Following the people and events that make up the research community at Duke

Category: Students Page 1 of 35

Symposium Explores How People and Nature are Inextricably Entwined

Sticky post
The massive Keeler Oak, a white oak (Quercus alba) in New Jersey.

An April symposium at Grainger Hall, People and Nature, brought a diverse set of speakers, both from Duke and other U.S. institutions, to examine the relationship between human culture and land and to discuss pressing issues such as environmental justice. The session was organized by PhD students Nicholas School of the Environment and the biology department.

Paul Manos of Duke Biology

Professor Paul Manos of Duke Biology told us  how oaks, ubiquitous tree species in temperate regions, can make people think about nature. A walk in the woods looking at the different oaks can result in a fascinating journey of natural history. For those who are curious enough, an inquiry into the lives of oaks will take them deep into topics such as evolutionary history, leaky species boundaries, plant-animal interactions, among others, Manos said. Keeping true to the theme of the symposium, Manos explored some hypotheses about the first time that humans had contact with oaks, and how this relationship unfolded ever since.

Orue Gaoue of Tennessee-Knoxville

Associate Professor Orou G. Gaoue of the University of Tennessee, Knoxville,  took us through a detailed case study of human and plant interactions with long-term data from the country of Benin, in Africa. He showed how the harvest of the African mahogany (Khaya senegalensis) affects human demography and even the marriage dynamics of the Fulani people, with many other insights into the intertwined relationship of the locals and their harvest.

Andrew Curley of Arizona

Central to the morning sessions were the rights of nature and the granting of personhood to non-humans, which is common in the cosmology of many indigenous cultures. For instance, Andrew Curley, assistant professor at the University of Arizona, mentioned in his talk that the O’odham people in the Sonoran Desert confer the Saguaro cactus personhood status. His talk exposed how colonial dynamics have created climate catastrophes and drought around the Colorado River, how indigenous peoples have to navigate these foreign systems, and how they understand their relationship with the land and water.

Michelle Carter, a first-year Masters of Environmental Management (MEM) student at Duke, examined the feasibility of the rights of nature in the US legal system. These rights allow certain natural features (e.g. rivers) to stand as a sole party in litigation and recover damages on their behalf. However, effective application and the enforcement of policy have been lacking.

The second part of the symposium focused on environmental justice. Duke Ph.D. student Maggie Swift presented a land acknowledgement which was divided into three parts: recognition of the violent history of the past; an understanding of the present with a celebration of the lives and achievements of current indigenous peoples; and a call to action so that participants were encouraged to financially support native-led organizations.  Links for donations and more information can be found on the symposium website. The land acknowledgement was followed by a brief presentation on the project Unearthing Duke Forest  that explores the human history surrounding Duke Forest.

Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?

People & NAture
Christine Folch of Duke Cultural Anthropology

Assistant professor Christine Folch, from Duke’s Department of Cultural Anthropology provided an analysis of the discourse around climate change. At the center was the question “do you believe in climate change?” which has ingrained the element of doubt and the ability of the speaker to say “no, I don’t.”  

Associate professor Louie Rivers III, from NC State University,  gave a talk on perceived environmental risks and their influence on social justice. He pointed out that these questions  could be dismissed by certain groups such as black farmers, who are concerned and disproportionally affected by environmental issues but might not relate to how the question is addressed.

Sherri White-Williamson, Environmental Justice Policy director at NC Conservation Network, explained the concept of environmental justice and provided concrete examples of how certain policies (e.g. federal housing/lending policies or interstate highway systems) can create inequalities that leave communities of color to bear the exposure of environmental degradation. She also made us aware that this year is the 40th anniversary of the birth of the US environmental justice movement that started when an African-American community  in Warren County, North Carolina organized to fight a hazardous waste landfill.

No exploration of people and nature would be complete without including the seas. A team of three students at the Duke University Marine Lab, undergrad Maddie Paris, second-year MEM Claire Huang, and Ph.D. student Rebecca Horan, presented two case studies of social and ecological outcomes linked to education and outreach interventions conducted in tropical marine environments.

Their first case study was on turtle education in Grenada, West Indies. Here a 10-week summer program for local children ages 9-12 created an improved understanding of marine turtle biology and its connection to the health of the ocean and their communities. The second case study was a 4-week training course for fisher people and fisheries officers in Mtwara, Tanzania. These participants increased their skills in monitoring the local reefs and were better equipped to educate their communities on marine environmental issues.

The symposium ended with two open questions for the audience, which should be considerations for anyone doing environmental research:  Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?

Guest post by Rubén Darío Palacio, Ph.D. 2022 in Conservation Biology from the Nicholas School of the Environment, and science director of conservation non-profit Fundacion Ecotonos in Colombia.

A Fond Farewell for Our Three Senior Bloggers

Sticky post

It’s May! Time for our 2022 Duke graduates to endure Pomp and Circumstance on repeat, shed a tear, and then take wing. Always bittersweet for those of us who work with students.

This year, the Duke Research Blog celebrates the graduation of three outstanding student-bloggers. This class produced some real gems and we will be greatly diminished by their commencement.

This image has an empty alt attribute; its file name is IMG_1940.jpg
Anna Gotskind in the Galapagos, 2018

Anna Gotskind blogged for us all four years, after growing up in Chicago.

Most memorably, Anna took us along when she spent the summer of 2019 at an archaeology dig in Italy.

Her other topics were a liberal arts education in themselves: she wrote about invisible malaria, climate change, dance, drinking water standards, snow leopards, muscular dystrophy, cybercrime, autism and some fascinating classmates. This year, as she readied for her career, she wrote a three-part series about blockchain and bitcoins.

After graduating with a psychology major, an econ minor and an innovation and entrepreneurship certificate, Anna will be moving to Atlanta to work as an associate consultant at Bain and Company. She plans to continue learning about the web3 space in her “free time” and hopes to find an outlet to continue writing about cryptocurrency as well. 

Cydney Livingston, the pride of Anson County, NC, joined us as a sophomore and proceeded to shoot out the lights with 31 career posts.

Cydney Livingston

Cydney’s biggest hit, by far, was her first-person account of trying to continue with college after the pandemic shut down Spring Term, 2020. “Wednesdays, My New Favorite Day,” appealed to Duke alumni, family and friends everywhere who were wondering what the heck was going on in Durham. Short answer: It was weird.

She was integral to our (mostly virtual) coverage of the COVID crisis, and helped the campus keep up with some of the larger questions the emerging virus presented, including social inequity and vaccine hesitancy. She also profiled some grad students, sharing a look inside their worlds from a student’s perspective. And in between, Cydney saw paleontologist Richard Leakey in one of his last public appearances and wrote about space junk, cervixes, lead poisoning, dog smarts, visual perception and North Carolina’s pungent pork industry.

Cydney is graduating with a BS in Biology and an AB II in History and is moving to Boston in the fall to begin work as an analyst with ClearView Healthcare Partners. But she is leaving open the possibility of a return to academia in history of science, technology and medicine, or science and technology studies. “I’m excited to spend a few years working and reflecting on my time at Duke and what lies ahead in my life journey.”

Rebecca Williamson

Rebecca Williamson, a first-year economics, but maybe arts major, signed up four years ago just for the experience and horizon- broadening. Mission accomplished! She’s graduating with distinction as an English major with minors in Econ and Music. Her blogging career covered The Muppets, grad student standup comedy, and the exhausting Datathon hackfest.

She will be staying in Durham to take part in the Analyst Program for DUMAC, the nonprofit corporation that manages the university’s investments.

Godspeed, young bloggers. We miss you already.

Written with fondness and gratitude by Karl Leif Bates, editor

Vernal, Ephemeral, Spring Beauty by Any Other Name

Sticky post
Nicki Cagle, Ph.D., with perfoliate bellwort, an ephemeral forest plant also known as wild oats (Uvularia perfoliata).

“Ephemeral” is one of my favorite words. It conjures up images of vernal pools and fireflies and flowers in spring. It comes from ephēmeros, a Greek word meaning “lasting a day.” English initially used it in a scientific sense, to refer to fevers and then in reference to short-lived organisms like flowers or insects. Today “ephemeral” is most often used to describe anything fleeting or short-lived.

The term “spring ephemeral,” for instance, refers to flowers that are visible for only a short time each spring before they disappear.

Nicki Cagle, Ph.D, a senior lecturer in the Nicholas School of the Environment, led a spring ephemeral workshop in the Korstian Division of Duke Forest on a Friday afternoon in late March. The workshop was hosted by DSER, the Duke student chapter of the Society for Ecological Restoration. We focused on identifying herbaceous plant species and families, particularly spring ephemerals.

“Spring ephemerals are perennials that emerge early in the spring and then grow, reproduce, and disappear from the surface of the forest floor in just a few short weeks,” Cagle explains. We also found several species that aren’t technically ephemerals but still bloom in early spring — before the tree canopy emerges and plunges the floor into shade.

Oxalis violacea, a species of wood sorrel.

The first plant Cagle points out is Oxalis violacea, a type of wood sorrel. “This particular species will have purple flowers,” she says. The genus name, Oxalis, refers to the plant’s oxalic acid content. “You can nibble on it,” but “you don’t want to nibble on it too much.” Oxalic acid, which is also found in common foods like spinach, gives the leaves a pleasant, lemony taste, but it can cause problems if eaten in excess.

Common bluet (Houstonia caerulea).

When we come across a patch of lovely, pale violet flowers with yellow centers, Cagle challenges the workshop participants to determine which family it belongs to. She offers two options: Rubiaceae, a large family that often has either opposite or whorled leaves and four to five petals and which includes familiar plants like coffee, or Violaceae, a very small plant family whose members “tend to have everything in fives” (like petals, stamens, and sepals) and often have basal leaves. Answer: Rubiaceae. This particular species is Houstonia caerulea, the common bluet. Its yellow centers help distinguish it from related species like the summer bluet, tiny bluet, and purple bluet. If anything, Cagle says, the plant’s presence is “an indicator of disturbance,” but it’s still good to have around.

Here’s the little brown jug (Hexastylis arifolia).

Next we come across two species in the Hexastylis genus. They are sometimes called wild ginger, but the name is misleading. Hexastylis species are not related to the ginger you buy in the store, which is in a completely different family. Hexastylis is, however, in the same family as the Asarum genus, which Cagle thinks of as “proper” wild ginger. Asarum and Hexastylis have traditionally been used as food and medicine, but they also contain toxins. According to Cagle, they belong to “one of the few plant families that have fossilized remains in the United States,” even dating back to the late Cretaceous Period.

The two species we see are Hexastylis arifolia, the little brown jug, and Hexastylis minor which looks similar but “tends to have a much more rounded form.” Like many spring ephemerals, Hexastylis is often dispersed by ants. The seeds have elaiosomes, fatty deposits that ants find attractive.

“We have a lot of different violets of varying origins” in this area. According to Cagle, this one is likely to be a common blue violet, Viola sororia.

There’s a patch of violets near the Hexastylis plants. “We have a lot of different violets… of varying origins” around here, Cagle says. Many of the native species have both a purple form and a variety that’s white with purple striping. Other species in the violet family come in different colors altogether, and Cagle says many of those are of European origin.

The Johnny-jump-up pansy, for instance, can have “funkier colors,” like yellow or pinkish purple and is native to Europe and Asia. Violets can be hard to identify. Some species are distinguished mainly by characteristics like the lobes (projections in leaves with gaps between them) or the hairiness of the leaves. The bird’s foot violet and wood violet, for example, “tend to have really deep lobes.”

Cagle says the violet we’re looking at is likely the common blue violet, characterized by smooth leaves and petals, purple or purple-and-white flowers, and rounded or slightly arrow-shaped leaves.

The Cranefly orchid (Tipularia discolor) reproduces later in the year. The purple on the bottom of the leaves, and sometimes on the top as well (see right), helps protect the plant from sunlight and herbivores.

The orchid family, Orchidaceae, is one of the largest families of flowering plants in the world. Many of its members are tropical, including the Vanilla genus, but “we do have a number of native orchids” here as well, including yellow and pink lady’s slipper orchids, putty-root, and the cranefly orchid.

The cranefly orchid, Tipularia discolor, isn’t yet in bloom, but we come across the leaves several times on our walk. According to Cagle, Tipularia discolor “isn’t actually a spring ephemeral” because it reproduces later in the year. However, “it’s ephemeral in its own way,” the leaves disappear by the time it flowers. Cagle says the plant’s scientific name can remind you what to look for: “‘Tip-’ because you’re going to tip this leaf over” to look at the underside and “discolor” because the leaves are a striking purple underneath. Some of the ones we see are purple on top as well. Cagle explains that the purple coloration serves as sunscreen and protection from critters that eat plants.

The plant gets its common name (and its scientific genus name, interestingly) from its delicate flowers, which are supposed to resemble craneflies. When the plant blooms, “the flowers are so delicate and so subtle that most of the time you miss them.” Pollinators like Noctuid moths, on the other hand, find the flowers easily and often. Cranefly orchids even have “specialized seed structures” that “get fused onto insects [such as the moths]… and carried off.”

Rue anemone (Thalictrum thalictroides or Anemonella thalictroides).
Cagle with giant chickweed (Stellaria pubera).

The rue anemone, unlike the cranefly orchid, is a true spring ephemeral. It belongs to a more “primitive” family and has lots of petals in a spiral arrangement. The species is also known as windflower “because they flutter and dance as the breeze comes through.” Cagle mentions that the plant is “usually pollinated by flies and little bees” and serves as an important food source for insects in early spring. But “how do these even exist” in a forest with so many plant-eating deer? Many spring ephemerals, Cagle explains, have “some really potent toxins” that protect them from large herbivores.

We stop briefly to examine perfoliate bellwort, also known as wild oats (Uvularia perfoliata), and giant (or star) chickweed. Chickweed is in the pink family, named not for the color but because “the petals… [look] as if they’re cut by ‘pinking shears,’” which have saw-toothed blades that leave notches in fabric.

Trout lily (Erythronium umbilicatum). According to Cagle, “No spring ephemeral walk is actually complete without finding some trout lilies.”

Near the end of our walk, we find several trout lilies. That’s fortunate. “No spring ephemeral walk is actually complete without finding some trout lilies,” Cagle says.

Unsurprisingly, trout lilies belong to the lily family. “Their flower structure,” Cagle says, “is very symmetrical” with three petals and three sepals. In trout lilies, the sepals resemble petals, too. This particular species is Erythronium umbilicatum. The species name, umbilicatum, refers to its “really long peduncle,” or flower stalk, which “allows the seed to actually touch the ground.” The seed is dimpled, Cagle says, “like a little belly button.” The name “trout lily,” meanwhile, refers to the mottled pattern on the leaves.

Spring beauty (Claytonia virginica), “a quintessential spring ephemeral.”

At the base of a tree near a small river, Cagle points out a flower called spring beauty (Claytonia virginica), “a quintessential spring ephemeral.” Some flowers, like the common bluet we saw earlier, thrive in disturbed areas, but plants like the spring beauty need rich, undisturbed habitat. That makes them good indicator species, species that can help scientists gauge environmental conditions and habitat quality. When a natural area is being restored, for example, scientists can measure restoration progress by comparing the “restoration site” to an undisturbed “reference site.”

According to Cagle, the spring beauty is pollinated by “bee flies… flies that kind of look like bees.” After pollination, the flowers turn pink. Cagle says this is common among ephemerals. One theory is that the color change signifies which flowers have already been pollinated, but others think it’s just a result of senescence, or aging.

Spring beauties are also “photonastic,” meaning they open and close in response to changing light conditions. “There is some evidence that the Iroquois would eat this plant in order to prevent conception,” Cagle says, but today the plant—like many spring ephemerals—is under protection in some areas. Human activities, sadly, have contributed to the decline of too many spring ephemerals.

Alum root (Heuchera americana) near the end of the walk. According to Cagle, its roots can be used “to form mordant for dyes.” Members of the Saxifrage family, which includes alum root, often have five petals, five sepals, and five stamens.

Not all of the plants we saw are spring ephemerals. Some, although they bloom in early spring, “wouldn’t technically be considered ephemeral because their leaves stick around even if their blooms don’t last long.” True ephemerals, on the other hand, “are plants that just seem to disappear off the face of the planet (or the forest floor) after a few weeks,” Cagle says. Only three of the species we found during the workshop are true ephemerals: the windflower, trout lily, and spring beauty. However, these aren’t the only spring ephemerals found in the area. Cagle’s personal favorite is bloodroot, with its “bright white petals” and pollen “that looks like it’s glowing.”

Next time you’re in the woods, keep your eyes out for ephemerals and other early spring flowers, but look quickly. They won’t be here for long.

By Sophie Cox

Post and Photos by Sophie Cox, Class of 2025

Kinsie Huggins: the Future Doctor Who Could Shot-Put

Sticky post

From shot-putting, to helping conduct two research studies, to being selected for a cardiology conference, meet: Kinsie Huggins. She is from Houston, Texas, currently majoring in Biology and minoring in Psychology with a Pre-Med track here at Duke. With such a simple description, one can already see how bright her future is!

“I want to be a pediatrician and work with kids,” Huggins says. “When I was younger, I lived in Kansas, and in my area, there were no black pediatricians. My mother decided to go far to find one and I really bonded with my pediatrician. One day, I made a pact with her in that I would become a pediatrician too so that I can also inspire other little girls like me of my color and other minority groups.”

Having such a passion to let African-American and minority voices be heard, Huggins is also part of the United Black Athletes, using her shot-put platform to make sure these voices are heard in the athletics department.

And while she may be a top-notch sportswoman, she is also just as impressive when it comes to her studies and research. One of her projects focuses on the field of nephrology – the study of kidneys and kidney disease. She and a pediatric nephrologist are currently working on studying rare kidney diseases and the differences in DNA correlating to these diseases.

Kinsie is also a researcher at GRID (Genomics Race Identity Difference), which studies the sickle cell trait in the NCAA. With the sudden deaths of college athletes from periods of over-exhaustion during conditioning, there has been a rise in attention of sickle cell trait and its impact on athletes. At first, the NCAA implemented a policy that made it mandatory for college athletes to get tested for sickle cell in 2010, but some were wary about the lack of scientific validity in such claims. Now, the NCAA has funded GRID to conduct such research.

The difference of Normal red blood cell and sickle cell (CDC).

 “We are analyzing the policy (athletes need to be tested for sickle cell), interviewing athletes in check-ups, and looking at data to see if the policy is working out for athletes and their performance/health,” Huggins explains.

With such an impressive profile, it doesn’t go without saying that Huggins didn’t go unnoticed. The American College of Cardiology (ACC) select high school and college students interested in the field of medicine and have them attend a conference in Washington D.C. to hear about research presentations, groundbreaking results of late-breaking clinical trials, and lectures in the field. Having worked hard, Huggins was selected to be part of the Youth Scholars program from the ACC and was invited to the conference on April 2-4. 

Let’s wish Kinsie the best of luck at the conference and on her future research!

Post by Camila Cordero, Class of 2025

Duke First-Year Founds Cryptocurrency Security Startup, Harpie

“Crypto is scaling so quickly but security systems are still the same as they were in 2013.” Those are the words of Daniel Chong, a recent Duke student whose new startup aims to change that.

One of the largest challenges within cryptocurrency is security. The most impactful application of cryptocurrency thus far is decentralized finance (DeFi). DeFi eliminates intermediaries by allowing people and businesses to conduct financial transactions through blockchain technology as opposed to working through banks or other corporations. However, as a result, people are personally responsible for securing their assets. 

Graphic from the Harpie.io Website

When engaging with cryptocurrency people generally use a trading platform and a wallet. Cryptocurrency trading platforms like Coinbase, Binance, and Crypto.com allow people to buy and sell cryptocurrencies using USD or other cryptocurrencies. However, in order to use crypto, one must transfer some of it into a wallet.

As with conventional currency, crypto wallets are not required in order to use cryptocurrency but they allow individuals to store their tokens in one place, easily retrieve them and send it to other individuals or organizations (i.e. buying non-fungible tokens).  Some of the most popular wallets include Coinbase wallet, Metamask, and Electrum. 

Screenshot of a Metamask Wallet

These wallets are not only password-protected but provide each user with a seed phrase or a series of words generated by one’s cryptocurrency wallet. This phrase, like a password, provides access to the crypto associated with that wallet.

An example seed phrase

The catch is, if an individual gets locked out of their wallet and cannot remember or does not have access to their seed phrase, all of their money will be lost. This is a major problem in the space and people have lost millions of dollars to lost seed phrases and inaccessible wallets. In fact, 20% of all existing Bitcoin tokens have been misplaced. 

Furthermore, in the past, it was already hard enough to secure one’s crypto wallets but now people have several wallets, each with their own unique seed phrase and passcodes making it all the more difficult. In the Fall of 2020, Daniel Chong, a Duke first-year at the time, identified this wallet security problem. 

“Crypto is scaling so quickly but security systems are still the same as they were in 2013.”

Daniel Chong

Having grown up in Las Vegas, Chong was used to fast-paced environments and unique challenges. During high school, Chong started coding as a hobby. 

“I just wanted to build something,” he explained

The first project he built was a website for a research paper he had in his high school psychology class. In 2018 Chong was introduced to solidity, a programming language that’s main purpose is to develop smart contracts for the Ethereum blockchain. If you are unfamiliar with blockchain, please refer to my previous article here

Chong matriculated to Duke during a period of transition, the Fall of 2020. As a result of being sent home due to COVID-19 in the Spring and having to shift to online meetings, many on-campus clubs were struggling. Early on Chong met Manmit Singh, a Junior at the time and the President of the Duke Blockchain Lab.

Even though Chong was only a first-year, he had experience coding in solidity and ended up aiding Singh in revamping Duke Blockchain Lab so students could continue engaging with and learning about blockchain despite the pandemic. Additionally, he ran a virtual course on web3 and solidity development for other club members. 

Despite the fact that Chong was attending classes, involved in clubs, and working part-time, he began talking to his brother Noah who was a senior at Georgia Tech about once again, building something. 

After working on building a security solution for crypto wallets for about a year, Chong and his brother received venture capital funding for their startup Harpie: a simple crypto protection plan that scales with you. 

Chong explained that venture capitalists are very excited about crypto right now, especially back in November of 2021 when crypto was in a bull market and bitcoin was at a market high of 60,000. 

Harpie is a web app that allows users to connect all of their wallets to individualized protection plans. This means that if you have a Harpie protection plan and someone hacks your wallet or you get locked out, you can go to the Harpie web app and transfer your funds from the unusable wallet to a new one.

Additionally, users are able to choose the degree of security their Harpie account has. Users can regain access to their fund via email, phone, or (personal recommendation) 2-factor authentication. Ultimately, for $8.99/month you can protect as many wallets, with any sum of funds, as you want.

Why Harpie is a better backup Solution

After working for just over a year, Harpie launched on February 14th, 2022. The next weekend Chong and his brother headed to ETHDenver, the largest Ethereum conference, to promote Harpie and compete in the Hackathon. For those who are unfamiliar, hackathons are competitive, sprint-like events where computer programmers and others are involved in software development work to build something over a condensed period of time. 

Over 10,000 people participated in the ETHDenver hackathon in person and over 30,000 participated virtually for over $1 million in bounties and prizes, as well as up to $2 million in investment capital.

While the teams had 36 hours to build a project, Chong and his brother managed to build there’s in 4-5 hours. They did this by quickly creating a front-runner bot/flash bot to help people avoid getting hacked by detecting and halting transactions to unauthorized addresses.

The brothers not only successfully built the bot but also placed top 10 in the overall hackathon and had the opportunity to present their project.

While presenting, Chong also received questions from Vitalik Buterin, the founder of Ethereum. He explained this as a very “nerve-wracking experience” and added that Buterin asked very technical questions such as what the miners’ extractable value would be.

Chong and his brother (left) onstage with Vitalik Buterin (right) presenting at ETHDenver

In the future, Chong would be open to entering more hackathons but right now is more interested in growing his startup. Currently, Chong is taking time off from school to focus on Harpie and to, ultimately, revolutionize security systems as they relate to online assets.

“Rest easy knowing your crypto is safe.”

Daniel Chong

What is The Duke Summer Experiences Database?

Sticky post
Graphics courtesy of Catherine Angst, Director of Communications in the Division of Experiential Education at Duke University.

Pre-pandemic, Duke undergraduates looking for a good summer experience might have seen something good at an in-person fair or maybe heard about an opportunity from a favorite professor. But there was a lot of luck involved.

Now, thanks to the Duke Summer Experiences database, which launched in late January, undergrads can view a variety of summer opportunities in one centralized place. They can search by area of interest, type of program, program cost, year in school, and several other filters.

“Duke Summer Experiences is a resource for all of Duke,” says Catherine Angst, Director of Communications in the Division of Experiential Education, “because it’s an easily searchable, permanent database that allows people to select the features of an opportunity that are important to them.”

Angst explains that the new database is “an evolution of the Duke summer opportunities fair and the ‘Keep Exploring’ project.”

In previous years, Duke organized an in-person fair with representatives from various summer programs. During the pandemic, the “Keep Exploring” project was created to “[provide] students with summer opportunities and mentorship during a time when not a lot of traditional opportunities were operating because of COVID.” The two programs joined forces, she said, and ultimately expanded into the Duke Summer Experiences website.

By aggregating opportunities into one place, the database should increase awareness and access for summer programs.

Dean Sarah Russell, Director of the Undergraduate Research Support Office, thinks this might be especially valuable for research opportunities, which she says tend to be less publicized. “Previously,” she says, “students might know about DukeEngage, GEO, or summer courses, but would have to rely on word of mouth or, if they were lucky, a tip from faculty or advisors to find out about smaller, lesser-known programs.”

Ms. Leigh Ann Muth-Waring, Assistant Director in Employer Relations at the Career Center, sees similar benefits to the new database: “Prior to the website’s creation, students had to actively search for information about summer programs by contacting individual departments on campus,” sometimes causing students to miss deadlines. The Duke Summer Experiences website, on the other hand, provides easy-to-navigate and up-to-date information.

Another goal of the Duke Summer Experiences database, Ms. Angst says, is to “build a community of practice where administrators can share best practices, resources, and lessons learned.”

Dr. Karen Weber, Executive Director of the Office of University Scholars and Fellows, hopes this will “enable administrators across campus to collaborate more effectively together and improve programmatic outcomes.” For instance, “They can communicate on shared initiatives, such as developing successful recruitment and marketing strategies, creating student applications, editing participation agreements, addressing student and administrative issues, engaging with faculty, and assessing programs.”

Along with making summer opportunities easier to find and encouraging administrative collaboration, Duke Summer Experiences is also beta-testing a new application process that would allow students to use one application to apply for multiple opportunities at once. Muth-Waring said the Duke Experiences Application “allows the student to complete one questionnaire with general information (name, major, etc.) which then can be used to apply to multiple Duke-sponsored summer programs.” It also provides links to other programs students might be interested in.

Ms. Angst also sees the new application system as a valuable tool. She hopes that it will reduce “application fatigue” among students looking for summer opportunities.

The Career Center is already using the new application platform for their summer Internship Funding Program, which encourages participation in unpaid or low-paying summer internships by providing financial support to students. According to Ms. Muth-Waring, the new application system “has helped us streamline our program’s application process so that it is easier and less burdensome for students.” Streamlining the process of finding summer opportunities is a major goal of the Summer Experiences website as well. Ultimately, Ms. Muth-Waring says, “both the Duke Summer Experiences Database and the Duke Experiences Application are creating an easier way for students to learn about and apply to university-sponsored summer programs, research opportunities, internships, and funding sources.” For students seeking summer opportunities through Duke, the Summer Experiences website can make the process easier.

Post by Sophie Cox, Class of 2025

2019 Duke Grad Founds Cryptocurrency Startup Fei Protocol

As cryptocurrency gains popularity, people continue to question “How and where can these tokens be used?” A November 2021 study by Pew Research reported that 86% of Americans claimed to have heard about cryptocurrency and 16% say they personally have invested in, traded, or otherwise used it

Despite this, there are still very few places where one can make purchases directly using crypto. This means that in order to use cryptocurrency, people must first convert it back to US dollars, which can cost a lot due to transaction fees. Additionally, the exchange rate between any given crypto token and USD changes by the second, resulting in a lack of price stability.

(If you are unfamiliar with cryptocurrency or transaction (gas) fees please refer to my prior article here.)

Duke Alum, Joey Santoro, sensed this gap and saw an opportunity. Santoro graduated from Duke in 2019 with a major in Computer Science. There needed to be a volatility-free token with a stable valuation (i.e. matching the USD), to move between the worlds of crypto and fiat currency. This is also known as a stablecoin. While several were already in existence, Santoro wanted to create a more scalable and decentralized one.

Thus, in December of 2020, Joey founded the Fei Protocol. Fei is a stablecoin in Ethereum native decentralized finance (DeFi). Stablecoins are a type of token that aids in maintaining a liquid market by pegging the token’s value to the USD.  Fei is able to achieve this through various stability mechanisms. Stablecoins can be used for real-life transactions while still benefiting from instant processing and the security of cryptocurrency payments.

When asked why he chose to work in crypto as opposed to Machine Learning (ML) or Artificial Intelligence (AI) Joey explained that it came down to how much impact he could have.

“The barrier for making an avenue of innovation in crypto is so much lower than something like a machine learning. Higher risk, higher reward.”

joey santoro

Santoro did not come to Duke with the plan of founding a web3 DeFi protocol. In fact, when he matriculated he was actually pre-med and originally only took CS 101 because it was a pre-requisite for the Neuroscience major.

However, it did not take long for Joey to realize he wanted to work in the crypto space. In his second semester, he joined the Duke Blockchain Lab and ended up teaching a blockchain course in his junior and senior years.

Because decentralized finance is still so new, no one completely knows what they are doing, which creates considerable opportunities for innovation. Additionally, because the crypto space is decentralized, it is inherently collaborative and community-driven. 

“Being able to write code that’s immediately interoperable with dozens of financial protocols is the coolest thing ever,” Santoro said

Joey argues anyone can become an expert in a particular area in crypto in a couple of months. He said economists and mechanism designers are increasingly moving into the crypto space. 

When the Fei Protocol launched in 2020 it was the height of a bull market for crypto and there was heavy demand for a decentralized stablecoin. While there were several other stablecoins in existence, USDC and tether were the most popular and they were both centralized, meaning they were owned by companies. 

“What so important to me and why I do this is because I want people to be able to do whatever they want with their money.”

JOey santoro

The demand for a decentralized stablecoin created excitement around Feio but also a highly compressed timescale. The Fei Protocol ended up having the largest token launch for an Ethereum DeFi protocol in history, raising $1.25B. However, when it launched,  the peg broke due to issues with the incentive mechanism and bugs in the code.

Santoro recalled the surreal and challenging experience of watching the protocol he spent countless weeks working on fall apart before his eyes. However, his team and investors decided to stick it through and try to salvage what they had built. It took over a month just to fix everything that had gone wrong. In the meantime, people were threatening Santoro and his team. 

While the Fei protocol faced challenges while launching,  Joey and his team were able to adapt, learn from their mistakes, and come back stronger. They recently conducted a multi-billion-dollar merge with Rari Capital and launched Fei version2 (V2).

Additionally, this is the first multi-billion dollar merger in DeFi meaning that the decision to merge was voted on by members of the respective Decentralized Autonomous Organizations (DAOs). This is a huge milestone in the world of DeFi and sets a precedent for the potential of decentralized business operations. 

Joey Santoro Presenting at the ETHDenver Convention

Moving forward Joey explained, “I’m obsessed with simplicity now; I still move fast but more carefully.”

Post by Anna Gotskind, Class of 2022

The Mind Behind Muser

Biology professor Sheila Patek remembers when she was an undergraduate, petrified as she waded through the world of academia in search of a research position. Knocking on door after door, Patek promised herself that if she was able to enter that world of research, she was going to change it; she was going to help students find opportunities and shift the rigid, exclusionary culture of academia.

Years later, Professor Patek was able to keep her promise. She created Muser, a website to connect students to research opportunities in an effort “to achieve accessible, transparent, equitable, and multidisciplinary research experiences for students and mentors.”

Patek first began this effort as a faculty member at the University of Massachusetts, where she found few efficient pathways for undergraduates to find research opportunities. Patek had grown accustomed to being at UC Berkeley, where they utilized a fully integrated system known as the Undergraduate Research Apprentice Program. The University of Massachusetts was more reminiscent of Patek’s own undergrad experience, and it was there that she and her colleagues began working on the first version of Muser’s software. This is the version that she brought with her when she came to Duke.

Here, we’re lucky to have a slew of resources — DukeList, the Undergraduate Research Support Office, Bass Connections — that are intended to help students pursue research. However, Patek says that Muser distinguishes itself by being specifically designed to address the many barriers that still prevent students from pursuing research — from a lack of support and resources to racial and gender biases. 

Team Muser: (from left) Sheila Patek, Founder; Sonali Sanjay, Co-Student Leader; Katherine Wang, Co-Student Leader; Theo Cai, Duke Undergrad Muser Director and Nowicki Fellow (Credit: Ben Schelling)

One way Muser does this is by making all initial applications anonymous. Patek mentions studies that have found that things like the race and gender connotation of names have significant influence on who gets a position; for example, when given CVs that are identical except for the gender of the names, faculty are more likely to rate the male CVs higher. From the mentor side of Muser, research leads see students’ personal statements first, then must formally review the applications if they wish to view all the information the student has provided — including their names. Patek notes that it has surprised and perhaps frustrated many mentors, but it’s a feature for the benefit of students; it allows them to first be heard without the preconceptions attached to something like their name.

On the flip side, Muser tries to keep things as transparent as possible for students (although anonymous mentors are in the works). There are set timelines — called “rounds” — in which mentors post positions and students apply then hear back. With most other forums for research like DukeList, students are expected to check in and apply constantly — not even knowing if they will get a response. Muser solves this through these rounds, as well as a unique “star” system: mentors that actually review every application get a gold star, visible to students applying. 

So far, over three thousand (3000) undergraduates have used the software, and Patek estimates that in 2021, 20% of Duke undergraduates had, at some point, held a research position thanks to Muser. She also boasts the diversity of research leads that have become involved with Muser; it features professors, graduate students, and lab managers alike as mentors, who represent a better gender and diversity balance than academia as a whole. But as much progress has been made, Patek’s ultimate dream would be for every project in every department to be posted on Muser, available for undergraduates who don’t have to worry about being denied because of bigotry or ignored altogether. 

“The culture of academia is fundamentally opaque to everyone not in it,” Patek notes, but she and the Muser team are doing everything they can to change that. The newest version of Muser’s software open source on GitHub and available for free — has recently been adopted by Harvey Mudd College and the University of Massachusetts, and Patek expresses her hope for the idea to spread nationwide. 

Universities that have adopted Muser

The website used to be called MUSER — an acronym meaning Matching Undergraduates to Science and Engineering Research — but nowadays, it’s known simply as “Muser.” I’ve been told that the rebranding is a play on words, referencing the Muses of Greek and Roman mythology who oversaw the full range of arts and sciences, to represent all thinkers. 

The next round of Muser for Summer 2022 research positions opens on February 19. Mentors can post opportunities NOW, until February 18. For more information, visit the website and check out this fantastic article introducing Muser.

Ethereum: What are Transaction Fees and How are They Determined?

By now most people have heard of Bitcoin, the first form of decentralized cryptocurrency which was created in 2009 and popularized in 2011. However, these novel tokens did not just appear out of thin air, they had to be mined. But what does this mean?

Essentially, there is a finite amount of Bitcoin, 21 million to be exact. Bitcoin miners run complex computer rigs to solve intricate and complicated puzzles in order to confirm groups of bitcoin transactions called blocks. Once a block is mined, the miner is rewarded with bitcoin. 

Bitcoin mining

On 3 January 2009, the bitcoin network came into existence after the founder, Satoshi Nakamoto, mined the genesis block of bitcoin (block number 0), and received a reward of 50 bitcoins. The rewards for Bitcoin mining are reduced by half roughly every four years due to its scarcity. Currently, miners are rewarded 6.25 Bitcoins for every block. Additionally, when a transaction is approved via mining, it is added to a block which is then added to the Bitcoin blockchain. A blockchain is an immutable, decentralized, and transparent computer network that acts as a publicly available ledger. For more information please reference my previous article here.

Not all tokens are mined, however, the most popular or widely used ones, Bitcoin and Ethereum are. Today, we will be focusing on the Ethereum Blockchain using ETH tokens.

Similar to Bitcoin, ETH is also mined by solving complex puzzles in order to confirm and verify blockchain transactions. However, ETH miners are paid in ETH, not bitcoin. In addition to receiving the ETH from mining, miners are also paid through transaction fees called gas

Transaction fees are determined by a Transaction fee mechanism (TFM), a key component of blockchain protocol. However, there has yet to be an empirical study on the real-world impact of TFMs. Recently, a study out of Duke and Peking University evaluated the effect of EIP-1559, the first TFM to abandon the traditional first-price auction paradigm. 

Every transaction or smart contract executed on the Ethereum blockchain requires gas. If you are unfamiliar with smart contracts please reference my previous article here

“Gas is a unit of measurement for the amount of computational effort required to execute a specific on-network operation”

William Zhao ’23, Student researcher

However, the price of gas is constantly changing in response to how many others are trying to make transactions on the blockchain. Gas prices are typically denoted in GWEI or a billionth of an ETH ( 0.000000001 ETH). For context as of February 1st, 2022 at 1:17 ET, ETH is worth $2778.50 USD per token

When an ETH transaction is placed it is not immediately completed and resides in a memory pool or “Mempool.” These are smaller databases of unconfirmed or pending transactions. Prior to the EIP-1559 update, the Ethereum TFM centered around the first-price auction paradigm. 

Mempool

Conceptually, the first-price auction paradigm is fairly simple. Essentially every time a transaction is made there is an accompanying gas bid. Crypto wallets like Metamask or Coinbase Wallet provide suggested gas bids for users but still allow them to alter the bid. This is because transaction verification priority is determined by the miner and thus given to whoever bids the most. Once a transaction is verified it is added to the miner’s block and then to the blockchain. As a result, some users would offer unnecessarily high gas fees in order for their transaction to skip the line and be quickly processed thus creating major delays for others.

There were several problems under this previous TFM including long wait times for verification, extremely high gas and unpredictable prices, as well as inefficiencies around block size and consensus security. Recent research examined the causal effect of EIP-1559 on blockchain transaction fee dynamics, transaction waiting time, and security. They found that while the transaction mechanism became even more complex it did also become more efficient. 

EIP-1559 improves user experience by reducing users’ waiting times, improving fee estimation, and mitigating intra-block difference of gas price paid (which is more important for miners). However, EIP-1559  did not have a large impact on gas fee reduction or consensus security. In addition, they found that when ETH’s price is more volatile, the waiting time is significantly higher. 

Figure 8: Distributions of median waiting time. Users experience a much lower transaction waiting time following EIP-1559.

Ultimately, while user experience improved, scalability issues held the TFM from having a larger effect on important components like gas prices. 

“If you can only hold a certain amount of transactions that’s a hard cap on development, however, high gas prices are a scalability issue not a mechanism design issue.

William Zhao ’23, student researcher

This research paper was recognized by Vitalik Buterin, one of the co-founders of Ethereum.

By: Anna Gotskind,
Class of 2022

Remembrance of Wordles Past

Devang Thakkar, a fourth-year PhD candidate at Duke University, recently created an archive  for Wordle that gives users unlimited access to past Wordle games. Gray tiles indicate letters not found anywhere in the correct word, yellow indicates letters that are in the word but not in the right place, and green indicates correctly placed letters.

Writing this story was dangerous. Before, I was only vaguely aware of the existence of Wordle, a wildly popular online word game created by Josh Wardle and recently bought by the New York Times. Now I can’t stop playing it. The objective of the game sounds deceptively simple: try to guess the right five-letter word in six attempts or fewer.

Thanks to Devang Thakkar, a fourth-year PhD student in Computational Biology and Bioinformatics at Duke, the 200+ Wordle games released before I discovered its charms are readily accessible online. So now I’m making up for lost time.

Thakkar recently spent a weekend building an archive of every Wordle game in existence. You can play them in any order. You can start at the beginning. You can start with today’s Wordle and work backward. You can sit down and play eight in a row. Just hypothetically, of course.

Devang Thakkar became hooked on Wordle when his roommate introduced it to him, but he wanted a way to access old Wordles as well. First, he experimented with manually changing the date on his browser to trick the computer into showing him old Wordles. However, his browser gave him an error message if he tried to go back more than fourteen days. To get around that, Mr. Thakkar wrote a Python script using a Python library called Selenium, which allowed him “to basically go back as much as you want.” 

Thakkar combined his own data with an open-source Wordle project called WordMaster created by Katherine Peterson. With an open-source project, Thakkar says, “You put your work out there, and then someone else adds to it.”

Devang Thakkar at the 2020 Data Through Design exhibition in New York.
Photograph courtesy of Devang Thakkar.

Whereas WordMaster randomly generates new five-letter words, Thakkar’s archive provides access to “official” Wordle games from the past. While there were many random Wordle generators already in existence, it was the usage of the official Wordle list and the ability to go back to a particular Wordle that set this archive apart. Thakkar also added features like the ability to share your answers with others and an option that lets users access Wordle games in a random order.

Thakkar tells me the project was “just for fun.” “I was bored… so I was like, ‘let’s make something!’” he says. Nevertheless, “That is essentially what I do for my work as well; I write code.” In the Dave Lab, Devang Thakkar uses sequencing data to study the origins of different types of lymphomas.

In his free time, Devang Thakkar enjoys woodworking and metalworking. Pictured here are two of his projects, a wooden bowl and his own dining room table.
Photographs courtesy of Devang Thakkar.

When he’s not working or making Wordle archives, Devang Thakkar can often be found in Duke’s Innovation Co-Lab, where he enjoys woodworking and metalworking. His projects range from creations intended as gifts, like a laptop stand and beer caddy, to his own dining room table. Thakkar says the hobby, being very different from his normal work, helps him maintain work-life balance.

The Wordle project, on the other hand, required coding skills Thakkar uses daily. “This is just like work for me, but for fun.” He enjoys graphic design and board games and has “a special affection for board games with words.”

As for the Wordle archive, Mr. Thakkar says he never expected it to become so popular. He thought it would mostly be used by his friends, but the archive quickly accumulated millions of weekly users. “People keep sending me screenshots of their friends sending them this website,” he says.

Meanwhile, I’ve started noticing Wordle references everywhere. Just after I spoke to Thakkar about his project, I happened to stumble across a link to BRDL, a delightful Wordle spinoff that uses four-letter birding codes instead of words. By blind luck, I guessed the right code on my second try: AMGO, American goldfinch. A few days later, I overheard two students talking about the daily Wordle. Clearly, I’m not the only one who’s become hooked on the game. Fortunately for everyone who is, Devang Thakkar’s Wordle archive, which he called “Remembrance of Wordles Past,” offers unlimited access.

By Sophie Cox, Class of 2025

Page 1 of 35

Powered by WordPress & Theme by Anders Norén