Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Computers/Technology Page 1 of 13

Vulci 3000: Technology in Archaeology

This is Anna’s second post from a dig site in Italy this summer. Read the first one here.

Duke PhD Candidate Antonio LoPiano on Site

Once home to Etruscan and Roman cities, the ruins found at Vulci date to earlier than the 8th century B.C.E.

As archaeologists dig up the remains of these ancient civilizations, they are better able to understand how humans from the past lived their daily lives. The problem is, they can only excavate each site once.

No matter how careful the diggers are, artifacts and pieces of history can be destroyed in the process. Furthermore, excavations take a large amount of time, money and strenuous labor to complete. As a result, it’s important to carefully choose the location.

Map of the Vulci Landscape Created Using GIS Technology

In response to these challenges Dr. Maurizio Forte decided to supplement the excavation of ancient Vulci sites by using innovative non-invasive technologies. 

Considering that it once housed entire cities, Vulci is an extremely large site. To optimize excavation time, money, and resources, Dr. Forte used technologies to predict the most important urban areas of the site. Forte and his team also used remote sensing which allowed them to interpret the site prior to digging. 

Georadar Imaging
Duke Post Doc Nevio Danelon Gathering Data for Photogrammetry

Having decided where on the site to look, the team was then able to digitally recreate both the landscape as well as the excavation trench in 3D. This allowed them to preserve the site in its entirety and uncover the history that lay below. Maps of the landscape are created using Web-GIS (Geographic Information Systems). These are then combined with 3D models created using photogrammetry to develop a realistic model of the site.

Forte decided to make the excavation entirely paperless. All “paperwork”  on site is done on tablets. There is also an onsite lab that analyzes all of the archaeological discoveries and archives them into a digital inventory.

This unique combination of archaeology and technology allows Forte and his team to study, interpret and analyze the ancient Etruscan and Roman cities beneath the ground of the site in a way that has never been done before. He is able to create exact models of historic artifacts, chapels and even entire cities that could otherwise be lost for good.

3D Model Created Using Photogrammetry

Forte also thinks it is important to share what is uncovered with the public. One way he is doing this is through integrating the excavation with virtual reality applications.

I’m actually on site with Forte and the team now. One of my responsibilities is to take photos with the Insta360x which is compatible with the OculusGo, allowing people to experience what it’s like to be in the trench with virtual reality. The end goal is to create interactive applications that could be used by museums or individuals. 

Ultimately, this revolutionary approach to archaeology brings to light new perspectives on historical sites and utilizes innovative technology to better understand discoveries made in excavations.

By: Anna Gotskind ’22

Vulci 3000: A High-Tech Excavation

This summer I have the incredible opportunity to work with the Vulci 3000 Bass Connections team. The project focuses on combining archaeology and innovative technology to excavate and understand an ancient Etruscan and Roman site. Over the next several weeks I will be writing a series of articles highlighting the different parts of the excavation. This first installment recounts the history of the project and what we plan to accomplish in Vulci.

Covered in tall grasses and grazing cows it’s hard to imagine that the Vulci Archaeology Park was ever something more than a beautiful countryside. However, in reality, it was home to one of the largest, most important cities of ancient Etruria. In fact, it was one of the biggest cities in the 1st millennium BCE on the entire Italian peninsula. Buried under the ground are the incredible remains of Iron Age, Etruscan, Roman, and Medieval settlements.

Duke’s involvement with the Vulci site began in 2015 when Maurizio Forte, the William and Sue Gross Professor of Classical Studies Art, Art History, and Visual Studies visited the site. What was so unique about the site was that most of it was untouched.

One of the perils of archaeology is that any site can only be physically excavated once and it is inevitable for some parts to be damaged regardless of how careful the team is. Vulci presented a unique opportunity. Because much of the site was still undisturbed, Forte could utilize innovative technology to create digital landscapes that could be viewed in succession as the site was excavated. This would allow him and his team to revisit the site at each stage of excavation. In 2015 he applied for his first permit to begin researching the Vulci site.

In 2016 Forte created a Bass Connections project titled Digital Cities and Polysensing Environments. That summer they ventured to Italy to begin surveying the Vulci site. Because Vulci is a large site it would take too much time and money to excavate the city. Instead, Forte and his team decided to find the most important spots to excavate. They did this by combining remote sensing data and procedural modeling to analyze the various layers underground. They collected data using magnetometry and ground-penetrating radar. They also used drones to capture aerial photography of the site.

These technologies allowed the team to locate the urban areas of the site through the discovery of large buildings and streets revealed by the aerial photographs, radiometrically-calibrated orthomaps, and 3D point cloud/mesh models.

Anne-Lise Baylé Cleaning a Discovered Artifact on Site

The project continued into 2017 and 2018 with a team returning to the site each summer to excavate. Within the trench were archaeologists ranging from undergrads to postdocs digging, scraping and brushing for months to discover what lay beneath the surface. As they began to uncover rooms, pottery, coins, and even a cistern, groups outside the trench continued to advanced technology to collect data and improve the understanding of the site.

Nevio Danelon Releasing a Drone

One unit focused on drone sensing to digitally create multispectral imagery as well as high-resolution elevation models. This allowed them to use soil and crop marks to better interpretation and classify the archaeological features.

By combining traditional archaeology and innovative technology the team has been able to more efficiently discover important, ancient artifacts and analyze them in order to understand the ancient Etruscan and Roman civilizations that once called Vulci their home.

Photo Taken Using the Insta360 Camera in “Planet” Mode

This year, archaeologists return to the site to continue excavation. As another layer of Vulci is uncovered, students and faculty will use technology like drones, photogrammetry, geophysical prosecutions and GIS to document and interpret the site. We will also be using a 360 camera to capture VR compatible content for the OculusGo in order to allow anybody to visit Vulci virtually.

By Anna Gotskind

800+ Teams Pitched Their Best Big Ideas. With Your Help, This Duke Team Has a Chance to Win

A Duke University professor says the time is ripe for new research on consciousness, and he needs your help.

More than 800 teams pitched their best “big ideas” to a competition sponsored by the National Science Foundation (@NSF) to help set the nation’s long-term research agenda. Only 33 are still in the running for the grand prize, and a project on the science of consciousness led by Duke artificial intelligence expert Vincent Conitzer is among them!

You can help shape the NSF’s research questions of the future by watching Conitzer’s video pitch and submitting your comments on the importance and potential impact of the ideas at https://nsf2026imgallery.skild.com/entries/theory-of-conscious-experience.

But act fast. The public comment period ends Wednesday, June 26. Winners will be announced and prizes awarded by October 2019. Stay tuned.

Watch all the video pitches until June 26 at nsf2026imgallery.skild.com.

Kicking Off a Summer of Research With Data+

If the May 28 kickoff meeting was any indication, it’s going to be a busy summer for the more than 80 students participating in Duke’s summer research program, Data+.

Offered through the Rhodes Information Initiative at Duke  (iiD), Data+ is a 10-week summer program with a focus on data-driven research. Participants come from varied backgrounds in terms of majors and experience. Project themes range  from health, public policy, energy and environment, and interdisciplinary inquiry.

“It’s like a language immersion camp, but for data science,” said Ariel Dawn, Rhodes iiD Events & Communication Specialist. “The kids are going to have to learn some of those [programming] languages like Java or Python to have their projects completed,” Dawn said.

Dawn, who previously worked for the Office of the Vice Provost for Research, arrived during the program’s humble beginnings in 2015. Data+ began in 2014 as a small summer project in Duke’s math department funded by a grant from the National Science Foundation. The following year the program grew to 40 students, and it has grown every year since.

Today, the program also collaborates with the Code+ and CS+ summer programs, with  more than 100 students participating. Sponsors have grown to include major corporations such as Exxonmobil, which will fund two Data+ projects on oil research within the Gulf of Mexico and the United Kingdom in 2019.

“It’s different than an internship, because an internship you’re kind of told what to do,” said Kathy Peterson, Rhodes iiD Business Manager. “This is where the students have to work through different things and make discoveries along the way,” Peterson said.

From late May to July, undergraduates work on a research project under the supervision of a graduate student or faculty advisor. This year, Data+ chose more than 80 eager students out of a pool of over 350 applicants. There are 27 projects being featured in the program.

Over the summer, students are given a crash course in data science, how to conduct their study and present their work in front of peers. Data+ prioritizes collaboration as students are split into teams while working in a communal environment.

“Data is collected on you every day in so many different ways, sometimes we can do a lot of interesting things with that,” Dawn said.  “You can collect all this information that’s really granular and relates to you as an individual, but in a large group it shows trends and what the big picture is.”

Data+ students also delve into real world issues. Since 2013, Duke professor Jonathan Mattingly has led a student-run investigation on gerrymandering in political redistricting plans through Data+ and Bass Connections. Their analysis became part of a 205-page Supreme Court ruling.

The program has also made strides to connect with the Durham community. In collaboration with local company DataWorks NC, students will examine Durham’s eviction data to help identify policy changes that could help residents stay in their homes.

“It [Data+] gives students an edge when they go look for a job,” Dawn said. “We hear from so many students who’ve gotten jobs, and [at] some point during their interview employers said, ‘Please tell us about your Data+ experience.’”

From finding better sustainable energy to examining story adaptations within books and films, the projects cover many topics.

A project entitled “Invisible Adaptations: From Hamlet to the Avengers,” blends algorithms with storytelling. Led by UNC-Chapel Hill grad student Grant Class, students will make comparisons between Shakespeare’s work and today’s “Avengers” franchise.

“It’s a much different vibe,” said computer science major Katherine Cottrell. “I feel during the school year there’s a lot of pressure and now we’re focusing on productivity which feels really good.”

Cottrell and her group are examining the responses to lakes affected by multiple stressors.

Data+ concludes with a final poster session on Friday, August 2, from 2 p.m. to 4 p.m. in the Gross Hall Energy Hub. Everyone in the Duke Community and beyond is invited to attend. Students will present their findings along with sister programs Code+ and the summer Computer Science Program.

Writing by Deja Finch (left)
Art by Maya O’Neal (right)

Meet Dr. Sandra K. Johnson, Engineering “Hidden Figure”

When Dr. Sandra K. Johnson first tried her hand at electrical engineering during a summer institute in high school, she knew that she was born to be an electrical engineer. Now, as the first African-American woman to receive a Ph.D. in computer engineering in the United States, Johnson visited Duke to share her story as a “hidden figure” and inspire not just black women, but all students not to be discouraged by obstacles they may face in pursuit of their passion.

Though she did discuss her achievements, Johnson’s talk also made it clear that more than successes, it was the opposition she faced that most motivated her to persevere in electrical engineering. While pursuing a Master’s degree at Stanford, she met Dr. William Shockley, who in his free time was conducting research he believed would prove that African Americans were intellectually inferior to other races. Johnson had originally been planning on just finishing her program with a Master’s and then going into the workforce, but after hearing what this man was trying to prove, she decided she would prove to him that she was capable of doing anything that the non-black students in the same program could do. She finished the program with a Ph.D. in electrical engineering. She continued to make this declaration to anyone who didn’t believe she was capable: “before I leave this place, I will make a believer out of you.”

Dr. Johnson is the founder, CTO and CEO of Global Mobile Finance, Inc., a finance and tech startup based in Research Triangle Park, NC. Photo from BlackComputeHER.

While mapping out her own path to pursuing her goals, Johnson also firmly believed in making the path easier for other black people pursuing advanced degrees. When asked what the current generation of students could be doing to help themselves, she said to find mentors and to mentor others. Johnson shared an anecdote of sitting in a lab at Stanford waiting to begin an experiment when a man walked up to her and said she was in the wrong place. After talking to him for several minutes and showing him that she knew even more about the subject than he did and was in the right place, she told him that the next time someone who looked like her walked into the lab, not to be so sure of himself. Johnson went on to become an IBM Fellow, an IEEE Fellow, and a member of the prestigious Academy of Electrical Engineers. At the end of her talk, Johnson discussed what she believes is the best way to expedite change — to have people of color as founders and CEOs of major corporations that have the power to increase minority representation in their workforce. This is what she intends to do with her own company, Global Mobile Finance, Inc. If her current track record is any indication, there is no doubt her company will become a major corporation in the years to come, opening more doors for black women and other minorities pursuing their passions.

Post by Victoria Priester

Cracking the Code on Credit Cards at Datathon 2018

Anyone who has ever tried to formulate and answer their own research question knows that it means entering uncharted waters. This past weekend the hundreds of students in Duke Datathon 2018 did just that, using only their computer science prowess and a splash of innovation.

Here’s how it worked: the students were provided three data sets by Credit Sesame, a free credit score estimator, and given eight hours to use their insight and computer science knowledge to interpret the data and create as much value for the company as they could. Along the way, Duke Undergraduate Machine Learning (DUML), the organization hosting the event, provided mentors and workshops to help the participants find direction and achieve their goals. 

Datathon participants attempting to derive meaning from the Credit Sesame Data

This year was the first such ‘Datathon’ event to take place at Duke. The event attracted big-name sponsors such as Google and Pinterest and was made possible by the DUML executive team, headed by co-presidents Rohith Kuditipudi and Shrey Gupta (to see a full list of event sponsors, click here).

DUML faculty advisor Dr. Rebecca Steorts said that even the planning of the event transcended disciplines: one of her undergraduate students and co-president of DUML, Shrey Gupta, found a way to utilize statistics to predict how many people would be attending. “It’s all about finding computational ways of combining disciplines to solve the problem,” Steorts said, and it’s very apparent that her students have taken this to heart.

The winning team (Jie Cai, Catie Grasse, Feroze Mohideen) presenting on how they can best gauge which customers are most “valuable” to Credit Sesame

After more than an hour of deliberations, the eight top teams were selected and five finalists were asked to present their findings to the judges. The winning team (Jie Cai, Catie Grasse, Feroze Mohideen) proposed a way to gauge which customers who create trial accounts are most likely to be profitable, by using a computer filtering program to predict likely customer engagement based on customer-supplied data and their interaction with the free trial. Other top teams discussed similar topics with different variations on how Credit Sesame might best create this profile to determine who the “valuable” customers are likely to be.

DUML hosts other events throughout the year to engage students such as their MLBytes Speaker Series and ECE Seminar Series. To learn more about Duke Undergraduate Machine Learning, click here.

by Rebecca Williamson

 

 

 

 

 

Coding: A Piece of Cake

Image result for cake

Imagine a cake, your favorite cake. Has your interest been piqued?

“Start with Cake” has proved an effective teaching strategy for Mine Cetinkaya-Rundel in her introduction-level statistics classes. In her talk “Teaching Computing via Visualization,” she lays out her classroom approaches to helping students maintain an interest in coding despite its difficulty. Just like a cooking class, a taste of the final product can motivate students to master the process. Cetinkaya-Rundel, therefore, believes that instead of having students begin with the flour and sugar and milk, they should dive right into the sweet frosting. While bringing cake to the first day of class has a great success rate for increasing a class’s attention span (they’ll sugar crash in their next classes, no worries), what this statistics professor actually refers to is showing the final visualizations. By giving students large amounts of pre-written code and only one or two steps to complete during the first few class periods, they can immediately recognize coding’s potential. The possibilities become exciting and capture their attention so that fewer students attempt to vanish with the magic of drop/add period. For the student unsure about coding, immediately writing their own code can seem overwhelming and steal the joy of creating.

Example of a visualization Cetinkaya-Rundel uses in her classes

To accommodate students with less background in coding, Cetinkaya-Rundel believes that skipping the baby steps proves a better approach than slowing the pace. By jumping straight into larger projects, students can spend more time wrestling their code and discovering the best strategies rather than memorizing the definition of a histogram. The idea is to give the students everything on day one, and then slowly remove the pre-written coding until they are writing on their own. The traditional classroom approach involves teaching students line-by-line until they have enough to create the desired visualizations. While Cetinkaya-Rundel admits that her style may not suit every individual and creating the assignments does require more time, she stands by her eat-dessert-first perspective on teaching. Another way she helps students maintain their original curiosity is by cherishing day one through pre-installed packages which allow students to start playing with visualizations and altering code right away.

Not only does Cetinkaya-Rundel give mouth-watering cakes as the end results for her students but she also sometimes shows them burnt and crumbling desserts. “People like to critique,” she explains as she lays out how to motivate students to begin writing original code. When she gives her students a sloppy graph and tells them to fix it, they are more likely to find creative solutions and explore how to make the graph most appealing to them. As the scaffolding falls away and students begin diverging from the style guides, Cetinkaya-Rundel has found that they have a greater understanding of and passion for coding. A spoonful of sugar really does help the medicine go down.  

    Post by Lydia Goff

Meet New Blogger Brian Du

Brian survives his week in the desert.

Hi! My name is Brian Du, and I’m a sophomore from Texas. I’m a pre-med majoring in computer science. I like vacations, hiking, and hiking on vacation. Besides these hobbies, I also love learning about science and hearing a good story. These latter two are exactly why I’m excited to be writing for the Duke Research Blog.

My first exposure to science happened in third grade because my goldfish kept getting sick and dying. This made me sad and I became invested in making them well again. I would measure pH levels regularly with my dad and keep notes on the fishes’ health. Eventually the process turned into a science fair project. I remember I loved presenting because I got to point out to the judges the ‘after’ pictures of my fish, which showed them alive, healthy, and happy (I think? it’s hard to tell with fish).

One happy fish!
Source: Reddit

My fish and I go way back.

After that third-grade experiment, I kept doing science projects — almost year after year actually — since I love the research process. From framing the right questions and setting up the experiment, to running the trials and writing up and sharing my work, my enthusiasm grew with each step. Come competition day, I noticed that in interviews that went well, my excitement was contagious, so that judges grew more eager too as they listened. And so I understood: a huge part to science is communication. Science, like food or a good story, is meant to be shared with others. The scientist is a storyteller, adjusting his presentation to captivate different audiences. With judges, I spoke jargon, but during public exhibition, where I chatted with anyone who came up to me, I got creative when asked about my research. Analogies helped me link strange concepts to everyday objects and experiences. An important protein channel became a pipe, and its inhibitor molecule a rock which would clog the pipe to make it unusable.

protein channel “pipe”
edited from CThompson02

Now that I’m at Duke, there’s so many stories to tell of the rich variety of research being done right on campus! I’ve written a few articles for the Chronicle covering some of the new medicine or proteins Duke professors have been involved in developing. As I keep an ear out for more stories, I hope to share a few of them in my upcoming posts, because I know they’ll be exciting!

Smart Phones Are the New Windows to the Soul

It’s one of those things that seems so simple and elegant that you’re left asking yourself, “Geez, why didn’t I think of that?”

Say you were trying to help people lose weight, prep for a surgery or take their meds every day. They’re probably holding a smartphone in at least one of their hands — all you need to do is enlist that ever-present device they’re staring at to bug them!

So, for example, have the health app send a robo-text twice a day to check in: “Did you weigh yourself?” Set up a group chat where their friends all know what they’re trying to accomplish: “We’re running today at 5, right?”

This is a screenshot of a Pattern Health app for pre-operative patients.

It’s even possible to make them pinky-swear a promise to their phone that they will do something positive toward the goal, like walking or skipping desert that day. And if they don’t? The app has their permission to lock them out of all their apps for a period of time.

Seriously, people agree to this and it works.

Two app developers on this frontier of personalized, portable “mHealth” told a lunchtime session  sponsored by the Duke Mobile App Gateway on Thursday that patients not only willingly play along with these behavioral modification apps, their behaviors change for the better.

The idea of using phones for health behavior came to pediatric hematologist Nirmish Shah MD one day while he attempted to talk to a 16-year-old sickle cell disease patient as she snapped selfies of herself with the doctor. Her mom and toddler sister nearby both had their noses to screens as well. “I need to change how I do this,” Shah thought to himself.

Pediatric hematologist Nirmish Shah MD

Pediatric hematologist Nirmish Shah MD is director of Duke’s sickle cell transition program.

Twenty health apps later, he’s running phase II clinical trials of phone-based interventions for young sickle cell patients that encourage them to stay on their medication schedule and ask them often about their pain levels.

One tactic that seems to work pretty well is to ask his patients to send in selfie videos as they take their meds each day. The catch? The female patients send a minute or so of chatty footage a day. The teenage boys average 13 seconds, and they’re grumpy about it.

Clearly, different activities may be needed for different patient populations, Shah said.

While it’s still early days for these approaches, we do have a lot of behavioral science on what could help, said Aline Holzwarth, a principal of the Center for Advanced Hindsight and head of behavioral science for a Durham health app startup called Pattern Health.

Aline Gruneisen Holzwarth

Aline Holzwarth is a principal in the Center for Advanced Hindsight.

“It’s not enough to simply inform people to eat better,” Holzwarth said. The app has to secure a commitment from the user, make them set small goals and then ask how they did, enlist the help of social pressures, and then dole out rewards and punishments as needed.

Pattern Health’s app says “You need to do this, please pick a time when you will.” Followed by a reward or a consequence.

Thursday’s session, “Using Behavioral Science to Drive Digital Health Engagement and Outcomes, was the penultimate session of the annual Duke Digital Health Week. Except for the Hurricane Florence washout on Monday, the week  has been a tremendous success this year, said Katie McMillan, the associate director of the App Gateway.

What Happens When Data Scientists Crunch Through Three Centuries of Robinson Crusoe?

Reading 1,400-plus editions of “Robinson Crusoe” in one summer is impossible. So one team of students tried to train computers to do it for them.

Reading 1,400-plus editions of “Robinson Crusoe” in one summer is impossible. So one team of students tried to train computers to do it for them.

Since Daniel Defoe’s shipwreck tale “Robinson Crusoe” was first published nearly 300 years ago, thousands of editions and spinoff versions have been published, in hundreds of languages.

A research team led by Grant Glass, a Ph.D. student in English and comparative literature at the University of North Carolina at Chapel Hill, wanted to know how the story changed as it went through various editions, imitations and translations, and to see which parts stood the test of time.

Reading through them all at a pace of one a day would take years. Instead, the researchers are training computers to do it for them.

This summer, Glass’ team in the Data+ summer research program used computer algorithms and machine learning techniques to sift through 1,482 full-text versions of Robinson Crusoe, compiled from online archives.

“A lot of times we think of a book as set in stone,” Glass said. “But a project like this shows you it’s messy. There’s a lot of variance to it.”

“When you pick up a book it’s important to know what copy it is, because that can affect the way you think about the story,” Glass said.

Just getting the texts into a form that a computer could process proved half the battle, said undergraduate team member Orgil Batzaya, a Duke double major in math and computer science.

The books were already scanned and posted online, so the students used software to download the scans from the internet, via a process called “scraping.” But processing the scanned pages of old printed books, some of which had smudges, specks or worn type, and converting them to a machine-readable format proved trickier than they thought.

The software struggled to decode the strange spellings (“deliver’d,” “wish’d,” “perswasions,” “shore” versus “shoar”), different typefaces between editions, and other quirks.

Special characters unique to 18th century fonts, such as the curious f-shaped version of the letter “s,” make even humans read “diftance” and “poffible” with a mental lisp.

Their first attempts came up with gobbledygook. “The resulting optical character recognition was completely unusable,” said team member and Duke senior Gabriel Guedes.

At a Data+ poster session in August, Guedes, Batzaya and history and computer science double major Lucian Li presented their initial results: a collection of colorful scatter plots, maps, flowcharts and line graphs.

Guedes pointed to clusters of dots on a network graph. “Here, the red editions are American, the blue editions are from the U.K.,” Guedes said. “The network graph recognizes the similarity between all these editions and clumps them together.”

Once they turned the scanned pages into machine-readable texts, the team fed them into a machine learning algorithm that measures the similarity between documents.

The algorithm takes in chunks of texts — sentences, paragraphs, even entire novels — and converts them to high-dimensional vectors.

Creating this numeric representation of each book, Guedes said, made it possible to perform mathematical operations on them. They added up the vectors for each book to find their sum, calculated the mean, and looked to see which edition was closest to the “average” edition. It turned out to be a version of Robinson Crusoe published in Glasgow in 1875.

They also analyzed the importance of specific plot points in determining a given edition’s closeness to the “average” edition: what about the moment when Crusoe spots a footprint in the sand and realizes that he’s not alone? Or the time when Crusoe and Friday, after leaving the island, battle hungry wolves in the Pyrenees?

The team’s results might be jarring to those unaccustomed to seeing 300 years of publishing reduced to a bar chart. But by using computers to compare thousands of books at a time, “digital humanities” scholars say it’s possible to trace large-scale patterns and trends that humans poring over individual books can’t.

“This is really something only a computer can do,” Guedes said, pointing to a time-lapse map showing how the Crusoe story spread across the globe, built from data on the place and date of publication for 15,000 editions.

“It’s a form of ‘distant reading’,” Guedes said. “You use this massive amount of information to help draw conclusions about publication history, the movement of ideas, and knowledge in general across time.”

This project was organized in collaboration with Charlotte Sussman (English) and Astrid Giugni (English, ISS). Check out the team’s results at https://orgilbatzaya.github.io/pirating-texts-site/

Data+ is sponsored by Bass Connections, the Information Initiative at Duke, the Social Science Research Institute, the departments of Mathematics and Statistical Science and MEDx. This project team was also supported by the Duke Office of Information Technology.

Other Duke sponsors include DTECH, Duke Health, Sanford School of Public Policy, Nicholas School of the Environment, Development and Alumni Affairs, Energy Initiative, Franklin Humanities Institute, Duke Forge, Duke Clinical Research, Office for Information Technology and the Office of the Provost, as well as the departments of Electrical & Computer Engineering, Computer Science, Biomedical Engineering, Biostatistics & Bioinformatics and Biology.

Government funding comes from the National Science Foundation.

Outside funding comes from Lenovo, Power for All and SAS.

Community partnerships, data and interesting problems come from the Durham Police and Sheriff’s Department, Glenn Elementary PTA, and the City of Durham.

Videos by Paschalia Nsato and Julian Santos; writing by Robin Smith

Page 1 of 13

Powered by WordPress & Theme by Anders Norén