Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Environment/Sustainability Page 1 of 14

Capital, Canaries, or Catalysts: Insurance Industry’s Role in Climate

Sticky post
Mining foreman R. Thornburg shows a small cage with a canary used for testing carbon monoxide gas in 1928. Credit: George McCaa, U.S. Bureau of Mines

Throughout the 19th and 20th centuries, canaries were used in coal mines to assess the risk of toxic gasses. If the birds became ill or passed away, their fate served as a warning for miners to vacate the premises. 

Similarly to how a canary detects unseen risks, the insurance industry is responsible for matching assets to liabilities based upon risks, according to Francis Bouchard, the managing director for climate at the insurance company Marsh McLennan. Bouchard spoke at Duke University on November 10 to discuss the insurance sector’s responsibility to tackle risks as a result of climate change.

During a one-year residency that begins in January, Bouchard will explore ways in which the insurance sector can incentivize and support advances in management of climate risks by helping Duke to build new research partnerships and networks with the insurance and other affected sectors.

Historically, the insurance industry has served as a catalyst to influence safety regulations for the welfare of citizens, as opposed to a canary that withers under risks. Take, for instance, the World Columbian Exposition in Chicago in 1893. It was the first time in history “anyone would deploy electricity on a large level,” Bouchard said. Therefore, an insurance company sent an engineer to examine the security of the electricity and determine the hazards for attendees. Consequently, the brightest minds of this sector banded together to create the Underwriters Laboratories, which is now the largest testing laboratory in the United States. 

But more recently, the insurance sector has not acted as a catalyst in its role to address climate risk. Several policies and systems “distort the purity of the risk signals insurance companies send.” Firstly, its inability to combat systemic level risks as they are providing individual incentives. The industry is highly effective in “handling individual risk and incentivizing immediate actions to address an immediate risk,” Bouchard said, but this method cannot translate on a systemic level.

Secondly, the insurance sector provides a “temporal mismatch” as they sell 12 months of risk, but the lasting impacts of climate change will not occur within a year. Therefore, their “ability to capture in a 12 month policy, decades worth of climate change risk is impossible.”

Thirdly, the regulations for insurance differ between states. In most states, the insurance commissioner dictates the price of insurance based upon the company’s risk assessment because when “risk goes up, price of risk also goes up.” When citizens cannot afford insurance, commissioners are more likely to side with the experts of the insurance companies as opposed to their disadvantaged constituents.

Finally, their climate model is not advanced enough to estimate how specific cities will change within a few decades due to climate change. Therefore, it cannot entirely predict its risks either. 

You can watch Bouchard’s talk, with slides, on YouTube

The insurance industry has been successful in its asset-liability matching “in committing some of its capital to advancing climate technology or green technology.” However, this sector receives “publicity around insurance companies withdrawing capital from wildfire or climate exposed jurisdiction.”

This system is explained by the TCFD Filing, which was created by the Bank of International Settlements to discover insurance companies exposure to climate transition issues, physical risks from climate change, and their strategy to aid clients. Essentially, most insurance companies are not “concerned about physical risks” as they would simply reprice their 12-month insurance policy if there is a heightened threat to physical risk. According to Bouchard, the “insurance industry has already signaled through its TCFD filings precisely what their strategy is: ‘we’re gonna play this game as long as we can and then we’re going to withdraw.’” Therefore, an insurance company would continue to increase their cost until a person can no longer afford its price or actually endures physical damage to which they would cease providing insurance. “These last resort-type mechanisms are when the government steps in,” Bouchard said. He even estimates that the government will control 30% of this $1 trillion industry ($2 trillion globally) within ten years. This is dangerous as the government is already enduring fiscal dilemmas and will not be equipped to manage the complexity of the sector.

Bouchard, with 30 years of experience in this industry, said he “truly, truly believes in the social role that the industry plays. I’m petrified that we’re not going to be there to help society cope with climate with the technical knowledge we have, the expertise we have, the mechanisms we have, and the money.” If the sector continues upon this path, they will dissolve under the risks, similarly to a canary in a mine. 

Francis Bouchard’s work in combating climate battles with insurance is of the utmost necessity. Continued global warming will force citizens to rely on this industry for aid against climate disasters. The most recent Conference of Parties, created by the United Nations for climate change discussions, recognized the insurance industry as a “key finance player in climate transition alongside private industry and government because the world is recognizing that we have a key part to play.”

By Samera Eusufzai, Class of 2026

“Wonders and Realities of the Universe”: Rachel Carson’s Legacy

Rachel Carson was a twentieth-century marine scientist, conservationist, and writer. She is the author of Silent Spring, a groundbreaking book about the dangers of DDT and other pesticides.
Photo courtesy of the Rachel Carson Council.

Robert K. Musil, Ph.D., M.P.H., recently visited Duke to talk about Rachel Carson’s environmental legacy and its implications for North Carolina today. Musil is the president and CEO of the Rachel Carson Council, an environmental organization founded in 1965 by friends and colleagues of Rachel Carson — a twentieth-century marine scientist, conservationist, and writer — after her death.

Robert K. Musil, Ph.D., M.P.H., president and CEO of the Rachel Carson Council.
Photo courtesy of Musil.

Musil began his presentation with a stirring quote by Carson: “The more clearly we can focus our attention on the wonders and realities of the universe about us the less taste we shall have for the destruction of our race. Wonder and humility are wholesome emotions, and they do not exist side by side with a lust for destruction.”

Rachel Carson is famous for writing Silent Spring, a groundbreaking book warning of the dangers of DDT and other pesticides. Carson published Silent Spring in 1962. She died in 1964. In 1972, the United States banned DDT.

More than half a century later, in our world of climate crisis and biodiversity loss, Carson’s devotion to the natural world is still incredibly timely. 

Rachel Carson’s Silent Spring documented how the insecticide DDT was harming not just insects but also animals farther up the food chain, human health, and the environment as a whole. The book spent thirty-one weeks on the New York Times bestseller list.
Image courtesy of the Rachel Carson Council.

Carson, Musil says, “believed that you had to develop real empathy for other creatures, other beings, other people, other nations… that unless you loved it, you would destroy it.” In Carson’s first book, Under the Sea-Wind, she takes the perspective of animals like the black skimmer, the mackerel, and the eel. Carson was writing about the perils facing marine ecosystems, but she was doing it “from the point of view of the ‘other,’” as Musil puts it, focusing our attention on creatures other than ourselves.

A black skimmer, a bird Rachel Carson wrote about in Under the Sea-Wind.
“Black skimmer (Rynchops niger) in flight” by Charles J. Sharp is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

“With the dusk a strange bird came to the island from its nesting grounds on the outer banks. Its wings were pure black, and from tip to tip their spread was more than the length of a man’s arm. It flew steadily and without haste across the sound, its progress as measured and as meaningful as that of the shadows which little by little were dulling the bright water path. The bird was called Rynchops, the black skimmer.”

-A passage from Under the Sea-Wind by Rachel Carson. Rynchops, Carson’s name for the black skimmer, comes from the bird’s genus name.

Musil describes how Carson would lie on the beach and hear crabs scratching the sand and listen to birds and imagine “how this life came to be, how these creatures, incredibly unique, came to this place in evolution.”

Carson was a marine scientist well before she published Silent Spring. She attended graduate school in marine biology with a full fellowship to Johns Hopkins University. At the same time, Musil says, she was working as a research assistant, teaching part-time at the University of Maryland and Johns Hopkins, and caring for extended family. Afterward, she worked for the Department of Fish and Wildlife and eventually became an author. Under the Sea-Wind was her first book; she wrote Silent Spring two decades later.

Carson is credited with spurring the modern environmental movement. Silent Spring and the concerns Carson raised about DDT prompted the President’s Science Advisory Committee, under the orders of John F. Kennedy, to investigate its dangers. Ultimately, DDT was banned in the United States, though Carson didn’t live to see it.

Rachel Carson and Hawk Mountain - Rachel Carson Council
An “iconic photo” by Shirley Briggs of Rachel Carson on Hawk Mountain.
Photo courtesy of the Rachel Carson Council.

But Musil emphasizes that throughout all Carson’s accomplishments, she did not act alone. He shows an “iconic photo,” as he describes it, of Rachel Carson sitting on Hawk Mountain and looking off into the distance through binoculars. The same photo is on the cover of Musil’s book Rachel Carson and Her Sisters: Extraordinary Women Who Have Shaped America’s Environment. He looks at the audience and asks a question: “Is Rachel alone on top of the mountain?” In the photo, Carson seems to be alone in a great expanse of wilderness, but the obvious answer to Musil’s question is no. Someone, after all, had to be there to take the picture.

That someone was Shirley Briggs, a friend of Carson’s and a scientist in her own right. “Rachel Carson,” Musil emphasizes, “was not alone.” Friends, colleagues, and mentors worked alongside her. And many of those people continued her work after she was gone. Before Carson died, Musil says, she asked Shirley Briggs and others to form an organization to carry on her work. The Rachel Carson Council was founded the following year. Nearly six decades later, the Council is still committed to “Carson’s ecological ethic that combines scientific concern for the environment and human health with a sense of wonder and reverence for all forms of life in order to build a more sustainable, just, and peaceful future,” according to a statement on their website.

According to Musil, North Carolina was one of Carson’s favorite places. After she had a breast cancer operation, he says, “she took refuge at Nags Head and walked its beaches.” The Rachel Carson Reserve commemorates Carson and preserves coastal habitats and wildlife. Musil believes that Carson’s legacy has broader environmental implications as well. One pressing issue in North Carolina today is Concentrated Animal Feeding Operations, or CAFOs, where many animals are raised in confinement. North Carolina produces ten billion gallons of hog waste from CAFOs each year—enough to fill 1500 Olympic swimming pools, according to Musil.

This is an ecological and animal welfare issue but also an environmental justice case. CAFOs are more often built near lower income and minority communities, and the waste from CAFOs can negatively affect human health, pollute waterways, and lead to fish kills and other ecological problems. Living near CAFOs is associated with higher rates of asthma and other health conditions, according to Musil. He acknowledged Francesca Cetta in the audience, who along with Lucy Goldman, both Duke Stanback Fellows at the Rachel Carson Council, did the research and writing on the Rachel Carson Council report, Swine and Suffering: An Introduction to the Hidden Harms of Factory Farms.

Environmental justice was not a term Carson used, but she had similar concerns about who was most affected by environmental issues. In Silent Spring, Musil says, Carson wrote about farmers who dealt directly with DDT and how unjust that was. Today, environmental justice is gaining momentum as organizations and governments wrestle with fairness and equality in the environmental sphere.

In spite of ongoing environmental degradation, Musil remains hopeful. “I have incredible hope for the future,” he says, because of his organization and its mentoring of future generations of environmentalists. “It’s not like every single person has to go out and go birdwatching — though I would recommend it,” he says, but he does believe it is important to learn about and appreciate the natural world and to recognize how it intersects with, for instance, capitalism and social justice. “Designing a much more equitable, greener society is critical,” he says, and when it comes to working toward that future, he is “never going to stop.” 

He references the photo he showed earlier of Carson on the mountain: “I like to think instead of looking at hawks, she’s looking across those ridges and seeing… ranks and ranks of young people from Duke and across the country carrying on her vision.”

Post by Sophie Cox, Class of 2025

Bolivia’s Lithium is Like White Gold in the Salar de Uyuni

As the world undergoes the great energy transition — from fossil fuels to alternative energy and batteries — rare earth metals are becoming more precious.

Open The Economist, Forbes, or Fortune, and you’ll see an article nearly every day on Lithium, Nickel, or Copper. For investors seeking to profit off of the transition, lithium seems like a sure bet. Dubbed “white gold” for electric vehicles, the lightweight metal plays a key role in the cathodes of all types of lithium-ion batteries that power electric vehicles (EVs). Although EVs produce fewer greenhouse gasses than gas- or diesel-powered vehicles, their batteries require more minerals, particularly lithium. 

On Sept. 26, Duke’s campus welcomed the first in a series of discussions on climate and energy diplomacy focused on the challenges and opportunities of mining and development in South America’s Lithium Triangle. In a room crowded with curious undergraduate and graduate students alike, some lucky enough to have snagged a seat while others stood at the perimeters, three experts discussed the possible future of Bolivia as a major player in the global lithium market. 

Professor Avner Vengosh of the Nicholas School

Duke Distinguished Professor Avner Vengosh, Nicholas Chair of Environmental Quality in the Nicholas School of the Environment, began by highlighting the staggering EV growth in 2020-2022: Sales of electric cars have more than tripled in three years, from around 4% of new car sales in 2020 to 14% in 2022. That number is expected to rise to 29.50% in 2028. Speaking of the critical element to EV production, lithium, Vengosh said frankly, “we don’t have enough.” 

Lithium is mined from two major sources, Vengosh explained. The first is from hard-rock pegmatite, where lithium is extracted through a series of chemical processes. Most of these deposits are found in Australia, the world’s biggest source. The second is from lithium-rich brines, typically found in Argentina, Bolivia, and Chile, also known as the “Lithium Triangle.” These brine deposits are typically found in underground reservoirs beneath salt flats or saltwater lakes. The Salar de Uyuni in Bolivia is the world’s largest salt lake, and the largest lithium source in the world. It stretches more than 4,050 square miles and attracts tourists with its reflective, mirror-like surface. 

Mountains surrounding the Uyuni salt flat during sunrise By Diego Delso, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47617647
Mountains surrounding the Uyuni salt flat during sunrise, (Diego Delso)

A group of Duke students led by a PhD candidate pursuing research on Bolivian lithium development recently traveled to Bolivia to understand different aspects of lithium mining. They asked questions including: 

  • How renewable is the lithium brine? 
  • Are there other critical raw minerals in the lithium-rich brines? 
  • What are the potential environmental effects of lithium extraction?
  • What is the water footprint of the lithium extraction process?
  • Is water becoming a limiting factor for lithium production?

The Duke team conducted a study with the natural brine in the Salar, taking samples of deep brines, evaporation ponds, salts from evaporation ponds, wastewaters, and the lithium carbonate. Vengosh said that “we can see some inconsistency in the chemistry of the water that is flowing into the chemistry of the brine.”

This indicates that there is a more complex geological process in the formation of the brine than the simple flow of water into the lake. The team also confirmed the high purity of the lithium carbonate product and that there are no impurities in the material. Additionally, the Duke team found that the wastewater chemistry produced after lithium carbonate production is not different from that of the original brines. Thus, there are no limitations for recycling the water back to the Salar system.

After Vengosh shared the findings of the Duke research team, Kathryn Ledebur, director of the Andean Information Network (AIN) in Cochabamba, Bolivia and Dr. Scott MacDonald, chief economist at Smith’s Research & Gradings and a Caribbean Policy Consortium Fellow, discussed Bolivia’s lithium policy. With the largest untapped lithium deposits in the world, Bolivia has constructed a pilot plan for their lithium production, but Ledebur highlighted that the biggest hurdle is scaling. Additionally, with a unique prior-consultation system in place between the central government and 36 ethnic and indigenous groups in Bolivia, natural resources are a key topic of concern and grassroots action. Ledebur said, “I don’t see that issue changing any time soon.”

Another hurdle is that Bolivian law requires that the extraction process is controlled by the state (the state must own 51%). Foreign investors have been hesitant to work with the central government, which nationalized lithium in 2008 despite, critics said, lacking much of the necessary technology and expertise. 

Maxwell Radwin, a writer for Mongabay, writes, “Evo Morales, the former socialist president who served from 2006 to 2019, nationalized the industry, promising that foreign interests wouldn’t plunder Bolivia’s natural resources as they had in the past. Instead, he said, lithium would propel the country to the status of a world power. Morales didn’t just want to export lithium, though; he wanted to produce batteries and cars for export. This complicated deals with potential investors from France, Japan, Russia and South Korea, none of which came to fruition because, among other things, they were required to take on YLB (the state-owned lithium company) as an equal partner.”

Ledebur said, “At this point in time, the Bolivian government has signed three contracts… and I think things will fall into place.” 

Naysayers say that the Bolivian government hasn’t done anything to take advantage of the massive market sitting beneath their Salars and that grassroot consultations don’t work. Ledebur said, “I don’t think that it’s perfect, but it’s happening.”

Duke students will return to Bolivia with professor Vengosh next year to conduct more research on the lithium extraction process. Then, they’ll be able to see the effects of this ‘happening’ first-hand. 

By Isa Helton, Class of 2026

Into the Damp, Shady World of the Bryophytes

Clockwise: Jonathan Shaw, Adam Kosinski, Natalie Farris, and Kavya Menke looking at bryophytes on a log.

On a bright Sunday afternoon in April, I did something I had never done before. I went for a walk in the woods specifically to look for mosses. No, that’s not strictly true — we were looking for bryophytes. I learned, among other things, that not everything I had always called moss was really moss at all. (The word bryophyte comes from ancient Greek components and literally means “moss plant.”)

A patch of moss on the Al Buehler Trail. Moss is one type of bryophyte; liverworts and hornworts are the two others.

The walk was organized by Wild Ones, an undergraduate nature club I’m involved with. Biology Professor Jonathan Shaw, Ph.D., and Blanka Aguero, data and collections manager in the Duke University Herbarium, volunteered to teach a group of undergraduates about mosses and other bryophytes on the Al Buehler Trail adjacent to the Duke golf course.

Jonathan Shaw and members of the Wild Ones holding moss. Mosses, liverworts, and hornworts together represent the bryophytes.

Bryophytes (which include mosses, liverworts, and hornworts) represent one of several large groups of terrestrial plants. Other groups include angiosperms (flowering plants), gymnosperms (cone-producing plants like conifers and ginkgos), pteridophytes (vascular, spore-producing plants including ferns and horsetails), and lycophytes (an ancient group with about 1200 surviving members). According to Shaw, bryophytes are “the second biggest group after the flowering plants, but the flowering plants are an order of magnitude more diverse.” Aguero says that North Carolina has 462 moss species, 211 liverworts, and 7 hornworts.

Zach Pracher (Wild Ones member) and Blanka Aguero looking at bryophytes on a log.

Unlike the other terrestrial plant groups, bryophytes are nonvascular, meaning they lack the water transport tissues that other plants use. Without vascular tissue and without lignin for support, bryophytes can’t grow very big because they have no way to efficiently move water from their base to the rest of the plant. Instead, they grow close to the ground and absorb water directly from the environment into their cells.

Despite their preference for damp habitats, bryophytes can live for a long time without water. Some plants (like cacti) survive droughts by storing water, but bryophytes have a different strategy. They go into a state of dormancy, or suspended animation, and simply wait. Then, when it next rains, “they go hog-wild, photosynthesizing again in minutes,” Shaw says.

So if bryophytes don’t rely on constant moisture to survive, why do they like it so wet? Water, as it turns out, isn’t just important for hydration. Bryophytes rely on it to reproduce as well.

“Mosses are the amphibia of the plant communities,” Shaw says. Just as many amphibians can live on land but must return to the water to reproduce, bryophyte sperm has to “swim” to an egg cell to fertilize it. Therefore, they need water in order to reproduce, but they don’t need much. It could be mist from a splashing waterfall or a puddle in the woods or rainwater trickling down a tree. It could even be dew.

Moss on a tree trunk. Bryophytes can grow in a wide range of habitats across the world.

The day was warm and sunny, but the ground was dotted with puddles from recent storms. Armed with small hand lenses, we set off down the trail, stopping periodically to scrutinize tree bark, fallen logs, and thick patches of moss on the forest floor.

You need not travel far to find bryophytes. Mosses and their cousins colonize all sorts of hidden nooks: damp logs, trailside divots, tree bark, riverbanks, forgotten corners of backyards. Compared to seed-producing plants, bryophytes tend to have larger geographic ranges, perhaps in part because spores disperse more easily and because bryophytes can survive dry spells. Shaw estimates that about 75% of the moss species found in North Carolina are also found in Europe, and some of them are found in Asia as well.

Atrichum moss viewed through a hand lens. Note the thin line down the middle of each leaf. That line is a midrib and is one feature that sets mosses apart from liverworts.

We learned that most mosses have a midrib in the middle of each leaf, whereas liverworts have no midrib.

“A liverwort,” Shaw explains helpfully, “is like a moss, but it’s a liverwort.”

Liverworts are relatively flat in comparison to mosses because their leaves are in two parallel rows, whereas mosses tend to have a more spiral shape, with leaves emerging from all sides of the stem. The flat appearance of liverworts explains why they are sometimes called scale mosses. Another feature to consider if you’re trying to distinguish mosses and liverworts is the presence of lobed leaves, or leaves with protuberances off the main leaf (think of maple or oak leaves, for example). Some liverworts (but not all) have lobed leaves, but no mosses do.

A liverwort (main image) and the same liverwort viewed through a hand lens (top right). Liverworts and mosses can look very similar, but a hand lens makes it easier to spot the differences between them. Note the relatively flat appearance of the liverwort leaves compared to moss leaves, which tend to grow in a spiral fashion around the stem.

Aguero and Shaw both point out that the features we use to visually distinguish bryophytes aren’t necessarily the same features that officially set mosses and liverworts apart. The main difference between mosses and liverworts involves differences between their sporophytes.

Frullania is a genus of liverworts that forms dark patches, like the spots on this tree. If you see patches like these, Aguero says, they are “invariably” Frullania liverworts.

“It’s not true that if you’ve seen one moss, you’ve seen them all,” Shaw says. They’re small, yes, but they are not all the same.

We looked at one particularly lush patch of moss in the Bryoandersonia genus, named after a Duke professor. If you’re trying to identify trees, Shaw says, you might start with features like whether the leaves are broad or narrow and whether the tree is shrubby or not. With mosses, on the other hand, one of the first questions to ask is whether it’s pleurocarpous or acrocarpous. Pleurocarpous mosses, such as the Bryoandersonia we looked at, tend to have highly branching stems and grow in sprawling patches. The stems of acrocarpous mosses, meanwhile, have little or no branching and grow mostly vertically, often forming tight clumps.

Kavya Menke (Wild Ones member) examining a thallose liverwort we found by a stream.

After learning about patches of Frullania liverworts on trees from Aguero, we examined a large clump of liverworts growing beside a stream. Unlike the other liverworts we’d seen, this was a type of thallose liverwort, set apart from so-called leafy liverworts by the presence of thallus (a ribbon-like structure) instead of leaves. We also had the chance to smell it. Interestingly, liverworts also have a distinctive smell, sharp and earthy. The scent can be so strong that you might sometimes smell liverworts before you see them.

A thallose liverwort in the genus Conocephalum. Thallose liverworts are characterized by thalli (plural of thallus) instead of leaves. The other liverworts we saw were leafy liverworts.
Photo by Adam Kosinski.

According to Shaw, the term liverwort dates back to when botany and herbal medicine were considered largely the same. The so-called Doctrine of Signatures is the long-held idea that plants’ physical features reveal their medicinal uses. Thallose liverworts were thought to resemble livers and were used to treat ailments of the liver, hence the name. Similarly, the walnut looks rather like a brain and was used to treat mental illness, while the Dutchman’s breeches flower (the white flowers are said to resemble pants) was used for sexually transmitted diseases.

Aguero says that some liverworts do contain chemicals with antimicrobial properties, but she advises people not to eat liverworts.

Moss sporophytes, which release spores into the air. (Top right: close-up through hand lens.) The sporophytes are the only part of a bryophyte that are diploid (containing two sets of chromosomes instead of one). The trees in the background are also diploid; most plants (with the exception of bryophytes) are diploid during most of their life cycle.
Photos by Adam Kosinski.

Near the end of our walk, we found something we’d been keeping an eye out for but hadn’t yet seen: moss sporophytes. Bryophytes have a unique life cycle. Most of the time when we see a plant or an animal, it is diploid, meaning each cell contains two full sets of chromosomes (one from each parent). Every human cell, for instance, contains 46 chromosomes—with the exception of female egg and male sperm cells, which contain only 23. Cells that have only one set of chromosomes (like human egg and sperm cells) are called haploid. Plants undergo alternation of generations, meaning that one phase in their life cycle is haploid and one is diploid. In the case of most plants, the dominant and most conspicuous part of the life cycle is the diploid phase, but bryophytes are different. The fuzzy green carpets of moss we see are made of haploid cells, while the diploid phase is short-lived and only appears during reproduction. In mosses, the diploid phase (also known as the sporophyte) resembles thin filaments emerging from the haploid bed of moss. These sporophytes release spores (the spores are haploid) that grow into the next generation of moss.

“I wish we could be like the moss spores and let the wind carry us,” said Kavya Menke, one of the undergraduates on the walk. “Cheaper than Uber.”

Clockwise: Wild Ones members Natalie Farris, Adam Kosinski, and Zach Pracher examining patches of Frullania, a liverwort genus.

Occasionally, I paused my own bryophyte observations to watch others watching bryophytes. I found myself wondering if people are similarly bemused when they see me standing in a swamp with binoculars or crouching down on the way to class to move an earthworm off the sidewalk. I am accustomed to the world of birding, and looking for creatures like dragonflies, snakes, and salamanders feels natural to me as well. But this was a delightful opportunity to enter a world in which I had little to no experience: the shady, damp world of the bryophytes.

Adam Kosinski taking a close look at a bryophyte specimen placed on a log.

If you make a habit of going on walks with birders, you may spend a lot of time waking up before dawn, craning your neck upward, and straining to hear the alleged differences between a dozen kinds of short chirps. If you go out looking for snakes, you might spend a warm afternoon flipping over sun-warmed boards and scanning rocks and other basking spots. Searching for salamanders will likely involve scrutinizing wet soil, leaf litter, and ponds in early spring, possibly on a dark and rainy night. But searching for bryophytes is an experience all its own.

For one thing, you can go at any time of day and be equally successful, seeing as bryophytes neither crawl nor slither nor fly. You can also feel free to move as slowly as you wish. Aguero compares bryologists to lichenologists: “Moss people and lichen people work together frequently,” she says. “We walk similarly slowly.”

Blanka Aguero discussing bryophytes with students.
Photo by Adam Kosinski.

You could walk the same trail a hundred times and see it a hundred different ways. You could focus on birds or earthworms or snakes, wildflowers or changing leaves, clouds or trees or rocks. The next time you are in the mood to explore a new world, consider taking a walk — either somewhere new or a path you’ve walked a hundred times before — and turning your attention to the wonderful world of the bryophytes. Pet the moss. Feel its springiness and dampness and softness. Run your fingers lightly over the thin sporophyte stalks and notice how they tickle your palm. Smell the liverworts. See the dark patches of Frullania on a tree trunk. Bryophytes are nearly everywhere. Look for them. Look at them. See them.

Bryoandersonia moss viewed through a hand lens.
Photo by Adam Kosinski.

Post by Sophie Cox, Class of 2025

A Naturalist’s View of “Extraordinary” North Carolina

Naturalist Tom Earnhardt on Black River in North Carolina. The forests around Black River are home to the oldest trees in eastern North America, 2,700-year-old bald cypresses.
All photos courtesy of Tom Earnhardt.

There are many ways to think of North Carolina. It was the 12th U.S. state to enter the Union. It is bordered by Virginia, Tennessee, Georgia, and South Carolina. North Carolina’s capital city is Raleigh, and it has an estimated population of 10,698,973. These are all facts, but they tell only part of the story: the human side of it.

Naturalist Tom Earnhardt offers other ways to view North Carolina: the state contains the oldest forest in the eastern United States, with trees up to 2,700 years old. It has 17 river basins, and some of its rivers show evidence of fishing weirs used by indigenous tribes hundreds of years ago. And from the Atlantic coast in the east to the Appalachian mountains in the west, North Carolina is home to thousands of native plants, animals, and fungi. There are 3,000 species of moths alone in North Carolina, and “Every one is essential; not one is optional.”

“North Carolina,” Earnhardt says, “is still one of the most biodiverse and extraordinary places on the planet.”

A prothonotary warbler. Prothonotary warblers inhabit swamps and coastal rivers in North Carolina. They are one of only two warblers in America that nest in cavities.

Earnhardt is a naturalist, photographer, writer, and attorney. He wrote and produced the show “Exploring North Carolina,” a series of dozens of episodes about North Carolina’s biodiversity, geography, and history. Earnhardt recently visited Duke to speak at the Nasher Museum of Art.

One inspiration for his talk was the ongoing Nasher exhibit “Spirit in the Land,” an exploration of ecology, culture, and connection to the natural world. “Art in its many forms,” Earnhardt says, “tells a story of love, loss, and renewal.”

Black River in North Carolina.

Earnhardt has spent much of his career balancing caution and hope. We are facing environmental crises, including climate change and biodiversity loss. Earnhardt believes it’s important for people to know that, but he has put a lot of thought into how to get that message across. Earnhardt has learned that it can help to “tell it as though it was your best friend or brother who needed to hear an important story.” Science alone isn’t always enough. “To hear bad news of any kind is not easy,” Earnhardt says, “and people want to hear it from people they know, people they trust or can relate to.”

The stories he tells aren’t always easy to hear, but they are important. We need to know — whether on a local, state, national, or international scale — what exactly we stand to lose if we continue on a path of environmental destruction. Many species are becoming more scarce, Earnhardt says, “but we still have them.” They can’t be protected once they’re gone, but many of them are still here and can still be preserved. The goal for all of us should be to keep it that way.

North Carolina, Earnhardt says, is at “the epicenter of the temperate world.” The state has a range of climates and habitats. It marks the northernmost native range of the American alligator, while coniferous forests in the North Carolina mountains resemble boreal forests of the northern U.S. and Canada. North Carolina, according to Earnhardt, contains “whole ecosystems that other states only dream about.”

Eastern North Carolina is characterized by beaches, salt marshes, and other coastal ecosystems. Here you can find “wildflowers that grow in salty sand” and painted buntings, multicolored songbirds unlike any other in North America. On four occasions, he’s even seen manatees in North Carolina.

A male painted bunting, a summer resident on North Carolina’s barrier islands. Female painted buntings are bright green.

“Travelers from around the world vacation here and raise their families in the summer,” Earnhardt says—and he’s not talking about humans. Many shorebirds and sea turtles lay their eggs on North Carolina’s beaches. Human disturbance, including artificial lighting and crowded beaches, can put their babies in danger. Minimizing light pollution near beaches, especially during turtle nesting season, and staying away from nesting shorebirds can help.

A longleaf pine savanna in southeastern North Carolina.

Moving farther west, we can find savannas of grasses and pine trees. “You drive past this, and people go, ‘ho hum, a pine barren.’” To that Earnhardt says, “Look a little closer.”

White-fringed orchids, one of North Carolina’s 80 native orchid species. Earnhardt took this photo in the Green Swamp, a longleaf pine savanna nature preserve.

These pine barrens are home to some of North Carolina’s 80 species of orchid, like the white-fringed and yellow-fringed orchids. “Look at them from all angles,” Earnhardt urges, “because from up above it becomes a sunburst… for those who watch.”

A yellow-fringed orchid, viewed from the side.

Be one of those who watches.

A yellow-fringed orchid, viewed from above.

North Carolina rivers, forests, and swamps are also home to many wildlife species. Forests around Black River contain “huge buttresses of tupelo that hold the world together” and bald cypresses that have been alive for 2,700 years. The early years of these now-ancient cypress trees coincided with the fall of the Assyrian Empire and the establishment of the first emperor of Japan. Many centuries later, they are the oldest trees in eastern North America.

Cypress trees on Black River. Both tupelos and cypresses have buttresses at their bases to provide stability in the water.

They are also in danger. “If seas rise three feet,” Earnhardt says, “there will be enough pressure to flood these [trees]…. We could lose them.” But “they are worth saving.”

Still farther west are the Appalachian mountains, another biodiversity hotspot. North Carolina is home to 60 species of salamanders, many of which live in the mountains. The southern Appalachians and western North Carolina contain more salamander diversity than anywhere else on the planet. One species that lives here is the American hellbender, a two-foot-long denizen of mountainous streams.

Despite increasing human development, North Carolina is still rich in flora and fauna. “We have wild places,” Earnhardt says. North Carolina has more than 450 bird species, over 30 native pitcher plants, 20 freshwater turtles, and 38 snakes—“and they’re all good neighbors,” Earnhardt adds.

Venus flytraps in a longleaf pine savanna.

North Carolina has pink and yellow lady slippers and ten-foot-tall Turk’s Cap lilies; crayfish and thousands of mushrooms; native azaleas and insects that depend on them. It has Earnhardt’s “new favorite bird,” the swallow-tailed kite, and vultures, “the clean-up crew: not optional.” That’s a refrain throughout Earnhardt’s talk. “Nothing I’ve shown you tonight is optional,” he says.

“Both in banking and nature,” Earnhardt says, “when we make too many withdrawals and not enough deposits… there’s a deficit.” There are too many creatures we have already lost. The eastern cougar. The Carolina parakeet. The passenger pigeon. Too many more. There are still others that are threatened or endangered but not yet gone. “We humans tend to forget the failures and close calls,” Earnhardt says. While talking about biodiversity loss, he references a quote by biologist E.O. Wilson: “This is the folly our descendants are least likely to forgive us.”

A swallow-tailed kite. Earnhardt says that these kites, which spend their winters in South America, now nest along several rivers in southeastern North Carolina.

So what can be done? To preserve biodiversity, we have to consider entire ecosystems, not just one endangered animal at a time. “We are part of the natural world, part of links and chains and pyramids,” Earnhardt says, and humans too often forget that. Everything is connected.

He recalls visiting entomologist Bill Reynolds’s lab and noticing crickets hopping across the floor. “Don’t step on the transmission fluid!” Reynolds warned. He was referring to the crickets and to insects more broadly. Like transmission fluid in cars, insects are essential to making sure the systems they are part of run smoothly. Insects serve crucial roles in food webs, pollination, and decomposition. Studies show that they are declining at alarming rates.

“We are at a crossroads,” Earnhardt says. “Our transmission fluid is low, and we have made too many withdrawals from the bank of biodiversity.” Still, he emphasizes the importance of not giving up on wildlife conservation. Given a chance, nature can and will regenerate.

Tupelo tree buttresses on Tar River near Greenville, North Carolina.

Despite all our past and current failures, conservation also has remarkable success stories. The brown pelican is one North Carolina resident that almost went extinct but has since “come back in incredible numbers.” The bald eagle is another. Its population plummeted in the 20th century, largely due to the insecticide DDT as well as habitat loss and hunting. By 2007, though, after intensive conservation efforts, it had rebounded enough to be removed from the endangered species list. Until about 1980, Earnhardt had never seen a bald eagle in North Carolina. Today, Earnhardt says, “I see them in every county.”

A bald eagle that Earnhardt saw near the Raleigh-Durham airport. Bald eagles, once on the brink of extinction, can now be seen in every county in North Carolina.

“Everyone’s going to have to fly in the same direction,” to preserve North Carolina — not to mention the rest of the world — at its best and wildest, Earnhardt says. But individual actions can make a difference. He suggests planting native flowers like milkweed and coneflower, both of which are good food sources for pollinators. And if you choose to plant ornamentals like crepe myrtle, “Treat that as a piece of art in the yard and then plant the rest as native.”

Lady Bird Johnson, a former first lady and conservation advocate, once said that “Texas should look like Texas, and Mississippi like Mississippi.” Choosing native plants can be a powerful way to help native wildlife in your own yard. “If you plant it,” Earnhardt says, “they will come.”

One audience member asks, “How do you recommend that we recruit non-believers?” It’s a conundrum that Earnhardt has put a lot of thought into. “It takes time, and it takes patience,” he says. “Some of my best friends are not full believers, but I work on them every day.”

Post by Sophie Cox, Class of 2025

Is The World In Crisis?

According to a recent NPR/Ipsos poll, nearly 70% of Americans believe that U.S. democracy is “in crisis and at risk of failing.” Two out of every three respondents also agree that U.S. democracy is “more at risk” now than it was a year ago. 

These fears are not unfounded. For the past three years, the United Nations Human Development Report has issued increasingly grave warnings for the state of the world. The warnings focus specifically on the Anthropocene, rising inequality, and growing polarization, conveying themes of both uncertainty and hope.

Pictured above: The 2022 Human Development Report.

On March 22nd, the director of the United Nations Human Development Report Office, Dr. Pedro Conceição, discussed his perspective at Duke University. The fireside chat was hosted by the Duke Center for International Development and the South-North Scholars, and was moderated by Dr. Anirudh Krishna.

“People should be able to live their lives at their full potential,” Dr. Conceição began. “When you look at the world and see how people are living their lives compared to how they should be living their lives, you get the need for human development.”

First introduced in 1990, the Human Development Report focuses on improving the quality of human life, rather than just the economy in which human beings live. The report emphasizes three pillars: people, opportunity, and choice. “Living life to your full potential is essentially about human freedom,” Dr. Conceição said. It is these freedoms that are at risk as the conditions in the Human Development Report worsen.

Credit: 2021/22 United Nations Human Development Report.

“We need to dig more deeply into why we aren’t taking action,” Conceição maintains. He explains that current efforts to spark change are too factual. Governments and corporations are focused too heavily on raising awareness and should pivot to trying to take tangible steps.

Political division is also a major source of stagnation, as those who lie on either side of the spectrum tend to be more insecure in their views of the future. Because of these obstacles, it requires a “more complex and unusual way of trying to understand these problems.”

The report has citizens from around the world concerned about potential declines in the quality of well-being. But Dr. Conceição asserts that the reports are meant to communicate hope.

“It’s precisely because we are having this level of uncertainty that this becomes even more relevant,” he said. In fact, it is this uncertainty that the report will build off of for future publications. The literature will dig deeper into novel areas of uncertainty, to figure out the best way forward.

An analysis of the current global uncertainties. Credit: 2021/22 United Nations Human Development Report.

Dr. Conceição urges students to invest in the United Nations and its initiatives, as it is crucial in creating a better outlook on the future. As Abraham Lincoln once expressed, “The most reliable way to predict the future is to create it.”

Want to get involved with the United Nations? Click here!

Written by: Skylar Hughes, Class of 2025

Warning: Birding Can Change You. Let It.

The Wild Ones, a student organization focused on enjoying and learning about nature, recently went to Flat River Waterfowl Compound to look for birds and my personal nemesis.

I have a nemesis (a bird that defies my searching). Actually, I have several, but I have been preoccupied with this particular nemesis for months.

I have seen an evening grosbeak exactly once, in a zoo, which emphatically does not count. For years, I have been fixated on-and-off (mostly on) with the possibility of seeing one in the wild.

Photo of a male evening grosbeak.
Evening Grosbeak” by sedge23 is licensed under CC BY 2.0.

They have thick, conical beaks. The males are sunset-colored. (But good luck finding one at sunset, even though the first recorded sighting supposedly happened at twilight, hence their name.) I daydream about flocks of them descending on my bird feeders at home or wandering onto Duke’s campus. That hasn’t happened yet (unless it has happened while I have not been watching, an excruciating possibility I will simply have to live with).

Evening grosbeaks usually live in Canada and the northern U.S., but they are known to irrupt into areas farther south. Irruptions often occur in response to lower supplies of seeds and cones in a bird’s typical range, making it possible to predict bird irruptions, at least if you’re the famous finch forecaster. (Fun fact: “irrupt” literally means “break into,” whereas “erupt” means “break out.”)

Breaking news: The grosbeaks are in Durham, and they have been since December. I will wait while you perform any necessary reactions, including screaming, jumping up and down in delight, charging outside because you simply have to go find them right now, or telling me I must be mistaken.

I am not mistaken. There is a flock of evening grosbeaks overwintering at Flat River Impoundment, 11.8 miles from Duke University. I know this because I get hourly rare bird alerts by email, and I have been receiving emails about evening grosbeaks nearly every day for almost three months. Put another way, evening grosbeaks have been actively and no doubt intentionally taunting me for weeks on end.

Adam Kosinski, Wild Ones co-president, with binoculars.

Wild Ones, a student organization I’m involved with, had been thinking of organizing a birding trip. For reasons I will not even attempt to deny, I suggested Flat River Waterfowl Impoundment. Last Sunday, seven undergraduates drove there, armed with field guides and binoculars and visions of evening grosbeaks bursting into sight (okay, maybe that was just me).

Flat River Waterfowl Impoundment.
Photo by Adam Kosinski.

The morning was chilly but sunny. Flat River is a gorgeous, swampy place full of small ponds and stretches of long grass edged with trees. As soon as we got there, we were serenaded with birdsong: the high, musical trill of pine warblers, the haunting coo of mourning doves, lilting Carolina wren songs, and squeaky-dog-toy brown-headed nuthatch calls.

Photo by Adam Kosinski.

It wasn’t long before people got to experience the frustrating side of birding. We were admiring a sparrow in a ditch, trying to guess its identity. Someone pulled out a field guide and flipped through the sparrow section only to turn back to the bird and find it gone. Birds can fly. But fortunately, we’d collectively noticed enough field marks to feel reasonably confident identifying it as a swamp sparrow.

A white-throated sparrow, one of several that was feeding on the buds of this tree. Note the white throat and yellow lores.
Photo by Lydia Cox, Wild Ones member. (We are not related, if you’re wondering.)

We found two other sparrow species later: song sparrows and white-throated sparrows. Sparrows tend to be small, brownish, and streaky, but certain features can help distinguish some of the common species around here. I’m personally not very familiar with the swamp sparrow, but it has a rusty cap and gray face. The song sparrow has brown stripes on its head, extensive streaking on its underside, and a dark spot on its breast. The white-throated sparrow has striking black-and-white stripes on the top of its head, yellow lores on its face (the spot in front of the eye), and yes, a white throat. (Just don’t rely too much on bird names for identification. Red-bellied woodpeckers definitely have red heads but usually only have red bellies if you’re rather imaginative, but beware—they’re still red-bellied, not red-headed woodpeckers. Meanwhile, there are dozens of warblers with yellow on them, but only one of them is a yellow warbler. Nashville warblers only pass through Nashville during migration, and American robins aren’t robins at all.)

A Cooper’s hawk with prey between its talons. Note the gray wings, the red barring on the bird’s underside, the dark bands on its tail, and the red eye.
Photo by Lydia Cox.

We saw Carolina chickadees flitting through trees, an Eastern phoebe doing its characteristic tail-wagging, and a Cooper’s hawk feeding on prey. Then, thrillingly, we spotted a bald eagle soaring through the sky. The bald eagle, America’s national bird since 1782, was in danger of extinction for years, largely due to the insecticide DDT, which made their eggs so thin that even being incubated by their parents could make them crack. However, the bald eagle was removed from the endangered species list in 2007, and populations have continued to increase.

A bald eagle in flight.
Photo by Lydia Cox.

Not long after the eagle sighting, we saw another flying raptor: an osprey. In fact, it must have been a good day for raptors because by the end of our trip we had recorded one osprey, two Cooper’s hawks, three bald eagles, and two red-tailed hawks.

We also saw a lot of birders—perhaps two dozen others, maybe more, not counting our own group. Each time we passed a group going in the opposite direction, I asked them if they’d found the grosbeaks.

A bald eagle nest.
Photo taken with my phone through my binoculars, a technique that is slowly teaching me a modicum of patience.

I think everyone I asked had seen them, and they were all eager to point us in the right direction. Birders like to use landmarks like “by the eagles’ nest” and “the fifth pine on the right” and  “past the crossbills.” We found the eagles’ nest, with help from some of the local birders. We think we found the fifth pine on the right, but there were a lot of pines there, so we’re not sure.

We did not find the red crossbills, another irruptive bird species overwintering here this year. (Crossbills are aptly named. The tips of their mandibles really do cross, which helps them access seeds inside cones.)

Red crossbills, another irruptive bird species, have also been overwintering at Flat River Waterfowl Impoundment, but Wild Ones did not see them.
Red Crossbills (Male)” by Elaine R. Wilson, www.naturespicsonline.com is licensed under CC BY-SA 3.0.

We found the spot where the evening grosbeaks had most recently been seen — just twenty minutes before we got there, according to the people we were talking to. We waited. We scrutinized the pine trees. We watched red-tailed hawks and bald eagles circle high above us. We admired the eagles’ nest, a huge collection of sticks high in a pine tree.

Adam Kosinski and Abby Saks, making sure there were no birds hiding underwater. (They were actually looking at interesting water creatures like crayfish and tadpoles.)

Would you like to guess what we did not find? My nemesis. Because the evening grosbeaks have devious minds and clearly flew all the way to Durham with the sole intent of hiding from me, dodging me, flying away as soon as I approached, and flying back again as soon as I was gone. (No, really. Other people reported them at Flat River that same day, both before and after our trip there.)

From left: Ethan Rehder, Barron Brothers, Sophie Cox, Gurnoor Majhail (Wild Ones co-president), and Lydia Cox.
Photo by Adam Kosinski.

Birding can be intensely frustrating. It can plant images in your mind that will haunt you and taunt you for the rest of your life. Like, for instance, the tiny blue bird I caught a brief glimpse of in the trees one early morning in Yellowstone. For years, I wondered if it could have been a cerulean warbler, but cerulean warblers don’t live in the western U.S. Or let’s talk about the green bird—yes, I swear it was green; no, I can’t prove it—that came to my bird feeders several years ago and never came back. Not while I was watching, anyway. The only thing I can think of for that one is a female painted bunting, but painted buntings aren’t usually in upstate South Carolina. (If my local volunteer eBird reviewer in South Carolina ever happens to read this, I promise I won’t report either of those mystery sightings to eBird.) Or, of course, the evening grosbeaks that flew away twenty minutes before we arrived.

Birding can also be thrilling, meditative, and by all accounts wonderful. Yes, that little blue bird in Yellowstone and the maybe-green one in my backyard are branded in my memory, as are countless more moments of maybe and almost and what if? I will never know what they were. I will probably never get over it.

But there are other moments that stick in my mind just as clearly. The bald eagle soaring above us on this Wild Ones trip. The black-capped chickadee that landed on my finger years ago while my brother and I rested our hands on a bird feeder and waited to see what would happen. My first glimpse of a black-throated blue warbler (I am so proud of whoever named that bird species), chasing an equally tiny Carolina chickadee in my backyard.

Warbler illustrations by James Ellsworth De Kay, a zoologist who described hundreds of animal species in the 19th century. From top to bottom: black-throated blue warbler, Cape May warbler, and Nashville warbler.
131. The Black-throated Blue Warbler (Sylvicola canadensis) 132. He Cape-May Warbler (Sylvicola maritima) 133. The Nashville Warbler (Syvicola ruficapilla) illustration from Zoology of New york (1842 – 1844) by James Ellsworth De Kay (1792-1851).” by Free Public Domain Illustrations by rawpixel is licensed under CC BY 2.0.

The Cape May warbler I saw with a close friend in a small field covered in purple wildflowers. The first time I heard the loud, ringing Teacher-teacher-teacher! song of the ovenbird. A blackpoll warbler, the first I’d ever seen, in a grove of trees in a swampy field that only birders seem to find reason to visit.

The moment two Carolina wrens took food from my hand for the first time. Prothonotary warblers (another nemesis bird) practically dripping from the trees on a rainy, buggy hike along a boardwalk. The downy woodpecker that landed on my gloved hand, apparently too impatient to wait for me to finish what I was doing with the suet feeder, and pecked at the suet with that sharp beak, her black tongue flicking in and out, her talons clinging to me with a trust that brought tears to my eyes.

Birding can change you. It can make your world come alive in a whole new way. It can make traveling somewhere new feel all the more magical — a new soundscape, new flashes of colors and patterns, a new set of beings that make a place what it is. In the same way, birding can make home feel all the more like home. Even when I can’t name all the birds that are making noise in my yard, there is a familiarity to their collective symphony, a comforting sense of “You are here.” I encourage you to watch and listen to birds, too, to join the quasi-cult that birding can be, to trek through somewhere wet and dark when the sky is just beginning to lighten—or to simply step outside, wherever you are, and listen and watch and wait right here and right now. You don’t even need to know their names (though once you start, good luck stopping). And you certainly don’t need a nemesis bird. In fact, your birding experience will be calmer without one. But that might not be up to you, in the end. Nemesis birds have minds of their own.

Post by Sophie Cox, Class of 2025

Why There Has Never Been Infrastructure ‘Justice for All’

Since coming to Duke nine years ago, I gained the realization that all rural communities are virtually the same… the infrastructure neglect is still the same.”

Catherine Coleman Flowers

Catherine Coleman Flowers is no stranger to action. Since the start of her career, she’s accomplished everything from working as the Vice Chair of the White House Environmental Justice Advisory Council to founding the Center for Rural Enterprise and Environmental Justice. An internationally recognized advocate for public health, Flowers has worked tirelessly to improve water and sanitation conditions across rural America.

Pictured above: Catherine Coleman Flowers
Credit: Credit: John D. and Catherine T. MacArthur Foundation

On February 9th, Duke University students got to hear from Flowers in a powerful seminar sponsored by Trinity College. A Practitioner in Residence at the Nicholas School of the Environment, Flowers discussed her incredible activism journey.

“I became an activist very, very young,” she said. Her family heritage nurtured her love for the environment early on, as well as her home state of Alabama. In high school, she began to read about the sanitation crisis happening in rural Alabama, Lowndes County in particular.

“I learned that poor people (there) were being targeted for arrest because they couldn’t afford sanitation systems,” Flowers said. The poverty rate in this historically Black county is double the national average, and sewage treatment is not provided for many residents. For those who can afford sanitation systems, they are often far from adequate, such as poorly maintained septic tanks. Issues like exposure to tropical parasites and improper installations are rampant throughout the county.

A man in Lowndes County assessing his septic tank. Credit: The Associated Press

“It builds upon the structural inequalities that make sure these areas remain poor,” Flowers said. Across the US, millions of rural areas face the same complications. From places like ‘Cancer Alley’ in New Orleans to the city of Mount Vernon in New York, sanitation systems are failing miserably.

“We saw families that couldn’t live in their houses half the time because of the sewage that was running into their home,” Flowers explained. Unsurprisingly, almost all of the areas facing these issues are home to minority communities. “The narrative used to be, ‘they don’t know how to maintain it,’ but that isn’t true. The technology isn’t working at all.

In November of 2021, Flowers filed the first-ever civil rights complaint against sanitation in Lowndes County. Thanks to her, as well as other prominent community activists, the issue garnered nationwide attention. In less than a year, the county received a $2.1 million grant from the USDA to begin solving the sewage crisis. Similar funding efforts have also been seen in Mount Vernon. “That is an example of what a solution can look like,” Flowers said.

“That’s the kind of power that you have as a Duke student,” Flowers said in closing. With almost one million dollars available for student funding annually and access to one of the greatest networks in the world, Duke students are in a remarkable position to make a change, she said. In North Carolina, counties like Duplin and Halifax are in need of outside help. “Growing up in the computer age, you can bring those skills needed to assist those applying for funds.”

Duke’s Environmental Justice Network

So, what can you do? Above all, Flowers emphasizes the importance of leading from behind. ” Don’t go in the community and try to lead from the front… People from the community need to be involved from the design to the implementation.”

As students, our assistance is needed in the form of support. From assisting with grant applications, to utilizing our network access to spread the word, there are so many ways to get involved. True equity is found not when we speak for the community, but rather when we strengthen the community’s ability to speak for itself.

Click here to get in contact with Ms.Catherine Coleman Flowers, and click here for more information about work you can do in the local community!

Post By Skylar Hughes, Class of 2025

Recovery, Resilience, and Coexistence: Nature-based Solutions on the Coast

When it comes to balancing the needs of humans and the needs of nature, “Historically it was ‘develop or conserve’ or ‘develop or restore,’” says Carter Smith, Ph.D., a Lecturing Fellow in the Division of Marine Science & Conservation who researches coastal restoration.

However, according to Brian Silliman, Ph.D., Rachel Carson Distinguished Professor of Marine Conservation Biology, “We are having a new paradigm shift where it’s not just… ‘nature over here’ and ‘humans over here.’”

Instead, conservation initiatives are increasingly focusing on coexistence with nature and ecological resilience, according to this panel discussion of marine science experts during Duke Research and Innovation Week 2023.

Nature-based solutions — protecting and restoring natural shoreline habitats — have a proven role in protecting and restoring coastal ecosystems. According to the International Union for Conservation of Nature (IUCN), “Nature-based solutions… address societal challenges effectively and adaptively, simultaneously benefiting people and nature.”

The panel, moderated by Andrew J. Read, Ph.D., Stephen A. Toth Distinguished Professor of Marine Biology and Professor of Marine Conservation Biology, also included Brian Silliman, Carter Smith, and Stephanie Valdez, a Ph.D. Student in Marine Science & Conservation.

Living shorelines can help protect coastal ecosystems from storms while also offering benefits for climate and conservation. Photos by Carter Smith.

According to Smith, nature-based solutions can “leverage nature and the power of healthy ecosystems to protect people” while also preserving biodiversity and mitigating climate change. She spoke about living shorelines as an effective and ecologically responsible way to protect coastal ecosystems.

“The traditional paradigm in coastal protection is that you build some kind of hard, fixed structure” like a seawall, Smith said, but conventional seawalls can have negative effects on biodiversity, habitats, nutrient cycling, and the environment at large. “In this case, coastal protection and biodiversity really are at odds.”

After multiple hurricanes, living shorelines had significantly less visible damage or erosion than sites with conventional hardscape protection, like seawalls.

Nicholas Lecturing Fellow Carter Smith

That’s where living shorelines come in. Living shorelines incorporate plants and natural materials like sand and rock to stabilize coastal areas and protect them from storms while also creating more natural habitats and minimizing environmental destruction. But “if these structures are actually going to replace conventional infrastructure,” Smith says, it’s important to show that they’re effective.

Smith and colleagues have studied how living shorelines fared during multiple hurricanes and have found that living shorelines had significantly less “visible damage or erosion” compared to sites with conventional storm protection infrastructure.

After Hurricane Matthew in 2016, for instance, both natural marshes and conventional infrastructure (like seawalls) lost elevation due to the storm. Living shorelines, on the other hand, experienced almost no change in elevation.

Smith is also investigating how living shorelines may support “community and psychosocial resilience” along with their benefits to biodiversity and climate. She envisions future community fishing days or birdwatching trips to bring people together, encourage environmental education, and foster a sense of place.

PhD student Stephanie Valdez then spoke about the importance of coastal ecosystems.

Blue carbon ecosystems,” which include sea grasses, marshes, and mangroves, provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon, she said. These ecosystems can bury carbon much faster than terrestrial ecosystems, which has important implications when it comes to climate change.

In the atmosphere, carbon dioxide and other greenhouse gasses contribute to global warming, but plants pull carbon dioxide out of the air during photosynthesis and convert it to carbohydrates, releasing oxygen as a byproduct. Therefore, ecosystems rich in fast-growing plants can serve as carbon sinks, reducing the amount of atmospheric carbon, Valdez explained.

Unfortunately, blue carbon ecosystems have suffered significant loss from human activities and development. We’ve replaced these wild areas with farms and buildings, polluted them with toxins and waste, and decimated habitats that so many other creatures rely on. But given the chance, these places can sometimes grow back. Valdez discussed a 2013 study which found that seagrass restoration led to a significantly higher carbon burial rate within just a few years.

Sea grasses, marshes, and mangroves provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon.

PhD Student Stephanie Valde

Valdez also talked about the importance of recognizing and encouraging natural ecological partnerships within and between species. Humans have taken advantage of such partnerships before, she says. Consider the “Three Sisters:” beans, corn, and squash, which Native Americans planted close proximity so the three crops would benefit each other. Large squash leaves could provide shade to young seedlings, beans added nitrogen to the soil, and cornstalks served as a natural beanpole.

Recognizing that mutualistic relationships exist in natural ecosystems can help us preserve habitats like salt marshes. Valdez points to studies showing that the presence of oysters and clams can positively impact seagrasses and marshes. In restoration, it’s important “that we’re not focusing on one species alone but looking at the ecosystem as a whole”—from top predators to “foundation species.”

“There is hope for successful restoration of these vital ecosystems and their potential to aid in climate change mitigation,” Valdez said.

Finally, Prof. Brian Silliman discussed the role of predators in wider ecosystem restoration projects. Prioritizing the protection, restoration, and sometimes reintroduction of top predators isn’t always popular, but Silliman says predators play important roles in ecosystems around the world.

“One of the best examples we have of top predators facilitating ecosystems and climate change mitigation are tiger sharks in Australia,” he says. When the sharks are around, sea turtles eat fewer aquatic plants. “Not because [the sharks] eat a lot of sea turtles but because they scare them toward the shoreline,” reducing herbivory.

However, Silliman said it’s unclear sometimes whether the existence of a predator is actually responsible for a given benefit. Other times, though, experiments provide evidence that predators really are making a difference. Silliman referenced a study showing that sea otters can help protect plants, like seagrasses, in their habitats.

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

And crucially, “Predators increase stress resistance.” When physical stressors reach a certain point in a given ecosystem, wildlife can rapidly decline. But wildlife that’s used to coexisting with a top predator may have a higher stress threshold. In our ever-changing world, the ability to adapt is as important as ever.

“I think there is great optimism and opportunity here,” Silliman says. The other speakers agree. “Right now,” Valdez says, “as far as restoration and protection goes, we are at the very beginnings. We’re just at the forefront of figuring out how to restore feasibly and at a level of success that makes it worth our time.”

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

Brian Silliman

Smith emphasized the important role that nature-based solutions can play. Even in areas where we aren’t achieving the “full benefit of conserving or restoring a habitat,” we can still get “some benefit in areas where if we don’t use nature-based solutions,” conservation and restoration might not take place at all.

According to Valdez, “Previously we would see restoration or… conservation really at odds with academia itself as well as the community as a whole.” But we’re reaching a point where “People know what restoration is. People know what these habitats are. And I feel like twenty or thirty years ago that was not the case.” She sees “a lot of hope in what we are doing, a lot of hope in what is coming.”

“There’s so much that we can learn from nature… and these processes and functions that have evolved over millions and millions of years,” Smith adds. “The more we can learn to coexist and to integrate our society with thriving ecosystems, the better it will be for everyone.”

Post by Sophie Cox, Class of 2025

A Peek Inside the Climate Situation (V)room

As part of this year’s Energy Week at Duke, graduate and undergraduates were able to participate in a competitive “situation room” style event in which participants were split into five teams and given seventy-five minutes to create a plan for expanding EV (electric vehicle) access in Durham. 

For just over an hour in a Fuqua School of Business classroom, my fellow participants and I mulled over the complexities of an issue facing municipalities across the country and produced a variety of solutions, representative of the range of specialties within each group. One more CS-minded group proposed an app to both help residents locate charging stations and help the city collect data on the use of new EV infrastructure, while another group explored the technological and price saving perks of utility pole-mounted charging stations.

The resulting ideas were reviewed by a panel of judges who covered multiple areas of EV expertise: Jennifer Weiss, Senior Advisor for Climate Change Policy at the North Carolina Department of Transportation; Matt Abele, Director of Marketing and Communications at North Carolina Sustainable Energy Association; Sean Ackley, E-Mobility Segment Lead at Hitachi Americas, Ltd.; and Evian Patterson, Assistant Transportation Director in the Durham Department of Transportation.

The goal of Duke’s EnergyWeek is to “promote collaboration, knowledge-sharing, and professional networking” for students interested in the energy sector.  The situation room event was not strictly research oriented – our team rooms had windows and we were given free supper and lemonade – but it promoted the fundamentals of research: idea generation, collaboration, and outside-of-the-box thinking. 

The victors of the 2023 EnergyWeek Situation Room (photo: Michael Wood III)

The teams were tasked with crafting a strategy that combined technical, business, marketing, and policy considerations to increase EV penetration in Durham.  The teams operated under a hypothetical $10 million budget and strategies were to align with the Justice40 initiative, the federal plan to ensure that forty percent of the benefits of new clean transit jobs flow to “disadvantaged communities that are marginalized, underserved, and overburdened by pollution.”

Participants were encouraged to consider “potential barriers to EV adoption, the existing distribution of EV charging stations, and opportunities for community and business involvement” and to be creative.

My team was comprised of students from a range of scholarly backgrounds, from a freshman beginning a mechanical engineering track to a grad student at the Nicholas School with prior work and research in school bus electrification policy.  For our plan, we spent little time discussing electric cars and instead focused on expanding access to electric micro-mobility and electrified public transportation.  

Our team consulted this map from the Durham Bike+Walk Implementation plan in determining that electric cars are not a silver bullet
(map: durhamnc.gov)

We had many reasons for doing so.  Many Durham residents don’t own cars, so the likelihood of increasing the adoption of electric cars in a timely and affordable manner seems low.  Countries around the world are instead focusing on expanding e-bike access, citing, in addition to climate and affordability concerns, the desire to move away from the safety issues and traffic burden of car-centric urban design. 

We saw Durham, which is expected to double in population in just twenty-five years, as a city perfectly positioned to develop around micro-mobility and robust public transportation before it’s too late and set an example for growing urban centers across the country.  We used our $10 million to add bike lanes, fund electric buses, and subsidize electric bikes across income levels.

Our team placed second (no big deal!) and walked away with a full stomach and a rekindled spark to break the Duke bubble and get involved in the exciting development of the Bull City.

My winnings!
By Addie Geitner, Class of 2025

Page 1 of 14

Powered by WordPress & Theme by Anders Norén