardiac death, respectively. When both occur together, the patient is declared biologically dead. When they don’t, such as when all brain function except for those that support the patient’s digestive system is lost, for instance, the patient can be legally alive without any hope of recovery of consciousness.

Robert Truog teaching (Harvard photo)

According to Truog, it is in these moments of life after the loss of almost every brain function that we realize “death is a social construct.” This claim likely sounds counterintuitive, if not entirely nonsensical, as dying is the moment we have the least control over our biology. What Dr. Truog means, however, is that as technology continues to mend failures of biology that would have once been fatal, our social and philosophical understanding of dying, what he calls “person death” will increasingly separate from the end of the body’s biological function.  

Biologically, death is the moment when homeostasis, the body’s internal state of equilibrium including body temperature, pH levels and fluid balance, fails and entropy prevails.

Personhood, however, is not mere homeostasis. Dr. Truog cited Robert Veatch, ethicist at Georgetown University, in defining person death as the “irreversible loss of that which is essentially significant to the nature of man.” For those patients who are kept alive by ventilators and who have no hope of regaining consciousness, that essentially significant nature appears to have been lost.

Nonetheless, for loved ones, signs like spontaneous breathing, which can occur in patients in persistent vegetative state, intuitively feel like signs of life. This intuitive sign of life is what made Jahi McMath’s parents refuse an Oakland California hospital’s declaration that their daughter was dead. A ventilator kept the 13-year-old breathing, even though she had been declared brain-dead. After much conflict, McMath’s parents moved her to a hospital in New Jersey, one of just two states where families can reject brain death if it does not align with their religious beliefs. In the end, McMath had two death certificates that were five years apart.


Muslim cemetery at sunset in Marrakech Morocco.
(Mohamed Boualam via Wikimedia commons)

The emotional toll of such an ordeal is immense, as the media outcry around McMath made more than clear. There are more concrete, quantifiable costs to extending biological function beyond the end of personhood: the U.S. is facing an organ shortage. As people are kept on life support for longer periods, it is going to become increasingly difficult for patients who desperately need organs to find donors.

In closing, Dr. Truog reminded us that “in the spectrum between alive and dead, we set the threshold… Death is not a binary state, but a complex social choice.” People will likely continue to disagree about where we should set the threshold, especially as technology develops.

However, if we want to have a thoughtful discussion that respects the rights, wishes, and values of patients, loved ones, and everybody else who will one day face death, we need to first agree that there is a choice to be made.

Guest Post by Deniz Ariturk, Science & Society graduate student

Science Gets By With a Little Help From Its Friends

There are many things in life that are a little easier if one recruits the help of friends. As it turns out, this is also the case with scientific research.

Lilly Chiou, a senior majoring in biology, and Daniele Armaleo, a professor in the Biology Department had a problem. Lilly needed more funding before graduation to initiate a new direction for her project, but traditional funding can sometimes take a year or more.

So they turned to their friends and sought crowdfunding.

Chiou and Armaleo are interested in lichens, low-profile organisms that you may have seen but not really noticed. Often looking like crusty leaves stuck to rocks or to the bark of trees, they — like most other living beings — need water to grow. But, while a rock and its resident lichens might get wet after it rains, it’s bound to dry up.

If you’re likin’ these lichens, perhaps you’d like to support some research…

This is where the power of lichens comes in: they are able to dry to a crisp but still remain in a suspended state of living, so that when water becomes available again, they resume life as usual. Few organisms are able to accomplish such a feat, termed desiccation tolerance.

Chiou and Armaleo are trying to understand how lichens manage to survive getting dried and come out the other end with minimal scars. Knowing this could have important implications for our food crops, which cannot survive becoming completely parched. This knowledge is ever more important as climate becomes warmer and more unpredictable in the future. Some farmers may no longer be able to rely on regular seasonal rainfall.

They are using genetic tools to figure out the mechanisms behind the lichen’s desiccation tolerance[. Their first breakthrough came when they discovered that extra DNA sequences present in lichen ribosomal DNA may allow cells to survive extreme desiccation. Now they want to know how this works. They hope that by comparing RNA expression between desiccation tolerant and non-tolerant cells they can identify genes that protect against desiccation damage.  

As with most things, you need money to carry out your plans. Traditionally, scientists obtain money from federal agencies such as the National Science Foundation or the National Institutes of Health, or sometimes from large organizations such as the National Geographic Society, to fund their work. But applying for money involves a heavy layer of bureaucracy and long wait times while the grant is being reviewed (often, grants are only reviewed once a year). But Chiou is in her last semester, so they resorted to crowdfunding their experiment.

This is not the first instance of crowdfunded science in the Biology Department at Duke. In 2014, Fay-Wei Li and Kathleen Pryer crowdfunded the sequencing of the first fern genome, that of tiny Azolla. In fact, it was Pryer who suggested crowdfunding to Armaleo.

Chiou (left) and Armaleo in a video.

Chiou was skeptical that this approach would work. Why would somebody spend their hard-earned money on research entirely unrelated to them? To make their sales pitch, Chiou and Armaleo had to consider the wider impact of the project, rather than the approach taken in traditional grants where the focus is on the ways in which a narrow field is being advanced.

What they were not expecting was that fostering relationships would be important too; they were surprised to find that the biggest source of funding was their friends. Armaleo commented on how “having a long life of relationships with people” really shone through in this time of need — contributions to the fund, however small, “highlight people’s connection with you.” That network of connections paid off: with 18 days left in the allotted time, they had reached their goal.

After their experience, they would recommend crowdfunding as an option for other scientists. Having to create widely understood, engaging explanations of their work, and earning the support and encouragement of friends was a very positive experience.

“It beats writing a grant!” Armaleo said.

Guest Post by Karla Sosa, Biology graduate student


Open Communication is Key to Research in Schools

One of the things that excited me most about coming to Duke was the amount of research being done on campus, from theoretical physics to biological field work or cultural anthropology. I recently had the opportunity to attend a panel about conducting research in schools. As someone who has only ever done biological and chemistry-based lab work, I was eager to learn more about how research is conducted in other disciplines.

Doing research in schools is particularly challenging because it includes so many parties. The research goals must align with the school district’s priorities, collaboration must occur with the teachers, administrators and researchers about the design of the study and feasibility of implementations, and there must be cooperation from the students who are often young children unaware of the research going on.

Ultimately, the core role of schools is to educate children. Thus, in order to conduct research, the team needs to find a way to provide a clear benefit to schools for participation and make sure of protecting instruction time, reducing the burden on teachers.

The main purpose of the panel was to help Duke researchers better understand how to effectively interact and conduct research in schools. This was very well reflected in the four panelists Amy Davis, Cherry Johnson, Michele Woodson, and Holle Williams who each gave short, individual presentations.

Essentially,  the goal of a school is to provide high-quality education to the students. So to conduct research, researchers must find a way to make their goals applicable to the teachers.

Davis, the coordinator of grants, research, and development in Durham Public Schools explained that because of their large minority population, researchers often want to partner with them. Davis explained that researchers should strive to work collaboratively in a way that will yield what the researcher needs but also benefit the school. The focus of the teachers and administrators is not on research and they are not experts in things like research design.

She urged researchers to first reach out to her because she knows which schools would be a viable fit and can help provide the language to talk directly to them. Furthermore, she addressed that researchers sometimes need to have the flexibility to alter the research design when working in schools.

Johnson, the Director of Research and Grant Development in Johnston County Public Schools began by explaining how her district is driven by principles of relationships, relevance, and innovation.

She added that they are  “always interested in collab opportunities between universities and JCPS.”

However, studies that can aid in furthering their priorities, namely innovation, teacher recruitment and social and emotional learning will have a higher likelihood of being conducted successfully.

What makes the county so unique is that they are almost two districts within one.

“We still have notable lines between the haves and have nots,” Johnson added referring to large the socioeconomic differences between the Raleigh commuters and farm families.

To address some of these challenges, JCPS are participating in many partnerships with universities like NC State, UNC and Duke including a study with Dr. Leslie M. Babinski, associate research professor in the Sanford School of Public Policy.

Dr. Babinski conducting research in schools
Dr. Babinski working with students

Ultimately, university research is not a school district’s top priority. However, Woodson added that if the research has the ability to aid the school in accomplishing their goals then it increases the likelihood of success for both parties.

The last speaker was Holle Williams the Director of Main Campus Institutional Review Board at Duke University. Most schools require the approval of Duke’s IRB, which aims to protect the rights and welfare of human research subjects. Williams explained that their goal is to understand the intent of the researcher’s project.

“We want to make sure that what you are doing, what you are contemplating meets the definition of research” Williams stated.

Understanding intent allows then to distinguish research from other kinds of projects where research can help the school but also must contribute to the universal knowledge of a given education based topic.

A big emphasis of the talk was open communication. Both the school representatives and director of IRB highlighted that in order to most efficiently carry out a research project, the researchers should make sure to reach out to both the schools as well as main campus IRB. Through effective communication, strong partnerships can be built between the Duke community and local schools to conduct research that benefits both parties.

Post by Anna Gotskind

Alex Dehgan and The Snow Leopard Project

Traveling through war-torn areas at risk of encountering landmines, militia, and difficult terrain, Alex Dehgan was protected only by a borrowed Toyota Corolla. Dehgan, the Chanler Innovator in Residence at Duke, has spent much of his life overseas addressing conflict in Afghanistan through promoting wildlife conservation.

As a result, Dehgan has served in multiple positions within the U.S. Department of State, including the office of the secretary, and the bureau of Near Eastern affairs. There, he aided in addressing foreign policy issues in Iran, Iraq, and Egypt and contributed to the improvement of science diplomacy. Recently, he founded the Office of Science and Technology as the Chief Scientist at the U.S. Agency for International Development.

Dehgan Speaking at Duke

Dehgan recently gave a talk at Duke on the snow leopard project, an effort he spearheaded focusing on snow leopard (Panthera uncia)  and other wildlife conservation in Afghanistan. Because of the conflict, most people are not aware of the incredible wildlife and natural beauty within the country’s borders.

Snow Leopard Project Gallery Photo

In his conservation efforts, Dehgan visited the Pamir, Karakoram, Hindu Kush, and Tien Shian mountain ranges hoping to learn more about the wildlife that lived there and the best way to promote their conservation. He used camera traps and collected scat to figure out species were in the area.

He began by talking about the Pamir mountains. Despite the fact that this is a very dangerous region to be, Dehgan ventured in ready to work with locals and discover the wildlife there. Once,  a member of his team asked if they could forgo checking the camera traps for the day because they were being bombed by the U.S. Army. However, it was worth it because Dehgan had the opportunity to work with locals and collect images as well as data on several unique species.

This included the Marco Polo sheep (Ovis ammon polii), enormous sheep that live in single-sex groups for most of the year. They only come together to mate and when they do, the males clash heads with one another for the ability to procreate. He was also able to find a markhor (Capra falconeri), which he prefers to call a “Twin-horn unicorn.” Markhor means snake eater, but the animal does not actually eat snakes. These animals are so valuable that a hunter once paid $110,000 to shoot one. Dehgan and his team were able to collect hair and genetic samples of musk deer (Moschus), which can be found in very steep areas of the Pamir mountains. These animals derive their name from the musk they produce which is often used in perfumes.

Snow Leopard Project Gallery Photo

The area is known as Nuristan, the land of the enlightened, and is unique in that each valley has its own tradition, crafts, and even dialect. Dehgan and his team worked with people from the region and trained them to look for the specific animals

One of the most remarkable places Dehgan visited was Band-e Amir, which he described as looking like the grand canyon. The most unique natural aspect is a system of six lakes formed by the same process that creates stalactites and stalagmites. Above the lakes is an incredible mountain range and on top of the mountains are marine fossils because it used to be at the bottom of the sea. Here, Dehgan was able to use camera traps to collect images of ibexes (Capra ibex), Persian leopards (Panthera pardus saxicolor), and poachers. Poaching would eventually become one of Dehgan’s key focuses. Dehgan and his team also discovered Asiatic wild asses and assumed the presence of Asiatic leopards after finding their skins in the nearby villages.

Dehgan discovered that there was a massive trade in wildlife driven by the U.S. military. Skins of snow leopards and Persian leopards could be found all over Afghanistan as a part of illegal wildlife trade and other wildlife like Saker Falcons could be sold for up to $1 million.

As a result, Dehgan started a program around wildlife trafficking. A major part of his effort took place on Chicken Street, a busy shopping area where illegal animal skins could frequently be found. Dehgan worked closely with U.S. Military police, training them on how to identify furs.

Dehgan also worked with Afghani airport employees on how to inspect baggage for illegal furs. This resulted in the shut down of nearly all illegal fur trade, which Dehgan said was one of his biggest successes. In fact, one day while in Afghanistan, Dehgan received word that a fur trader wished to speak with him. Assuming they were angry at him for reducing their business Dehgan said that he actually feared for his life. However, it turned out that the fur trader simply wanted to be trained to identify illegal furs because they too wanted to protect Afghanistan’s wildlife.

Dehgan explained that Afghanistan was one of the easiest places he ever did conservation. This is because 80 percent of the human population is dependent on natural resources and thus when the wildlife fails, they fail. Because of this, they are eager to help aid in promoting conservation efforts.

Additionally, Dehgan was able to create the Wildlife Conservation Society’s Afghanistan Program which resulted in Afghanistan’s first and second national parks. Villages held local elections to set up a committee and to set up rules to govern the national parks.

Ultimately, his conservation work not only helped wildlife, but supported democracy by empowering, working with and training local communities.

To learn more, check out Dehgan’s recently published book, “The Snow Leopard Project” as well as his twitter, @lemurwrangler.

By Anna Gotskind

The Costs of Mental Effort

Every day, we are faced with countless decisions regarding cognitive control, or the process of inhibiting automatic or habitual responses in order to perform better at a task.

Amitai Shenhav, PhD, of Brown University, and his lab are working on understanding the factors that influence this decision making process. Having a higher level cognitive control is what allows us to complete hard tasks like a math problem or a dense reading, so we may expect that the optimal practice is to exert a high level of control at all times.

Shenhav’s lab explores motivation and decision making related to cognitive control.

Experimental performance shows this is not the case: people tend to choose easier over hard tasks, require more money to complete harder tasks, and exert more mental effort as the reward value increases. These behaviors all suggest that the subjects’ automatic state is not to be at the highest possible level of control.

Shenhav’s research has centered around why we see variation in level of control. Because cognitive control is a costly process, there must be a limit to how much we can exert. These costs can be understood as tradeoffs between level of control and other brain functions and consequences of negative affective changes related to difficult tasks, like stress.

To understand how people make decisions about cognitive control in real time, Shenhav has developed an algorithm called the Expected Value of Control (EVC) model, which focuses on how individuals weigh the costs and benefits of increasing control.

Employing this model has helped Shenhav and his colleagues identify situations in which people are likely to choose to invest a lot of cognitive control. In one study, by varying whether the reward was paired only with a correct response or was given randomly, Shenhav simulated variability in efficacy of control. They found that people learn fairly quickly whether increasing their efforts will increase the likelihood of earning the reward and adjust their control accordingly: people are more likely to invest more effort when they learn that there is a correlation between their own effort and the likelihood of reward than when rewards are distributed independent of performance.

Another study explored how we adjust our strategies following difficult tasks. Experiments with cognitive control often rely on paradigms like the Stroop task, where subjects are asked to identify a target cue (color) while being presented with a distractor (incongruency of the word with its text color). Shenhav found that when subjects face a difficult trial or make a mistake, they adjust by decreasing attention to the distractor.

The Stroop task is a classic experimental design for understanding cognitive control. Successful completion of Stroop task 3 requires overriding your reflex to read the word in cases where the text and its color are mismatched.

A final interesting finding from Shenhav’s work tells us that part of the value of hard work may be in the work itself: people value rewards following a task in a way that scales to the effort they put into the task.

Page 1 of 67

Powered by WordPress & Theme by Anders Norén