Following the people and events that make up the research community at Duke

Category: Computers/Technology Page 1 of 15

The SolarWinds Attack and the Future of Cybersecurity

Sticky post

Cybersecurity is the protection of computer systems and networks in order to prevent theft of or damage to their hardware, software, or electronic data. While cybersecurity has been around since the 1970s, its importance and relevance in mainstream media as well as politics is growing as an increased amount of information is stored electronically. In 1986, approximately 1% of the world’s information was stored in a digital format; by 2006, just twenty years later, this had increased to 94%.

Cyber Hacking has also become more prominent with the advent of the Digital Revolution and the start of the Information Era which began in the 1980s and rapidly grew in the early 2000s. It became an effective political form of attack to acquire confidential information from foreign countries. 

In mid-December of 2020, it was revealed that several U.S. companies and even government agencies were victims of a cyberattack that began in September of 2019. 

The Sanford School of Public Policy hosted a leading cybersecurity reporter Sean Lyngaas to lead a discussion on the national security implications of the SolarWinds hack with Sanford Professor David Hoffman as well as Visiting Scholar and Journalist Bob Sullivan. Lyngaas graduated from Duke in 2007 and majored in Public Policy at the Sanford School. 

Lyngaas did not have a direct route into cybersecurity journalism. After completing his Masters in International Relations from The Fletcher School of Law and Diplomacy at Tufts University he moved to Washington D.C. to pursue a career as a policy analyst. However, at night when he was not applying for jobs he began pitching stories to trade journals. Despite not being a “super technical guy” Lyngaas ended up becoming passionate about cybersecurity and reporting on the increasing amounts of news surrounding the growing topic. Since 2012 Lyngaas has done extensive reporting on cybersecurity breaches and recently has published several detailed reports on the SolarWinds incident. 

Sean Lyngaas

The SolarWinds attack is considered one of the most impactful cybersecurity events in history as a result of its intricacy and the number of government and private sector victims. Lyngaas explained that most people had not heard of SolarWinds until recently, but the company nevertheless, provides software to a multitude of fortune 500 companies and government agencies. One of the software products they sell is Orion, an IT performance monitoring platform that helps businesses manage and optimize their IT infrastructure. The Hackers infiltrated Orion’s update software and over several months sent out malicious updates to 18,000 companies and government agencies. Among the victims of this espionage campaign were the U.S. Justice Department and Microsoft. As a result of the campaign, countless email accounts were infiltrated and hacked.

“A perfect example of someone robbing a bank by knocking out the security guard and putting on his outfit to have access.” 

Bob Sullivan

Sullivan added that this hack is particularly concerning because the target was personal information whereas previous large-scale hacks have been centered around breaching data. Additionally, SolarWind’s core business is not cybersecurity, however, they work with and provide software to many cybersecurity companies. The attack was revealed by FireEye, a cybersecurity company that announced they had been breached.

“FireEye got breached and they are the ones usually investigating the breaches”

Sean lyngaas

This situation has prompted both those involved in the cybersecurity industry as well as the public to reconsider the scope of cyberhacking and what can be done to prevent it.

“Computer spying by nation states has been going on for decades but we talk about it more openly now.” Lyngass stated. 

Lyngaas added that the public is now expecting more transparency especially if there are threats to their information. He feels we need to have better standards for companies involved in cyber security. Solarwinds arguably was not using cybersecurity best practices and had recently made price cuts which may have contributed to their vulnerability. Hoffman explained that SolarWinds had been using an easy-to-guess password to their internal systems which allowed hackers access to the software update as well as the ability to sign a digital signature. 

“We are not going to prevent these breaches; we are not going to prevent the Russians from cyber espionage.” Lyngaas stated

However, he believes by using best practices we can uncover these breaches earlier and react in a timely manner to reduce damage. Additionally, he thinks there needs to be a shift in government spending in terms of the balance between cyber defense and offense. Historically, there has been a lack of transparency in government cyber spending, however, it is known that there has been more spent on offense in the last several years.

Changes are starting to be made in the cybersecurity landscape that hopefully should aid in reducing attacks or at least the severity of their impacts. California recently created a law centered around publicizing breaches which will increase transparency. The panelists added that the increasing amount of news and information available to the public about cybersecurity is aiding efforts to understand and prevent it. President Biden was openly speaking about cybersecurity in relation to protecting the election from hackers and continues to consider it an urgent issue as it is crucial in order to protect confidential U.S. information. 

As Lyngaas explained, it is practically impossible to completely prevent cyber attacks, however, through increasing transparency and using best practices, incidents like the SolarWinds hack will hopefully not have effects of the same scale again.

Post by Anna Gottskind

Increasing Access to Care with the Help of Big Data

Sticky post

Artificial intelligence (AI) and data science have the potential to revolutionize global health. But what exactly is AI and what hurdles stand in the way of more widespread integration of big data in global health? Duke’s Global Health Institute (DGHI) hosted a Think Global webinar Wednesday, February 17th to dive into these questions and more.  

The webinar’s panelists were Andy Tatem (Ph.D), Joao Vissoci (Ph.D.), and Eric Laber (Ph.D.), moderated by DGHI’s Director of Research Design and Analysis Core, Liz Turner (Ph.D.).  Tatem is a professor of spatial demography and epidemiology at the University of South Hampton and director of WorldPop. Vissoci is an assistant professor of surgery and global health at Duke University. Laber is a professor of statistical science and bioinformatics at Duke.

Panelist moderator, Lisa Turner

Tatem, Vissoci, and Laber all use data science to address issues in the global health realm. Tatem’s work largely utilizes geospatial data sets to help inform global health decisions like vaccine distribution within a certain geographic area. Vissoci, who works with the GEMINI Lab at Duke (Global Emergency Medicine Innovation and Implementation Research), tries to leverage secondary data from health systems in order to understand issues of access to and distribution of care, as well as care delivery. Laber is interested in improving decision-making processes in healthcare spaces, attempting to help health professionals synthesize very complex data via AI.

All of their work is vital to modern biomedicine and healthcare, but, Turner said, “AI means a lot of different things to a lot of different people.” Laber defined AI in healthcare simply as using data to make healthcare better. “From a data science perspective,” Vissoci said, “[it is] synthesizing data … an automated way to give us back information.” This returned info is digestible trends and understandings derived from very big, very complex data sets. Tatem stated that AI has already “revolutionized what we can do” and said it is “powerful if it is directed in the right way.”

A screenshot from worldpop.org

We often get sucked into a science-fiction version of AI, Laber said, but in actuality it is not some dystopian future but a set of tools that maximizes what can be derived from data.

However, as Tatem stated, “[AI] is not a magic, press a button” scenario where you get automatic results. A huge part of work for researchers like Tatem, Vissoci, and Laber is the “harmonization” of working with data producers, understanding data quality, integrating data sets, cleaning data, and other “back-end” processes.

This comes with many caveats.

“Bias is a huge problem,” said Laber. Vissoci reinforced this, stating that the models built from AI and data science are going to represent what data sources they are able to access – bias included. “We need better work in getting better data,” Vissoci said.

Further, there must be more up-front listening to and communication with “end-users from the very start” of projects, Tatem outlined. By taking a step back and listening, tools created through AI and data science may be better met with actual uptake and less skepticism or distrust. Vissoci said that “direct engagement with the people on the ground” transforms data into meaningful information.

Better structures for meandering privacy issues must also be developed. “A major overhaul is still needed,” said Laber. This includes things like better consent processes for patients’ to understand how their data is being used, although Tatem said this becomes “very complex” when integrating data.

Nonetheless the future looks promising and each panelist feels confident that the benefits will outweigh the difficulties that are yet to come in introducing big data to global health. One cool example Vissoci gave of an ongoing project deals with the influence of environmental change through deforestation in the Brazilian Amazon on the impacts of Indigenous populations. Through work with “heavy multidimensional data,” Vissoci and his team also have been able to optimize scarcely distributed Covid vaccine resource “to use in areas where they can have the most impact.”

Laber envisions a world with reduced or even no clinical trials if “randomization and experimentation” are integrated directly into healthcare systems. Tatem noted how he has seen extreme growth in the field in just the last 10 to 15 years, which seems only to be accelerating.

A lot of this work has to do with making better decisions about allocating resources, as Turner stated in the beginning of the panel. In an age of reassessment about equity and access, AI and data science could serve to bring both to the field of global health.

Post by Cydney Livingston

Invisible No More, the Cervix

Sticky post

How many people have seen their cervix? Obscured from view and stigmatized socially, the cervix is critical to women’s, transgender-men’s, and non-binary folks’ health — and potential reproductive health issues. A team formed through Duke’s Center for Global Women’s Health Technologies (GWHT) has created a device that not only holds immense medical potential but the potential to empower people with cervixes across the globe: It makes visible a previously invisible organ. 

Nimmi Ramanujam (Ph.D.), founder of GWHT and Professor of Engineering at Duke University, heads the team. Mercy Asiedu (Ph.D.), Gita Suneja (M.D.) Wesley Hogan (Ph.D.), and Andrea Kim have all been integral members of the interdisciplinary collaboration. Dr. Suneja is Associate Professor of Radiation Oncology at the University of Utah School of Medicine and a clinical researcher. Asiedu, former PhD student with Dr. Ramanujam and current postdoc at MIT, was integral to the development of Callascope.

The Callascope allows women and others who have cervixes, along with health professionals, to perform cervical exams without use of traditional examination tools that are larger, cannot be used for self-examinations, and often scary-looking.

When Wesley Hogan, director of Duke’s Center for Documentary Studies and research professor, heard about the idea “she was hooked.” Andrea Kim graduated from Duke University in 2018. Her senior thesis was a 12 minute documentary focused on the Callascope and its potential uses. Following graduation, over the last two years, she expanded the film to a 50-minute piece titled  “The (In)visible Organ” that was screened January 14, 2021. Kim moderated a panel with Ramanujam, Asiedu, Suneja and Hogan January 28th, 2021. 

Callascope: A handheld device that can be used to conduct cervical screenings. All that’s needed is a smart phone.

The Callascope addresses a dire global health need for better women’s reproductive health. Further, it empowers women as self-advocates of their own gynecological and reproductive health through reinvention of gynecological examination. Cervical cells have an “orderly progression,” says Suneja, we have a “great idea” of how cells become cancerous over time, “with multiple places to intervene.” Cervical examinations, however, are necessary for assessing cervical health and potential disease progression.

Originally from Ghana, Dr. Asiedu was interested in using her engineering skills to develop technology to “improve health outcomes,” particularly in countries like her own, which may lack adequate access to preventative healthcare and could benefit most from Callascope. Many women in underserved countries, as well as underserved areas of the United States, suffer disproportionately from cervical cancer — a preventable disease. 

Dr. Ramanujam, who served as a voluntary test-subject for Asiedu’s Callascope prototypes, says that it’s a really important tool “in actually changing [the cervix’s] narrative in a positive way” — it is an organ “that is indeed invisible.”

The hope is that with more awareness about and use of Callascope, cervical screenings, and vaginal health, cervixes may become more de-stigmatized and cultural norms surrounding them may shift to become more positive and open. Dr. Hogan stated that when Ramanujam pitched her the Callascope idea they were in a public restaurant. Hearing Ramanujam say words like “vagina” and “cervix” loud enough for others to hear made Hogan recognize her own embarrassment surrounding the topic and underscored the importance of the project. 

The project and the team serve as a wonderful example of intersectional work that bridges the sciences and humanities in effective, inspiring ways. One example was the Spring 2019 art exhibit, developed in conjunction with the team’s work, presented at the Nasher Museum which exposed the cervix through various mediums of art.

Multidisciplinary Bass Connections research teams contributed to this work and other interdisciplinary projects focused on the Callascope. Dr. Asiedu believes documentaries like Kim’s are “really powerful ways to communicate global health issues.” Kim who directed and produced “The (In)visble Organ” hopes to continue exploring how “we can create more cultures of inclusion …when it comes to reproductive health.” 

A piece of artwork from the (In)visible Organ art exhibit at Duke’s Nasher Museum in the spring of 2019.

Ramanujam emphasized the need to shift biomedical engineering focus to create technologies that center on “the stakeholders for whom [they] really [matter].” It is multi-dimensional thinkers like Ramanujam, Asiedu, Hogan, and Kim who are providing integrative and inventive ways to address health disparities of the 21st century — both the obvious and the invisible. 

Post by Cydney Livingston

Cybersecurity for Autonomous Systems

Sticky post

Over the past decades, we have adopted computers into virtually every aspect of our lives, but in doing so, we’ve made ourselves vulnerable to malicious interference or hacking. I had the opportunity to talk about this with Miroslav Pajic, the Dickinson Family associate professor in Duke’s electrical and computer engineering department. He has worked on cybersecurity in self-driving cars, medical devices, and even US Air Force hardware.

Miroslav Pajic is an electrical engineer

Pajic primarily works in “assured autonomy,” computers that do most things by themselves with “high-level autonomy and low human control and oversight.” “You want to build systems with strong performance and safety guarantees every time, in all conditions,” Pajic said. Assured Autonomy ensures security in “contested environments” where malicious interference can be expected. The stakes of this work are incredibly high. The danger of attacks on military equipment goes without saying, but cybersecurity on a civilian level can be just as dangerous. “Imagine,” he told me, “that you have a smart city coordinating traffic and that… all of (the traffic controls), at the same time, start doing weird things. There can be a significant impact if all cars stop, but imagine if all of them start speeding up.”

Pajic and some of his students with an autonomous car.

Since Pajic works with Ph.D. students and postdocs, I wanted to ask him how COVID-19 has affected his work. As if on cue, his wifi cut out, and he dropped from our zoom call. “This is a perfect example of how fun it is to work remotely,” he said when he returned. “Imagine that you’re debugging a fleet of drones… and that happens.” 

In all seriousness, though, there are simulators created for working on cybersecurity and assured autonomy. CARLA, for one, is an open-source simulator of self-driving vehicles made by Intel. Even outside of a pandemic, these simulators are used extensively in the field. They’ve become very useful in returning accurate and cheap results without any actual risk, before graduating to real tests.

“If you’re going to fail,” Pajic says, “you want to fail quickly.”

Guest Post by Riley Richardson, Class of 2021, NC School of Science and Math

A Computer Scientist Investigating the Source Code of Life

Sticky post

We are all born with defining physical characteristics. Whether it be piercing blue eyes or jet black hair, these traits distinguish us throughout our entire lives. However, there is something that all of our attributes have in common, a shared origin: genes.

Beyond dictating our individual features, genes instruct cells to create proteins that are essential for a variety of processes, from controlling muscle function to managing digestive systems. Despite their importance in the workings of our body, genes can also code for detrimental diseases, such as Huntington’s disease or Duchenne muscular dystrophy.

Raluca Gordân, Ph.D.

These types of diseases are exactly what Raluca Gordân, Ph.D. is battling through her research. She and her group are trying to figure out how to decode the non-coding genome, the DNA apart from protein-coding genes. They are deepening their understanding of the role non-coding areas of the genome play in the expression of the coding genes and the production of proteins.

Gordân, an associate professor in biostatistics and bioinformatics at Duke, said a majority of disease-causing genetic mutations derive from the genome outside of genes.

“That is a huge search space,” she says, chuckling. “Genes only make up about 2% of the genome. If we don’t understand what those non-coding regions are doing, it’s hard to make predictions about what the mutation in those regions would be doing and how to connect that to the development of a disease.”

Gordân recently published a paper, entitled “DNA mismatches reveal conformational penalties in protein–DNA recognition,” which focuses on transcription factors and their exceptional ability to bind to mispaired DNA, misspellings that occur as DNA is copied. During regular replication, nucleotide bases (the building blocks of our DNA) are paired correctly, where adenine pairs with thymine and cytosine goes with guanine. However, when an error occurs during replication, mispairs start to appear, as adenine may pair with guanine instead.

“Normally, those are mistakes that get repaired by specific mismatch repair pathways but that repair might not happen if one of these transcription factors sits on the replication error and doesn’t allow the repair mechanism to see it,” Gordân explains. “Normally, one would expect the transcription factors not to bind to those errors. But we found that they can bind way better than their actual genomic targets.”

Modeling of the binding between mismatched DNA and transcription factors.

To expand on her computational discovery, Gordân is now following up with a study of transcription factor binding to mismatches in living cells, observing whether they adopt their usual role of regulating gene expression or contribute to the development of mutations.

Gordân’s research is a product of her passion and desire to make change. It also can be attributed to a series of realizations she made during college and inspirational mentors who guided her along the way.

While pursuing her undergraduate degree, Gordân was a purely computer science major, concentrating on cryptography. However, as she was nearing the end of her four years of college, she soon found herself yearning for the opportunity to do more. She began looking into machine learning applications and enrolled in a course based around genetic algorithms which she credits for launching her career path.

At that point, she attained what she describes as her “first taste of genetics” and her interest in bioinformatics was irrevocably piqued. Thereafter, Gordân applied for a PhD at Duke, where she worked with advisor Alex Hartemink investigating transcription factor proteins in regulatory genomics. At Duke, her work was primarily computational.  But with her postdoctoral advisor Martha Bulyk of Harvard Medical School, Gordan was exposed to the more experimental aspects of biology.

Today, she recognizes these experiences as integral to her ongoing research, which requires her to frequently iterate between observational approaches and computational work.

Gordân is acclimating to the newly quarantined world. While she strives to continue her research, in the pandemic, it has changed her routine.

“I think what was affected a lot since the pandemic started is the fact that we don’t meet in person,” she says. “A lot of the quick progress was being made when we were in the same physical space and were able to get feedback immediately, with students learning about each other’s results in the lab, in real time. That was replaced with Zoom meetings, where students get to see the other students’ results mainly at lab meetings, weeks or months later. Those continuous discussions that were going on in the lab all the time. We’re missing that.”

Gordân offered some thoughtful parting advice to aspiring computational biologists, like me.

“I was trained as a computer scientist, so I wasn’t really sure about experimental work. But after actually doing the experimental work, I realized how much value there is in doing both,” she said. “You have to pick what you’re strongest at, either the computational or experimental part, but you should not be afraid of the other side.”

Guest Post by Akshra Paimagam, Class of 2021, NC School of Science and Math

Contact Tracing Is a Call for Ingenuity and Innovation

The sudden need for contact-tracing technologies to address the Covid-19 pandemic is inspiring some miraculous human ingenuity.

Wednesday, December 16th, Rodney Jenkins, Praudman Jain, and Kartik Nayak discussed Covid-19 contact tracing and the role of new technologies in a forum organized by the Duke Mobile App Gateway team.

Jenkins is the Health Director of Durham County’s Department of Public Health, Jain is CEO and founder of Vibrent Health. And Nayak is an Assistant Professor in Duke’s Computer Science department. The panel was hosted by Leatrice Martin (M.B.A.), Senior Program Coordinator for Duke’s Mobile App Gateway with Duke’s Clinical and Translational Science Institute.

Contact tracing is critical to slowing the spread of Covid, and Jenkins says it’s not going away anytime soon. Jenkins, who only began his position with Durham County Public Health in January 2020, said Durham County’s contact tracing has been… interesting. As the virus approached Durham, “Durham County suffered a severe malware attack that really rendered platforms…useless.”

Eventually, though, the department developed its own method of tracing through trial and error. North Carolina’s Department of Health and Human Services (NC HHS), like many other health departments across the nation in March, was scrambling to adjust. NC HHS was not able to provide support for Durham’s contact tracing until July, when Jenkins identified a serious need for reinforcement due to disproportionate Covid cases amongst Latinx community members. In the meantime, Durham county received help from Duke’s Physician Assistant students and the Blue Cross Blue Shield Foundation. They expanded their team of five to 95 individuals investigating and tracing Durham County’s positive cases.

Rodney Jenkins MPH is the health director of the Durham County Public Health Department.

Jenkins proclaimed contact tracing as “sacred to public health” and a necessary element to “boxing in” Covid-19 – along with widespread testing.

Durham’s tracing tool is conducted through a HIPPA-compliant, secure online portal. Data about individuals is loaded into the system, transmitted to the contact tracing team, and then the team calls close contacts to enable a quick quarantine response. The department had to “make a huge jump very quickly,” said Jenkins. It was this speedy development and integration of new technology that has helped Durham County Public Health better manage the pandemic.

Jain, along with colleague Rachele Peterson, spoke about his company, Vibrent Health.  Vibrent, which was recently awarded a five-year grant from the National Institutes of Health’s ‘ll of Us Research Program, is focused on creating and dispersing digital and mobile platforms for public health.

Naturally, this includes a new focus on Covid. With renewed interest in and dependency on contact tracing, Jain says there is a need for different tools to help various stakeholders – from researchers to citizens to government.  He believes technology can “become the underlying infrastructure for accelerating science.”

Vibrent identified needs for a national tracing model, including the labor intensity of manual processes, disparate tools, and lack of automation.

Peterson said that as we “are all painfully aware,” the U.S. was not prepared for Covid, resulting in no national tracing solution. She offered that the success of tracing has been mostly due to efforts of “local heroes” like Jenkins. Through their five-year award, Vibrent is developing a next-generation tracing solution that they hope will better target infectious spread, optimize response time, reduce labor burden in managing spread, and increase public trust.

Along with an online digital interface, the company is partnering with Virginia Commonwealth University to work on a statistical modeling system. Peterson likened their idea to the Waze navigation app, which relies on users to add important, real-time data. They hope to offer a visualization tool to identify individuals in close contact with infected or high-risk persons and identify places or routes where users are at higher risk.

Nayak closed the panel by discussing his work on a project complementary to contact tracing, dubbed Poirot. Poirot will use aggregated private contact summary data. Because physical distancing is key to preventing Covid spread, Nayak said it is both important and difficult to measure physical interactions through contact events due to privacy concerns over sensitive data. Using Duke as the case study, Poirot will help decision makers answer questions about which buildings have the most contact events or which populations – faculty versus students – are at higher risk. The technology can also help individuals identify how many daily contacts they have or the safest time of day to visit a particular building.

Nayak said users will only be able to learn about their own contact events, as well as aggregate stats, while decision makers can only access aggregate statistics and have no ability to link data to individuals.

Users will log into a Duke server and then privately upload their data using a technology called blinded tokens. Contact events will be discovered with the help of continuously changing, random identifiers with data summation at intermittent intervals. Data processing will use multiparty computation and differential privacy to ensure information is delinked from individuals. The tool is expected for release in the spring.

Screenshot of Duke’s Mobile App Gateway site.

Although we are just starting vaccination, the need for nationwide resources “will be ongoing,” Martin said.

We should continue to embrace contact tracing because widespread vaccination will take time, Jenkins said.

Jenkins, Jain, and Nayak are but a few who have stepped up to respond innovatively to Covid. It becomes increasingly apparent that we will continue to need individuals like them, as well as their technological tools, to ease the burden of an overworked and unprepared health system as the pandemic prevails in America.

Post by Cydney Livingston

Brain Structure May Not Influence Personality After All

New study casts doubt on links between personality and brain structure. MRI scan courtesy of Annchen Knodt, Duke University

We know personality comes from the brain, but does that mean the brain’s shape and composition affect personality as well?

Previous studies have attempted to find links between brain structure and personality types, but new data indicates otherwise. A new study, the largest of its kind, suggests these links may not be so strong after all. In fact, they may not even exist.

Recently Duke researchers, led by Reut Avinun Ph.D., a postdoctoral associate at Professor Ahmad Hariri’s lab, analyzed the MRI scans of over a thousand people to determine potential links between personality and brain shape.

Although there are many personality neuroscience studies, consistent and reliable findings have not been established. While most previous studies used less than 300 individuals, this study has a large sample of 1,107 individuals. Additionally, this research comprehensively measures personality with 240 items.

“When I got into the field, people were collecting data sets with only 10 people and doing analysis with only 20 participants,” said Avram Holmes, an asssociate professor of psychology at Yale who was not involved in the study.

Personality studies such as this typically use the “Big Five” personality traits: neuroticism, extraversion, agreeableness, conscientiousness, and openness-to-experience. Extraverted people tend to be outgoing and social and those with high openness-to-experience are imaginative, curious, and enjoy trying new things. High neuroticism and low conscientiousness have been associated with negative health behaviors such as smoking. These were even connected to negative life outcomes, such as depression, anxiety, and poor sleep. By understanding what underlies these behaviors, scientists may be able to better treat them.

For brain shape, Avinun and her colleagues examined brain morphometry, cortical thickness, cortical surface area, subcortical volume, and white matter microstructural integrity. She used a univariate approach, looking at the relationship between one phenotype and one behavior. Statistical analysis also accounted for the factors of race/ethnicity, sex, and age.

Last year, researchers published a paper finding 15 correlations between specific personality traits and neuroanatomical structures. However, Avinun’s new research found that none of these connections held true in the large Duke Neurogenetics Study sample.

When scientists analyze an MRI dataset, there is a lot of freedom in the phenotypes collected and the types of analyses. “With so many degrees of investigative freedom and the expectation that you should see something there, researchers may accidentally find false positives. It’s easy to fall into the trap of making a story about why the effect has this particular brain pattern and see an association that doesn’t exist,” Holmes explained.

Ultimately, Avinun found no links between the Big Five personality traits and multiple features of brain structure.

While this may seem anticlimactic, even null findings are incredibly useful and could lead to recommendations to future research in this area. By showing that links between brain morphometry and personality tend to be small, this research may push the field toward studies with larger samples and guidelines for higher replication rates.

“The brain is plastic and it is affected every day by our experiences, so expecting to find straightforward associations between brain morphometry and personality traits may be too naïve,” Avinun said. “We are beginning to realize that large samples and multivariate methods  are needed in neuroscience. Trying to understand what makes us who we are is exciting. Research is really challenging as the field is constantly changing, but it is constantly improving as well.”

Niba Nirmal is a multimedia science communicator based in San Francisco, CA. She graduated in the Duke class of 2020, with a Master’s degree in Genetics. Find samples of her work at www.notesbyniba.com

COVID-19, and the Costs of Big Data

TikTok’s illicit collection of user data recently drew fire from US officials. But TikTok’s base—largely young adults under 25—was unfazed. In viral videos posted in July and August, users expressed little concern about their digital privacy. 

“If china wants to know how obsessed i am with hockey,” wrote one user, “then just let them its not a secret.” “#Takemydata,” captioned another, in a video racking up 6,000 likes and over 42,000 views. 

As digital technologies become ever more pervasive – or even invasive – concerns for privacy should be a concern, a pair of experts said in a Duke Science & Society webinar earlier this month. 

TikTok and digital marketing aside, data collection can have real, tangible benefits. Case in point: COVID-19. Researchers at Duke and elsewhere are using peoples’ fitness trackers and smart watches to try to understand and predict the pandemic’s spread by monitoring a variety of health metrics, producing real-time snapshots of heart rate, blood pressure, sleep quality, and more. Webinar speaker Jessilyn Dunn of Duke biomedical engineering and her team have tapped into this data for CovIdentify, a Duke-funded effort to predict COVID infections using data collected by smartphones and wearable devices. 

Health data from smartphones and fitness trackers may help predict and identify disease.

For several years, Dunn’s lab has researched digital biomarkers of disease—that is, how health data collected by tech we carry every day can predict anything from heart disease to cognitive decline. 

It’s a potential goldmine: One recent poll suggests that 40 million Americans own some kind of smartwatch or fitness tracker. And the wearables market is rapidly expanding—by 2022, it may be worth upwards of 25 billion dollars.

As coronavirus cases began to rise in the US, Dunn’s lab quickly pivoted to develop COVID-specific biomarkers. “We have these devices … that perform physiologic monitoring,” Dunn said, “This is a method of taking vitals continuously to try to monitor what’s going on with people.” 

Say you’re a participant in Dr. Dunn’s study. You download the CovIdentify app, which analyzes health data collected by your phone or smartwatch. Short daily surveys then assess your exposure to COVID-19 and whether you’ve developed any symptoms. Dunn and her team hope to find a link, some specific change in vitals that corresponds to COVID-19 infection.   

There are some challenges. CovIdentify must account for variability between devices—data collected from a Fitbit, for example, might differ dramatically from an Apple Watch. And because COVID-19 manifests in unique ways across populations, a truly universal biomarker may not exist. 

However, panelist Marielle Gross—a bioethicist at the University of Pittsburgh—said projects like Dunn’s raise questions of digital privacy. Gross emphasized how easily our health data can be abused. 

Left: Jessilyn Dunn, PhD, a professor at Duke University and CovIdentify Researcher
Right: Marielle Gross, MD, MBE, a bioethicist and professor at the University of Pittsburgh

“Digital specimen is the digital representation of the human body,” she said. “Disrespecting it disrespects the body it represents.”

Dr. Gross cited South Korea’s efforts to curb COVID-19 as a cautionary tale. As part of the government’s  response, which quickly minimized cases early in the pandemic, exposed or infected South Koreans were expected to stay home and isolate, tracked using GPS-enabled devices.

But many South Koreans chose to leave their devices at home, rather than be tracked by their government. In response, the government required its citizens to carry their devices, 24/7. In a pandemic, desperate measures may be called for. But, Gross suggests, it isn’t hard to imagine a grimmer future—where the government requires all citizens to share their location, all the time.

Gross argues that we must fundamentally shift how we think about our personal data. “There’s this broad assumption that we have to give up privacy to reap the benefits of collective data.” Gross noted. “And that’s false.”

Most ‘digital natives’ aren’t naive. They’re well aware that internet companies collect, analyze, and sell their data, sometimes to malicious effect.  But many view data collection as a necessary tradeoff for an intuitive and tailored web experience.

So where do we go from here? Dr. Gross points to new developments like zero knowledge proofs, which use complex algorithms to verify data without actually seeing it. This technique promises anonymity without compromising the value of collective data. And as computing power increases, it may also be possible to perform real-time analysis without ever transmitting or storing collected health data.

And for future tech? In Dr. Gross’s opinion, ethical implications must be considered from day one. “Those sorts of considerations are not the kind of thing that you can tack on later. They have to be built into devices…at the ground floor.”

Post by Jeremy Jacobs

Tracking Tiny Moving Targets

This squiggly line shows the path taken by a snippet of DNA as it might move around within the soupy interior of a cell. Duke’s Kevin Welsher and colleagues have developed a technique that turns a microscope into a ‘flight tracker’ for molecules, making it possible to follow the paths of viruses and other particles thousands of times smaller than the period at the end of this sentence. Until now, such techniques have required particles to be tethered to make sure they stay within the field of view. But the Welsher lab has developed a way to lock on to freely moving targets and track them for minutes at a time.

Researchers created a tiny circuit through a single water molecule, and here’s what they found

Graphic by Limin Xiang, Arizona State University

Many university labs may have gone quiet amid coronavirus shutdowns, but faculty continue to analyze data, publish papers and write grants. In this guest post from Duke chemistry professor David Beratan and colleagues, the researchers describe a new study showing how water’s ability to shepherd electrons can change with subtle shifts in a water molecule’s 3-D structure:

Water, the humble combination of hydrogen and oxygen, is essential for life. Despite its central place in nature, relatively little is known about the role that single water molecules play in biology.

Researchers at Duke University, in collaboration with Arizona State University, Pennsylvania State University and University of California-Davis have studied how electrons flow though water molecules, a process crucial for the energy-generating machinery of living systems. The team discovered that the way that water molecules cluster on solid surfaces enables the molecules to be either strong or weak mediators of electron transfer, depending on their orientation. The team’s experiments show that water is able to adopt a higher- or a lower-conducting form, much like the electrical switch on your wall. They were able to shift between the two structures using large electric fields.

In a previous paper published fifteen years ago in the journal Science, Duke chemistry professor David Beratan predicted that water’s mediation properties in living systems would depend on how the water molecules are oriented.

Water assemblies and chains occur throughout biological systems. “If you know the conducting properties of the two forms for a single water molecule, then you can predict the conducting properties of a water chain,” said Limin Xiang, a postdoctoral scholar at University of California, Berkeley, and the first author of the paper.

“Just like the piling up of Lego bricks, you could also pile up a water chain with the two forms of water as the building blocks,” Xiang said.

In addition to discovering the two forms of water, the authors also found that water can change its structure at high voltages. Indeed, when the voltage is large, water switches from a high- to a low-conductive form. In fact, it is may be possible that this switching could gate the flow of electron charge in living systems.

This study marks an important first step in establishing water synthetic structures that could assist in making electrical contact between biomolecules and electrodes. In addition, the research may help reveal nature’s strategies for maintaining appropriate electron transport through water molecules and could shed light on diseases linked to oxidative damage processes.

The researchers dedicate this study to the memory of Prof. Nongjian (NJ) Tao.

CITATION: “Conductance and Configuration of Molecular Gold-Water-Gold Junctions Under Electric Fields,” Limin Xiang, Peng Zhang, Chaoren Liu, Xin He, Haipeng B. Li, Yueqi Li, Zixiao Wang, Joshua Hihath, Seong H. Kim, David N. Beratan and Nongjian Tao. Matter, April 20, 2020. DOI: 10.1016/j.matt.2020.03.023

Guest post by David Beratan and Limin Xiang

Page 1 of 15

Powered by WordPress & Theme by Anders Norén