Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Environment/Sustainability (Page 1 of 9)

The Importance of Evidence in Environmental Conservation

What counts as good evidence?

In medical research, a professional might answer this question as you would expect: evidence can be trusted if it is the result of a randomized, controlled, double-blind experiment, meaning the evidence is only as strong as the experiment design. And in medicine, it’s possible (and important) to procure this kind of strong evidence.

But when it comes to conservation, it’s a whole different story.

Dr. David Gill (photo from The Nicholas School)

The natural world is complicated, and far beyond our control. When studying the implications of conservation, it’s not so easy to design the kind of experiment that will produce “good” evidence.

David Gill, a professor in Duke’s Nicholas School for the Environment, recently led a study featured in the journal Nature that needed to  define what constitutes good evidence in the realm of marine conservation. Last Wednesday, he made a guest appearance in my Bass Connections meeting to share his work and a perspective on the importance of quality evidence.

Gill’s research has been centered around evaluating the effectiveness of Marine Protected Areas (or MPAs) as a way of protecting marine life. Seven percent of the world’s oceans are currently designated as MPAs, and by 2020, the goal is to increase this number to 10 percent. MPAs arguably have massive effects on ecosystem health and coastal community functioning, but where is the evidence for this claim?

Although past investigations have provided support for creating MPAs,  Gill and his team were concerned with the quality of this evidence, and the link between how MPAs are managed and how well they work. There have historically been acute gaps in study design when researching the effects of MPAs. Few experiments have included pre-MPA conditions or an attempt to control for other factors. Most of these studies have been done in hindsight, and have looked only at the ecological effects within the boundaries of MPAs, without any useful baseline data or control sites to compare them to.

As a result of these limitations, the evidence base is weak. Generating good evidence is a massive undertaking when you are attempting to validate a claim by counting several thousand moving fish.

Gill’s measure of ecosystem health includes counting fish. (Photo from Avoini)

So is there no way to understand the impacts of MPAs? Should conservation scientists just give up? The answer is no, absolutely not.

To produce better evidence, Gill and his team needed to design a study that would isolate the effects of MPAs. To do this, they needed to account for location biases and other confounding variables such as the biophysical conditions of the environment, the population density of nearby human communities, and the national regulations in each place.

The solution they came up with was to compare observations of current conditions within MPAs to “counterfactual” evidence, which is defined as what would have happened had the MPA not been there. Using statistical matching of MPAs to nearby non-MPA and pre-MPA sites, they were able to obtain high-quality results.

A happy sea turtle pictured in a marine protected area (photo from English Foreign and Commonwealth Office.)

The research showed that across 16,000 sampled sites, MPAs had positive ecological impacts on fish biomass in 71 percent of sites. They also discovered that MPAs with adequate staffing had far greater ecological impacts than those without, which is a pretty interesting piece of feedback when it comes to future development. It’s probably not worth it to create MPAs before there is sufficient funding in place to maintain them.

Gill doesn’t claim that his evidence is flawless; he fully admits to the shortcomings in this study, such as the fact that there is very little data on temperate, coldwater regions — mostly because there are few MPAs in these regions.

The field is ripe for improvement, and he suggests that future research look into the social impacts of MPAs and the implications of these interventions for different species. As the evidence continues to improve, it will be increasingly possible to maximize the win-wins when designing MPAs.

Conservation science isn’t perfect, but neither is medicine. We’ll get there.

The Complicated Balance of Predators and Prey

If you knew there was a grizzly bear sitting outside the door, you might wait a while before going to fill up your water bottle, or you might change the way you are communicating with their other people in the room based on your knowledge of the threat.

Ecologists call this “predation risk,” in which animals that could potentially fall prey to a carnivore know this risk is present, and alter their habits and actions accordingly.

A yellow slider turtle.

A yellow slider turtle.

One way in which animals do this is through habitat use, such as a pod of dolphins that changes where they spend most of their time depending on the presence or absence of predators. Animals might also change their feeding habits and diving behavior because of predation risk.

Animals do this all of the time in the wild, but when predators are removed from ecosystems by hunting or over-fishing, the effect of their absence is felt all the way down the food chain.

For example, large amounts of algae growth on coral reefs can be traced back to over-fishing of large ocean predators such as sharks, who then don’t hunt smaller marine mammals like seals. As seal numbers increase, there are more of them to hunt smaller fish that feed on vegetation, which means fewer smaller fish or plankton to keep algal growth in check, and algae begins to grow unchecked.

Meagan Dunphy-Daly

Meagan Dunphy-Daly

This is a “trophic cascade” and it has large effects on ecosystems, Duke Marine Lab instructor Meagan Dunphy-Daly  t0ld the Sustainable Oceans Alliance last Thursday. She has performed research both in labs and in the field to study the effects that removing large predators have on marine ecosystems.

Dunphy-Daly discussed one lab experiment where 10 yellow-bellied slider turtle hatchlings were kept in tanks where they couldn’t see people or anything else on the outside. In real life, blue herons and other large birds prey on these turtle hatchlings, so the researchers made a model skull of a blue heron that they painted and covered with feathers.

Turtles are air-breathing, so each hatchling was given the option to sit where they could be at the surface of their tank and breathe, but this spot was also where the turtle hatchlings thought the bird beak might shoot down at any time to try to “eat” them.

Their options were to get air and risk getting hit by the bird beak, or diving down to the bottom of the tank to get food. During this experiment, Dunphy-Daly found that turtle hatchlings actually decreased their dive time and spent more time at the surface. If the turtles are continuously diving, they are expending lots of energy swimming back and forth between the surface and the bottom, she said, which means if the predator were to actually attack, they would have less energy left to use for a rapid escape.

Even when there is food at the bottom, when a predator is present, these turtles alter their activity by taking deep dives less frequently so as to not max out their aerobic limit before they actually need to escape a predator.

This is one way in which animals alter their behavior due to predation risk.

But let’s say that predators were disappearing in their real habitats, so turtles didn’t feel the need to build up these emergency energy reserves to escape them. They might dive down and feed more frequently, which would then decrease the amount of the vegetation they eat.

This in turn could have an effect on oxygen levels in the water because there would be fewer plants photosynthesizing. Or another species that feeds on the same plant could be out-competed by turtles and run out of food for their own populations.

The absence of large or small predators can have large impacts on ocean ecosystems through these complicated trophic cascades.

Victoria PriesterPost by Victoria Priester

Heating Up the Summer, 3D Style

While some students like to spend their summer recovering from a long year of school work, others are working diligently in the Innovation Co-Lab in the Telcom building on West Campus.

They’re working on the impacts of dust and particulate matter (PM) pollution on solar panel performance, and discovering new technologies that map out the 3D volume of the ocean.

The Co-Lab is one of three 3D printing labs located on campus. It allows students and faculty the opportunity to creatively explore research through the use of new and emerging technologies.

Third-year PhD candidate Michael Valerino said his long term research project focuses on how dust and air pollution impacts the performance of solar panels.

“I’ve been designing a low-cost prototype which will monitor the impact of dust and air pollution on solar panels,” said Valerino. “The device is going to be used to monitor the impacts of dust and particulate matter (PM) pollution on solar panel performance. This processis known as soiling. This is going to be a low-cost alternative (~$200 ) to other monitoring options that are at least $5,000.”

Most of the 3D printers come with standard Polylactic acid (PLA) material for printing. However, because his first prototype completely melted in India’s heat, Valerino decided to switch to black carbon fiber and infused nylon.

“It really is a good fit for what I want to do,” he said. “These low-cost prototypes will be deployed in China, India, and the Arabian Peninsula to study global soiling impacts.”

In a step-by-step process, he applied acid-free glue to the base plate that holds the black carbon fiber and infused nylon. He then placed the glass plate into the printer and closely examined how the thick carbon fiber holds his project together.

Michael Bergin, a professor of civil and environmental engineering professor at Duke collaborated with the Indian Institute of Technology-Gandhinagar and the University of Wisconsin last summer to work on a study about soiling.

The study indicated that there was a decrease in solar energy as the panels became dirtier over time. The solar cells jumped 50 percent in efficiency after being cleaned for the first time in several weeks. Valerino’s device will be used to expand Bergin’s work.

As Valerino tackles his project, Duke student volunteers and high school interns are in another part of the Co-Lab developing technology to map the ocean floor.

The Blue Devil Ocean Engineering team will be competing in the Shell Ocean Discovery XPRIZE, a global technology competition challenging teams to advance deep-sea technologies for autonomous, fast and high-resolution ocean exploration. (Their mentor, Martin Brooke, was recently featured on Science Friday.)

The team is developing large, highly redundant carbon drones that are eight feet across. The drones will fly over the ocean and drop pods into the water that will sink to collect sonar data.

Tyler Bletsch, a professor of the practice in electrical and computer engineering, is working alongside the team. He describes the team as having the most creative approach in the competition.

“We have many parts of this working, but this summer is really when it needs to come together,” Bletsch said. “Last year, we made it through round one of the competition and secured $100,000 for the university. We’re now using that money for the final phase of the competition.”

The final phase of the competition is scheduled to be held fall 2018.
Though campus is slow this summer, the Innovation Co-Lab is keeping busy. You can keep up-to-date with their latest projects here.

Post by Alexis Owens

 

Becoming the First: Erika Weinthal

Editor’s Note: In the “Becoming the First” series,  first-generation college student and Rubenstein Scholar Lydia Goff explores the experiences of Duke researchers who were the first in their families to attend college.

A portrait of Erika Weinthal

Erika Weinthal

In her corner office with a wall of windows and stuffed bookshelves, Erika Weinthal keeps a photo of her father. He came to the United States from Germany in 1940. And for a German Jew, that was extremely late. According to the family stories, Weinthal’s father left on the second to last boat from Italy. It is no surprise that he was never a big traveler after his arrival to America. As Weinthal describes it, “America…was the country that saved him.” Not only did it protect him, but it also gave his children opportunities that he did not have, such as going to college.

Weinthal, Lee Hill Snowdon Professor of Environmental Policy in Duke’s Nicholas School of the Environment, took this opportunity to become the first in her family to attend college, launching her career researching environmental policy and water security in areas including the former Soviet Union, Middle East, East Africa, India and the United States.

In high school, Weinthal traveled as an exchange student to Germany, a country her relatives could never understand her desire to visit. “As a child of a refugee, you didn’t talk about the war,” she explains as she describes how this silence created her curiosity about what happened. That journey to Bremen marked only the first of many trips around the world. In the Middle East, she examines environmental policy between countries that share water. In India, she has researched the relationship between wildlife and humans near protected areas. “What do you do when protected wildlife destroys crops and threatens livelihoods?” she asks, proving that since her curiosity about the war, she has not stopped asking questions.

However, her specific interest in environmental science and policy came straight from a different war: the Cold War. She became obsessed with everything Russian partly thanks to a high school teacher who agreed to teach her Russian one-on-one. The teacher introduced Weinthal to Russian literature and poetry. While her parents, like many parents, would have loved for her to become a doctor or a lawyer, they still trusted her when she enrolled in Oberlin College intent on studying Soviet politics. A class on Soviet environment politics further increased her interest in water security.

Currently, her work contends that water should be viewed as a basic human need separate from the political conflicts in Palestine and Israel. She has studied how protracted conflict in the region has led to the deterioration of water quality in the Gaza Strip, creating a situation in which water is now unfit for human consumption. Weinthal argues that these regions should not view water as property to be secured but rather as a human right they should guarantee.

Erika Weinthal’s father in 1940

As a child of a refugee and a first-generation college student, Weinthal says “you grow up essentially so grateful for what others have sacrificed for you.” Her dad believed in giving back to the next generation. He accomplished that goal and, in the process, gave the world a researcher who’s invested in environmental policy and human rights.

Post by Lydia Goff

 

Using Drones to Feed Billions

A drone flying over an agricultural field

Drones revolutionizing farming

As our population continues its rapid growth, food is becoming increasingly scarce. By the year 2050, we will need to double our current food production to feed the estimated 9.6 million mouths that will inhabit Earth.

A portrait of Maggie Monast

Maggie Monast

Thankfully, introducing drones and other high-tech equipment to farmers could be the solution to keeping our bellies full.

Last week, Dr. Ramon G. Leon of North Carolina State University and Maggie Monast of the Environmental Defense Fund spoke at Duke’s monthly Science & Society Dialogue, sharing their knowledge of what’s known as “precision agriculture.” At its core, precision agriculture is integrating technology with farming in order to maximize production.

It is easy to see that farming has already changed as a result of precision agriculture. The old family-run plot of land with animals and diverse crops has turned into large-scale, single-crop operations. This transition was made possible through the use of new technologies — tractors, irrigation, synthetic fertilizer, GMOs, pesticides — and is no doubt way more productive.

A portrait of Dr. Ramon G. Leon

Dr. Ramon G. Leon

So while the concept of precision agriculture certainly isn’t new, in today’s context it incorporates some particularly advanced and unexpected tools meant to further optimize yield while also conserving resources.

Drones equipped with special cameras and sensors, for example, can be flown over thousands of acres and gather huge amounts of data. This data produces a map of  things like pest damage, crop stress and yield. One image from a drone can easily help a farmer monitor what’s going on: where to cut back on resources, what needs more attention, and where to grow a certain type of crop. Some drones can even plant and water crops for you.

Blue River’s “See & Spray” focuses on cutting back herbicide use. Instead of spraying herbicide over an entire field and wasting most of it, this machine is trained to spray weeds directly, using 10% of the normal amount of herbicide.

Similarly, another machine called the Greenseeker can decide where, when and how much fertilizer should be applied based on the greenness of the crop. Fertilizing efficiently means saving money and emitting less ozone-depleting nitrous oxide.

As you can see, fancy toys like these are extremely beneficial, and there are more out there. They enable farmers to make faster, better decisions and understand their land on an unprecedented level. At the same time, farmers can cut back on their resource usage. This should eventually result in a huge productivity boom while helping out the environment. Nice.

One problem preventing these technologies from really taking off is teaching the farmers how to take advantage of them. As Dr. Leon put it, “we have all these toys, but nobody knows how to play with them.” However, this issue can resolved with enough time. Some older farmers love messing around with the drones, and the next generations of farmers will have more exposure to this kind of technology growing up. Sooner or later, it may be no big deal to spot drones circling above fields of wheat as you road trip through the countryside.

A piece of farm equipment in a field

A Greenseeker mounted on a Boom Sprayer

Precision agriculture is fundamental to the modern agricultural revolution. It increases efficiency and reduces waste, and farming could even become a highly profitable business again as the cost for these technologies goes down. Is it the solution to our environmental and production problems? I guess we’ll know by 2050!

Will Sheehan

Post By Will Sheehan

Game-Changing App Explores Conservation’s Future

In the first week of February, students, experts and conservationists from across the country were brought together for the second annual Duke Blueprint symposium. Focused around the theme of “Nature and Progress,” this conference hoped to harness the power of diversity and interdisciplinary collaboration to develop solutions to some of the world’s most pressing environmental challenges.

Scott Loarie spoke at Duke’s Mary Duke Biddle Trent Semans Center.

One of the most exciting parts of this symposium’s first night was without a doubt its all-star cast of keynote speakers. The experiences and advice each of these researchers had to offer were far too diverse for any single blog post to capture, but one particularly interesting presentation (full video below) was that of National Geographic fellow Scott Loarie—co-director of the game-changing iNaturalist app.

iNat, as Loarie explained, is a collaborative citizen scientist network with aspirations of developing a comprehensive mapping of all terrestrial life. Any time they go outside, users of this app can photograph and upload pictures of any wildlife they encounter. A network of scientists and experts from around the world then helps the users identify their finds, generating data points on an interactive, user-generated map of various species’ ranges.

Simple, right? Multiply that by 500,000 users worldwide, though, and it’s easy to see why researchers like Loarie are excited by the possibilities an app like this can offer. The software first went live in 2008, and since then its user base has roughly doubled each year. This has meant the generation of over 8 million data points of 150,000 different species, including one-third of all known vertebrate species and 40% of all known species of mammal. Every day, the app catalogues around 15 new species.

“We’re slowly ticking away at the tree of life,” Loarie said.

Through iNaturalist, researchers are able to analyze and connect to data in ways never before thought possible. Changes to environments and species’ distributions can be observed or modeled in real time and with unheard-of collaborative opportunities.

To demonstrate the power of this connectedness, Loarie recalled one instance of a citizen scientist in Vietnam who took a picture of a snail. This species had never been captured, never been photographed, hadn’t been observed in over a century. One of iNat’s users recognized it anyway. How? He’d seen it in one of the journals from Captain James Cook’s 18th-century voyage to circumnavigate the globe.

It’s this kind of interconnectivity that demonstrates not just the potential of apps like iNaturalist, but also the power of collaboration and the possibilities symposia like Duke Blueprint offer. Bridging gaps, tearing down boundaries, building up bonds—these are the heart of conservationism’s future. Nature and Progress, working together, pulling us forward into a brighter world.

Post by Daniel Egitto

 

 

Student Ingenuity vs. Environmental Issues (like Cow Farts)

Lots of creative and potentially life changing ideas filled the Fitzpatrick CIEMAS atrium last weekend. From devices meant to address critical environmental issues such as global warming and lion fish invasiveness, to apps that help you become more sustainable, Duke’s Blueprint tech ideation conference showcased some awesome, good ol’ student-led ingenuity.

These bright students from around Durham (mostly from Duke) competed in teams to create something that would positively impact the environment. The projects were judged for applicability, daringness, and feasibility, among other things. During the Project Expo, all teams briefly presented to viewers like a school science fair.

One of the projects I liked a lot was called Entropy—a website with your own personal plant (I named mine “Pete”) that grows or dies depending on your sustainable actions throughout the day. The user answers simple yes or no questions, such as, “did you turn off the lights today?”

You can also complete daily goals to get accessories like a hat or mustache for your plant. The website connects to Facebook, so you can track your friends’ progress and see how green they’re living. Ultimately it’s just a good, fun way to keep your sustainability in check. Pete was looking super-cute after I spammed the yes button.

Another interesting innovation posed a solution to the difficulty of catching lion fish. Humans are a lion fish’s only predator, and we hunt them by spear fishing. Since lion fish are highly invasive, catching them en-masse could seriously benefit the biodiversity of the ocean (plus, they taste delicious). So one team came up with a canopy like contraption that attracts lion fish to hang out underneath it, and then snatches them all up at once like a net. Pretty neat idea, and if it was implemented on a large scale could be a huge benefit to the Earth’s oceans (and restaurants)!

After the expo, the top seven teams were selected and given three minutes to present to the judges and audience as a whole.

Every project was astounding. “Collide-o-scope” came up with a simple Arduino-based device to transmit elephant seismic activity to train drivers nearby in order to reduce the number of train-elephant collisions in India and Sri Lanka — currently a huge problem, for both us as humans and the elephant population.

Another team, “Manatee Marker,” proposed a system of solar powered buoys to detect manatees, with the hope of reducing frequent manatee-boat accidents. Considering that manatees are quiet, basically camouflaged, and thermally invisible, this was quite an ingenious task.

Perhaps my favorite project, “Algenie” stole the show. Methane gas is a huge factor to global warming — around twenty-five times more potent as a heat-trapping gas than Carbon Dioxide — and a lot of it comes from cow farts. However, we’ve recently discovered that putting seaweed in cow feed actually lowers methane emissions almost entirely! So this team came up with a vertical, three-dimensional way to grow algae — opposed to “two-dimensionally” growing across a pond — that would maximize production. Global warming is obviously a massive issue right now and Algenie is looking to change that. They ended up getting first place, and winning a prize of $1,000 along with GoPros for every team member.

Algenie’s prototype

At the end of the day, it wasn’t about the prize money. The competition was meant to generate creative and practical ideas, while promoting making a difference. After  attending the expo I felt more aware of all the environmental issues and influenced to help out. Even if you don’t feel like spending the time drafting up a crazy buoy manatee-detecting system, you can still do your part by living sustainably day to day.

Blueprint has done an awesome job of spurring young, enthusiastic students towards helping this planet — one cow fart at a time.

Post by Will Sheehan; Will SheehanPictures from Duke Conservation Tech

To Frack or Not to Frack

We’ve all heard about fracking, and some of us may even claim to understand it. Politicians on both ends of the spectrum certainly do, with some touting the oil and gas drilling technology as the savior of the U.S. energy industry and others decrying it as the harbinger of doom for the planet.

Duke alumnus Daniel Raimi, in his new book The Fracking Debate: The Risks, Benefits, and Uncertainties of the Shale Revolution, hopes to show people the gray area that lies in between.

Image credit to Daniel Raimi.

At a talk last week co-sponsored by the Duke Energy Initiative and the Nicholas Institute for Environmental Policy Solutions, Raimi shared some of the insights he gained in traveling the country to investigate the community-level impact of the shale revolution in the U.S. Raimi, a Durham native and 2012 graduate of the Sanford School of Public Policy, first made sure to explain that “fracking” and “the shale revolution” aren’t actually interchangeable terms.

“Fracking is short for hydraulic fracturing, which involves pumping water, sand and chemicals underground to stimulate production from an oil or gas well,” Raimi said. “Companies have been stimulating oil and gas wells since the 1950s, but it’s been applied at an extremely large scale recently and combined with other technologies like horizontal drilling.”

The shale revolution, which began in the early 2010s, has caused U.S. natural gas

U.S crude oil production from 1950 to 2015. Image credit to Daniel Raimi.

and crude oil production to explode — reaching an all-time high of 10 million barrels per day in the last few months.

With this in mind, Raimi began his investigative journey in Marcellus Shale, Pennsylvania, a place he’d read was booming with thousands of new wells and where he expected to encounter trucks, oil rigs and an influx of eager workers from other states reminiscent of the California Gold Rush. Instead, he found rolling green hills and untouched corn fields.

The township of Dimock, Pennsylvania. Image credit to Daniel Raimi.

Even more puzzling was his later discovery that residents of a local township, Dimock, were pining for drilling to return after the Pennsylvania Department for Environmental Protection discovered contamination of the town’s water supply by stray gas leaking from underground wells and promptly banned any shale drilling within a nine-mile radius of the site.

Heading south to the Permian Basin in West Texas, a leading region for oil production in the U.S. where, according to Raimi, “there are oil wells in people’s backyards and gas pipelines running through their lawns,” Raimi came across another incongruity. Though the community has long been supportive of the oil industry and its proposals for more drilling, he spoke to community members —including industry leaders in the shale movement — adamantly opposed to drilling

Balmorhea State Park in Texas. Image credit to Daniel Raimi.

in the pristine Balmorhea State Park, despite a company’s claim of having discovered an untapped oil reserve in the area.

In his last anecdote, Raimi highlighted perhaps the most contentious point in the shale debate: its ramifications for global climate change. In Barrow, Alaska, the northernmost city in the U.S. (300 miles north of Arctic Circle, to be exact), he spoke to local government officials who described million-dollar plans for protective measures against accelerating coastal erosion. This community also depends on increasingly scarce permafrost to keep cold the whale meat they subsist on for most of the year. Nevertheless, they also yearned for a greater presence of the oil industry.

All this was food for thought for an attentive audience. Raimi accomplished the stated goal of his presentation: getting pro- or anti-fracking audience members to at least see the other side of the debate. He offered some conclusions from his research in his closing words:

“Shale development has been a clear climate win in the short term, although climate benefits in the long term are less clear,” Raimi said. “Regardless, the current low-cost supply for natural gas is window of opportunity for policy that policymakers need to take advantage of.”

Post by Maya Iskandarani

 

MyD88: Villain of Allergies and Asthma

Even if you don’t have allergies yourself, I guarantee you can list at least three people you know who have allergies. Asthma, a respiratory disorder commonly associated with allergies, afflicts over 300 million individuals worldwide.

Seddon Y. Thomas, PhD of the NIEHS

Seddon Y. Thomas, PhD of the NIEHS

Seddon Y. Thomas who works at the National Institute of Environmental Health Sciences has been exploring how sensitization to allergens occurs. The work, which she described at a recent  session of the Immunology Seminar Series, specifically focuses on the relationship between sensitization and the adaptor molecule MyD88.

MyD88 transfers signals between some of the proteins and receptors that are involved in immune responses to foreign invaders. Since allergies entail inflammation caused by an immune response, Thomas recognized that MyD88 played a role in the immune system’s sensitization to inhaled allergens.

Her research aims to discover how MyD88 alters conventional dendritic cells (cDCs) which are innate immune cells that drive allergic inflammation. MyD88 signaling in cDCs sometimes preserves open chromatin — the availability of DNA for rapid replication — which allows gene changes to happen quickly and in turn causes allergic sensitization. Open chromatin regions permit the DNA manipulation that can lead to allergies and asthma. 

Florescence microscopy image of mouse dendritic cells with mRNA-loaded blood cells.

To conduct her experiments, Thomas examines what happens in mice when she deletes MyD88 from lung epithelial cells and from antigen-presenting cells. Lung epithelial cells form a protective tissue where inhaled air meets the lung and protects from foreign invaders. But sometimes it takes its job a little too seriously and reacts strongly to allergens.

Similarly, antigen-presenting cells are involved in the immune system’s mission to protect the body, but can become confused about who the enemy is. When the signaling adaptor MyD88 is removed from lung epithelial cells, the number of eosinophils, inflammatory white blood cells, decreases. When it is removed from antigen-presenting cells, another type of white blood cell, neutrophils, also decreases.

Thomas said this shows that MyD88 is necessary for the inflammation in the lungs that causes asthma and allergies.

In her future research, Thomas wishes to explore dendritic cell gene expression, the molecular pathways controlling gene expression, and how specific types of lung epithelial cells adjust immune responses. Because MyD88 plays a role in the genetic changes, it makes sense to continue research on the genetic side.    

Post by Lydia Goff            

Duke’s Researchers Are 1 Percent of the Top 1 Percent

This year’s listing of the world’s most-cited researchers is out from Clarivate Analytics, and Duke has 34 names on the list of 3,400 researchers from 21 fields of science and social science.

Having your publication cited in a paper written by other scientists is a sign that your work is significant and advances the field. The highly-cited list includes the top 1 percent of scientists cited by others in the years 2005 to 2015.

“Citations by other scientists are an acknowledgement that the work our faculty has published is significant to their fields,” said Vice Provost for Research Lawrence Carin. “In research, we often talk about ‘standing on the shoulders of giants,’ as a way to explain how one person’s work builds on another’s. For Duke to have so many of our people in the top 1 percent indicates that they are leading their fields and their work is indeed something upon which others can build.”

In addition to the Durham researchers, Duke-NUS, our medical school in Singapore,  claims another 13 highly cited scientists.

The highly-cited scientists on the Durham campus are:

Barton Haynes

CLINICAL MEDICINE
Robert Califf
Christopher Granger
Kristin Newby
Christopher O’Connor
Erik Magnus Ohman
Manesh Patel
Michael Pencina
Eric Peterson

ECONOMICS AND BUSINESS
Dan Ariely
John Graham
Campbell Harvey

Drew Shindell

ENVIRONMENT/ECOLOGY
John Terborgh
Mark Wiesner

GEOSCIENCES
Drew Shindell

IMMUNOLOGY
Barton Haynes

MATHEMATICS
James Berger

Georgia Tomaras

Georgia Tomaras

MICROBIOLOGY
Bryan Cullen
Barton Haynes
David Montefiori
Georgia Tomaras

PHARMACOLOGY & TOXICOLOGY
Robert Lefkowitz

PHYSICS
David R. Smith

PLANT AND ANIMAL SCIENCE
Philip Benfey

Terrie Moffitt

Terrie Moffitt

PSYCHIATRY & PSYCHOLOGY
Angold, Adrian
Caspi, Avshalom
Copeland, William E
Costello, E J
Dawson, Geraldine
Keefe, Richard SE
McEvoy, Joseph P
Moffitt, Terrie E

SOCIAL SCIENCES (GENERAL)
Deverick Anderson
Kelly Brownell
Michael Pencina

Page 1 of 9

Powered by WordPress & Theme by Anders Norén