Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Genetics/Genomics Page 1 of 7

We Can’t Regrow Limbs Like Deadpool, But This Creature Can

Try as we might, humans can’t regrow limbs. But losing your left leg isn’t such a problem for axolotls.

Image result for axolotl

Last Wednesday, Dr. Jessica Whited gave a fascinating talk about the importance of studying these strange little salamanders. Axolotls are capable of regenerating lost limbs so well that once a limb has fully grown back, you can’t tell the difference. No scars, no deformities. This genetic phenomenon serves as a powerful model for uncovering what mechanisms might be required for stimulating regeneration in humans.

The limb regeneration process goes through a few stages. Within hours after amputation, a wound epidermis forms around the injury. Next, a blastema grows – a big clump of cells that will be the basis for future growth. After that, a new limb just kind of sprouts out as you might imagine.

Image result for axolotl limb regeneration

So what gives the axolotl this seemingly magical ability? In attempt to answer that question, Whited’s lab looked at how the process starts – specifically at the creation of the blastema, something mammals do not form post-injury. They found that a single amputation causes an activation of progenitor cells throughout the axolotl’s body. Cells in the heart, liver, spinal cord, and contralateral limb all reenter circulation. Essentially an activation signal is sent throughout the whole body, indicating a systemic response to the injury rather than a local one.

Another question Whited sought to answer was if the same limb could regenerate multiple times. She had her student Donald Bryant carry out an experiment on a group of axolotls. Bryant would repeatedly amputate the same limb, letting it fully regrow for ten weeks between amputations. The results of the experiment show that after five amputations only 60 percent of the limb would regenerate. This percentage decreased with the number of amputations. So while axolotls may seem like they have super powers, they aren’t exactly invincible. They decline in their regenerative capabilities after repeated amputation.

Protein EYA2 PDB 3GEB.png

A key finding in this experiment was that repeated amputation led to a decrease in the EYA2 gene (Eyes Absent 2). This particular gene was deemed necessary for the blastema cells to progress through different growth checkpoints. It is required during the cell cycle “to execute decisions about whether the cells will continue to proliferate or not.” So while we don’t exactly know why, we do know that EYA2 plays an important role in the axolotl’s regenerative powers.

Although Whited and her team were able to uncover some important findings, several questions still linger. How is the activation of EYA2 induced following amputation? Why is repeated amputation linked to less EYA2 genes? If cells are poised to anticipate injury / DNA damage, why is it that repeated amputation leads to less regeneration?

Image result for deadpool baby hand

Humans and other mammals are not quite as lucky as the axolotl. Amputation is a relevant and serious issue, yet no biological solution has been devised. Thankfully, the research conducted around axolotl regenerative properties could provide us with knowledge on natural cellular reprogramming. Maybe one day we’ll be able to regrow limbs just like Deadpool.

Will Sheehan
Post by Will Sheehan

Using Genetic Clues to Reform Cardiac Care

Experiencing cardiac arrest can be compared to being in a hot air balloon in a room that is rapidly filling with water. You are trapped, desperately aware of the danger you are in, and running out of time.

Andrew Landstrom, PHD, MD, shared this metaphor with his audience in the Duke Medicine Pavilion last Thursday, and a wave of empathy flooded through his listeners. He works as an Assistant Professor of Pediatrics in Duke University’s School of Medicine, and devotes his time and energy to studying the genetic and molecular causes of sudden cardiac death in the young.

Andrew Landstrom, PHD, MD (Photo from Duke Center for Applied Genomics and Precision Medicine)

For families of children who have died suddenly and unexpectedly, the worst thing of all is hearing their doctors say, “we have no idea why.” A third of sudden death cases in children have negative autopsies, which means these children die with no explanation.

When faced with an inconclusive autopsy, everyone wants answers. Why did these children die? How do we know it’s a problem with the heart? What can be done about it? What does it mean for the siblings of the child who died?

It has since been discovered that many of these unexplained deaths are actually the result of cardiac channelopathies, which are DNA mutations that cause ion channel defects in heart cell proteins. These mutations can mess up the electrical activity of the heart and cause a heart to beat in an irregular rhythm, which can have fatal consequences. Since this is a molecular problem, and not a structural one, it cannot be identified with a conventional autopsy, and requires a deeper level of genetic and molecular analysis.

One type of channelopathy is a condition known as CPVT, which is short for catecholaminergic polymorphic ventricular tachycardia. This potentially life-threatening genetic disorder is the result of a point mutation in the genome, which means that one tiny nucleotide being changed in the DNA can lead to the single most fatal arrhythmia (irregular heart rhythm) known.

Sixty percent of children suffering from CPVT have a mutation in their RYR2 gene. This gene encodes for a protein that is found in cardiac muscle, and is a key player in how calcium is processed in heart cells. The mutated version of this gene results in proteins that let way too much calcium flood the cell, which can cause fatal changes in heart rhythm.

Dr. Landstrom has been using genome research to identify and explain sudden cardiac death in children, but the human genome doesn’t always provide straightforward answers. The problem is, a mutation in the RYR2 gene doesn’t always mean a person will have CPVT, and having an incidental RYR2 gene is much more common than being diagnosed with CPVT. Dr. Landstrom is studying this gene to try to figure out which variants are pathologic, and which are physiological.

“The human genome is a lot more confusing than I think I gave it credit for, and we’re just learning to deal with that confusion now,” he admitted to his audience Feb. 14.

The Components of the Human Genome (photo from NHS National Genetics and Genomics Education Centre)

If a variant is falsely identified as pathologic, a patient will be given incorrect therapies, and suffer through unnecessary procedures. However, if a variant is falsely identified as physiological, and the patient isn’t given the necessary treatment, there will be no mitigation of the patient’s life threatening disease. Neither of these are good outcomes, so it’s very important to get it right. The current models for predicting pathogenicity are poor, and Dr. Landstrom is looking to design new model that will be able to avoid the personal, subjective opinions of human doctors and determine if a variant is pathologic or not.

Could serotonin levels be used to predict an infant’s vulnerability to SIDS? (photo from Elmedir, Wikimedia Commons)

Another area that is of interest to Dr. Landstrom is the problem of Sudden Infant Death Syndrome (SIDS), which affects about six in every 10,000 infants, and cannot be diagnosed before death. He is on the search for a biomarker that would be able to predict an infant’s vulnerability to SIDS, and thinks that these deaths may be related to elevated levels of serotonin. Finding a marker like this would allow doctors to save many healthy infants from unexplained death. Dr. Landstrom knows its not easy research and admitted “we have to fail — we are meant to fail,” on the path to success. He is very aware of both the ethical complexity and the exciting implications of genome research at Duke, and committed to converting his research into patient care.

Post by Anne Littlewood

Nature vs. Nurture and Addiction

Epigenetics involves modifications to DNA that do not change its sequence but only affect which genes are active, or expressed. Photo courtesy of whatisepigenetics.com

The progressive understanding of addiction as a disease rather than a choice has opened the door to better treatment and research, but there are aspects of addiction that make it uniquely difficult to treat.

One exceptional characteristic of addiction is its persistence even in the absence of drug use: during periods of abstinence, symptoms get worse over time, and response to the drug increases.

Researcher Elizabeth Heller, PhD, of the University of Pennsylvania Epigenetics Institute, is interested in understanding why we observe this persistence in symptoms even after drug use, the initial cause of the addiction, is stopped. Heller, who spoke at a Jan. 18 biochemistry seminar, believes the answer lies in epigenetic regulation.

Elizabeth Heller is interested in how changes in gene expression can explain the chronic nature of addiction.

Epigenetic regulation represents the nurture part of “nature vs. nurture.” Without changing the actual sequence of DNA, we have mechanisms in our body to control how and when cells express certain genes. These mechanisms are influenced by changes in our environment, and the process of influencing gene expression without altering the basic genetic code is called epigenetics.

Heller believes that we can understand the persistent nature of the symptoms of drugs of abuse even during abstinence by considering epigenetic changes caused by the drugs themselves.

To investigate the role of epigenetics in addiction, specifically cocaine addiction, Heller and her team have developed a series of tools to bind to DNA and influence expression of the molecules that play a role in epigenetic regulation, which are called transcription factors. They identified the FosB gene, which has been previously implicated as a regulator of drug addiction, as a site for these changes.

Increased expression of the FosB gene has been shown to increase sensitivity to cocaine, meaning individuals expressing this gene respond more than those not expressing it. Heller found that cocaine users show decreased levels of the protein responsible for inhibiting expression of FosB. This suggests cocaine use itself is depleting the protein that could help regulate and attenuate response to cocaine, making it more addictive.

Another gene, Nr4a1, is important in dopamine signaling, the reward pathway that is “hijacked” by drugs of abuse.  This gene has been shown to attenuate reward response to cocaine in mice. Mice who underwent epigenetic changes to suppress Nr4a1 showed increased reward response to cocaine. A drug that is currently used in cancer treatment has been shown to suppress Nr4a1 and, consequently, Heller has shown it can reduce cocaine reward behavior in mice.

The identification of genes like FosB and Nr4a1 and evidence that changes in gene expression are even greater in periods of abstinence than during drug use. These may be exciting leaps in our understanding of addiction, and ultimately finding treatments best-suited to such a unique and devastating disease.   

Post by undergraduate blogger Sarah Haurin

Post by undergraduate blogger Sarah Haurin

Pursuing Smell as a Path Into the Brain

Although the mystery of how the brain works and grows is a massive puzzle to figure out, the hope is that piece by piece, we can start to work towards a better understanding.

A person’s (or fly’s) sense of smell, or their olfactory system, is one of these pieces.

Though olfaction may not be the first part of the nervous system to cross someone’s mind when it comes to how we understand the brain, it is actually one of the most complex and diverse systems of an organism, and there’s a lot to understand within it, says Pelin Volkan, an assistant professor of biology and neurobiology and investigator in the Duke Institute for Brain Sciences.

Pelin Volkan in her lab.

Volkan and her lab have been working with fruit flies to try to unfold the many layers of the olfactory system, or the, “giant hairball,” as Volkan calls it.

Though she has been doing this work for years, she didn’t begin with an interest in neuroscience. Volkan was more interested in genetics in college and didn’t really start exploring neurobiology and development until her master’s degree at a Turkish university, when she worked with rats.

Not keen on working with rodents as model organisms but sticking with them anyway, she moved from Turkey to UNC to get her PhD, where she strayed away from neuroscience into molecular biology and development. Eventually, she realized she had a stronger passion for neuroscience, and ended up doing a postdoc at a Howard Hughes Medical Institute lab at UCLA for six years.

There, she became interested in receptors and neuronal wiring in the brain, propelling her to come to Duke and continue research on the brain’s connections and development.

One of the main reasons she loves working with the olfactory system is the many different scientific approaches that can be used to study it. Bouncing between using genetics, evolution, development, molecular biology,and other areas of study to understand the brain, her work is never static and she can take a more interdisciplinary approach to neuroscience where she is able to explore all the topics that interest her.

 Volkan says she has never had to settle on just one topic, and new questions are always arising that take her in directions she didn’t expect, which is what makes her current work particularly enjoyable for her.

“You have your stories, you close your stories, but then new questions come into play,” Volkan says. “And you have no choice but to follow those questions, so you just keep on going.”

And isn’t that what science is all about?

Guest Post by Angelina Katsanis, NCSSM 2019

Gene-Editing Human Embryos: What, How, Why?

Every seat full. Students perched on the aisle stairs and lining the back walls.

What topic could possibly pull so many away from their final exams? Not “How to Stop Procrastinating” nor “How to Pass Life After Failing Your Exams” but rather “Gene-Editing Human Embryos: Unpacking the Current Controversy” on the Duke campus.

Since Chinese researcher He Jiankui announced at the Second International Summit on Human Genome Editing in Hong Kong that he made the world’s first genetically engineered babies, a debate on the ethical implications has raged on social media.

On December 6, the University Program in Genetics and Genomics and the Molecular Genetics and Microbiology department co-hosted a panel responding to He’s claims. Charles A. Gersbach from the Biomedical Engineering department lead the discussion of what exactly happened and then joined the panel which also contained Misha Angrist, a senior fellow in the Science & Society initiative;  Heidi Cope, a genetic counselor; Giny Fouda, an assistant professor in pediatrics; and Vandana Shashi, a genetic counselor.

Dr. He Jiankui announced he had used CRISPR to edit genes in twin embryos that were then born at full term.

But what exactly has He potentially done to these twin girls? Can they fly? Breathe underwater? Photosynthesize? Not exactly. He said he deleted a gene called CCR5 to increase their HIV resistance. Two percent of Northern Europeans naturally have a mutation that removes the CCR5 gene from their DNA and as a result do not display any traits other than increased HIV resistance.

Many researchers have explored blocking CCR5 activity as a potential HIV treatment. Using CRISPR-Cas9, a genetic engineering technology that can cut and paste specific sequences in the DNA, He targeted CCR5 during in vitro fertilization. According to his tests, he successfully removed both copies of the CCR5 gene in one of the girls. However, in the other girl, the CCR5 remained normal on one chromosome and on the other, CRISPR had deleted more than intended.  The effects of that additional deletion are unknown. 
Both the girls are mosaics, meaning the genetic change occurred in some of their cells and not in others, leading to still more uncertainties.

Researchers have conducted genetic engineering experiments on both somatic cells and human embryo cells that were never brought to term. (Somatic cells constitute all parts of the body other than the eggs and sperm.) But because He altered the twin girls as embryos and then they grew to full term, their children could inherit these changes. This alters their family line, not just a single individual, increasing the ethical implications.

According to Shashi, He’s experiment becomes difficult to justify. Additionally, embryos have not consented to these changes in their genetics, unlike a patient undergoing genetic therapy.

Many doctors, scientists, and journalists have also questioned He’s lack of transparency because he hid this work until his grand announcement, which caused China to arrest him. In addition, as Cope explained, “it is not typically the PI who does the informed consent process” as He did with these parents.

While He defends his work by saying that the girls’ father carries HIV and wished to increase the girls’ safety, the twins were not actually at great risk for HIV. Their father’s medical history does not increase their chances of contracting the virus, and the overall risk for HIV in China is low. As Fouda emphasized in the panel, “there was no justification for this experiment.” While He discussed the potential for genetic engineering to help society, for these two individuals, no medical need existed, and that increases the ethical dilemma.

A final concern of researchers is the current inability to ensure technical competency and accuracy. As seen by the additional deletion in one of the girls,  CRISPR-Cas9 still makes errors. Thus using it to alter not only a human being but all of that individual’s progeny would demand a much higher standard, something close to a life-or-death scenario.

But, the panelists also noted, if it hadn’t been He, it would have been somebody else. Perhaps somebody else may have done it more ethically with more transparency and a more traditional consent process, Angrist said.

While He’s claims have yet to be proven, the fact that they could reasonably be true has many concerned. The World Health Organization has announced that they will begin greater oversight of genetic engineering of the human germline.

On campus over the last weeks, I’ve heard mixed reviews on He’s work with some joking about future superhero babies while others have reacted with fear. The technology does live among us; however, the world is working on writing the guidebook and unrolling the yellow tape.

Post by Lydia Goff

Sean Carroll on the Evolution of Snake Venom

What’s in a snake bite?

According to University of Wisconsin-Madison evolutionary biologist Sean Carroll who visited Duke and Durham last week, a snake bite contains a full index of clues.

In his recent research, Carroll has been studying the adaptations of novelties in animal form, such as snake venom. Rattlesnakes, he explains, are the picture of novelty. With traits such as a limbless body, fangs, infrared pits, patterned skin, venom, and the iconic rattle, they represent an amazing incarnation of evolution at work.

Rattlesnakes: the picture of novelty (Photo from USGS)

Snake venoms contain a complex mixture of proteins. This mixture can differ in several ways, but the most interesting difference to Carroll is the presence or absence of neurotoxins. Neurotoxic venom has proven to be a very useful trait, because neurotoxins destroy the nervous tissue of prey, effectively paralyzing the animal’s respiratory system.

Some of today’s rattlesnake species have neurotoxic venom, but some don’t. So how did this happen? That’s what Carroll was wondering too.

Some genes within genomes, such as HOX genes, evolve very slowly from their original position among the chromosomes, and see very few changes in the sequence in millions of years.

But snake venom Pla2 genes are quite the opposite. In recent history, there has been a massive expansion of these genes in the snake genome, Carroll said. When animals evolve new functions or forms, the question always arises: are these changes the result of brand new genes or old genes taking on new functions?

Another important consideration is the concept of regulatory versus structural genes. Regulatory genes control the activity of other genes, such as structural genes, and because of this, duplicates of regulatory genes are generally not going to be a favorable adaptation. In contrast, structural gene activity doesn’t affect other genes, and duplicates are often a positive change. This means it is easier for a new structural gene to evolve than a regulatory one. Carroll explained.

Evolutionary Biologist Sean Carroll (Photo from seanbcarroll.com)

Carroll examined neurotoxic and non-neurotoxic snakes living in overlapping environments. His research showed that the most recent common ancestor of these species was a snake with neurotoxic venom. When comparing the genetic code of neurotoxic snakes to non-neurotoxic ones, he found that the two differed by the presence or absence of 16 genes in the metalloproteinase gene complex. He said this meant that non-neurotoxic venom could not evolve from neurotoxic venom.

So what is the mechanism behind this change? What could be the evolutionary explanation?

When Carroll’s lab compared another pair of neurotoxic and non-neurotoxic species in a different region of the US, they found that the two species differed in exactly the same way, with the same set of genes deleted as had been observed in the first discovery. With this new information, Carroll realized that the differences must have occurred through the mechanism of hybridization, or the interbreeding of neurotoxic and non-neurotoxic species.

Carroll’s lab is now doing the structural work to study if the genes that result in neurotoxic and  non-neurotoxic protein complexes are old genes carrying out new functions or entirely new genes. They are using venom gland organoids to look into the regulatory processes of these genes.

In addition to his research studying the evolution of novelties, Carroll teaches molecular biology and genetics at Madison and has devoted a large portion of his career to  storytelling and science education.

Drug Homing Method Helps Rethink Parkinson’s

The brain is the body’s most complex organ, and consequently the least understood. In fact, researchers like Michael Tadross, MD, PhD, wonder if the current research methods employed by neuroscientists are telling us as much as we think.

Michael Tadross is using novel approaches to tease out the causes of neuropsychiatric diseases at a cellular level.

Current methods such as gene editing and pharmacology can reveal how certain genes and drugs affect the cells in a given area of the brain, but they’re limited in that they don’t account for differences among different cell types. With his research, Tadross has tried to target specific cell types to better understand mechanisms that cause neuropsychiatric disorders.

To do this, Tadross developed a method to ensure a drug injected into a region of the brain will only affect specific cell types. Tadross genetically engineered the cell type of interest so that a special receptor protein, called HaloTag, is expressed at the cell membrane. Additionally, the drug of interest is altered so that it is tethered to the molecule that binds with the HaloTag receptor. By connecting the drug to the Halo-Tag ligand, and engineering only the cell type of interest to express the specific Halo-Tag receptor, Tadross effectively limited the cells affected by the drug to just one type. He calls this method “Drugs Acutely Restricted by Tethering,” or DART.

Tadross has been using the DART method to better understand the mechanisms underlying Parkinson’s disease. Parkinson’s is a neurological disease that affects a region of the brain called the striatum, causing tremors, slow movement, and rigid muscles, among other motor deficits.

Only cells expressing the HaloTag receptor can bind to the AMPA-repressing drug, ensuring virtually perfect cell-type specificity.

Patients with Parkinson’s show decreased levels of the neurotransmitter dopamine in the striatum. Consequently, treatments that involve restoring dopamine levels improve symptoms. For these reasons, Parkinson’s has long been regarded as a disease caused by a deficit in dopamine.

With his technique, Tadross is challenging this assumption. In addition to death of dopaminergic neurons, Parkinson’s is associated with an increase of the strength of synapses, or connections, between neurons that express AMPA receptors, which are the most common excitatory receptors in the brain.

In order to simulate the effects of Parkinson’s, Tadross and his team induced the death of dopaminergic neurons in the striatum of mice. As expected, the mice displayed significant motor impairments consistent with Parkinson’s. However, in addition to inducing the death of these neurons, Tadross engineered the AMPA-expressing cells to produce the Halo-Tag protein.

Tadross then treated the mice striatum with a common AMPA receptor blocker tethered to the Halo-Tag ligand. Amazingly, blocking the activity of these AMPA-expressing neurons, even in the absence of the dopaminergic neurons, reversed the effects of Parkinson’s so that the previously affected mice moved normally.

Tadross’s findings with the Parkinson’s mice exemplifies how little we know about cause and effect in the brain. The key to designing effective treatments for neuropsychiatric diseases, and possibly other diseases outside the nervous system, may be in teasing out the relationship of specific types of cells to symptoms and targeting the disease that way.

The ingenious work of researchers like Tadross will undoubtedly help bring us closer to understanding how the brain truly works.

Post by undergraduate blogger Sarah Haurin

Post by undergraduate blogger Sarah Haurin

 

DNA Breakage: What Doesn’t Kill You…

What doesn’t kill you makes you stronger―at least according to Kelly Clarkson’s recovery song for middle school crushes, philosopher Friedrich Nietzsche, and New York University researcher Viji Subramanian.

During the creation of sperm or eggs, DNA molecules exchange genetic material. This increases the differences between offspring and their parents and the overall species diversity and is thought to make an individual and a species stronger.

However, to trade genetic information — through a process called recombination — the DNA molecules must break at points along the chromosomes, risking permanent damage and loss of genomic integrity. In humans, errors during recombination can lead to infertility, fetal loss, and birth defects.

Subramanian, a postdoctoral researcher in the lab of Andreas Hochwagen at NYU, spoke at Duke on February 26. She studies how cells prevent excessive DNA breakage and how they regulate repair.

Subramanian uses budding yeast to study the ‘synaptonemal complex,’ a structure that forms between pairing chromosomes as shown in the above image. Over three hundred DNA breakage hotspots exist in the budding yeast’s synaptonemal complex. Normally, double-stranded DNA breaks go from none to some and then return to none.

However, when Subramanian removed the synaptonemal complex, the breaks still appeared, but they did not completely disappear by the end of the process. She  concluded that synaptonemal complex shuts down DNA break formation. The synaptonemal complex therefore is one way cells prevent excessive DNA breakage.

The formation of the synaptonemal complex

 

During DNA breakage repair, preference must occur between the pairing chromosomes in order for recombination to correctly transpire. A protein called Mek1 promotes this bias by suppressing DNA in select areas. Early in the process of DNA breakage and repair Mek1 levels are high, while synaptonemal complex density is low. Later, the synaptonemal complex increases while the Mek1 decreases.

This led to Subramanian’s conclusion that synaptonemal complex is responsible for removing Mek1, allowing in DNA repair. She then explored if the protein pch2 regulates the removal of Mek1. In pch2-mutant budding yeast cells, DNA breaks were not repaired.

Subramanian showed that at least one aspect of DNA breakage and repair occurs through the Mek1 protein suppression of repair, creating selectivity between chromosomes. The synaptonemal complex then uses pch2 to remove Mek1 allowing DNA breakage repair.

Subramanian had another question about this process though: how is breakage ensured in small chromosomes? Because there are fewer possible breaking points, the chance of recombination seems lower in small chromosomes. However, Subramanian discovered that zones of high DNA break potential exist near the chromosome ends, allowing numerous breaks to form even in smaller chromosomes. This explains why smaller chromosomes actually exhibit a higher density of DNA breaks and recombination since their end zones occupy a larger percentage of their total surface area.

In the future, Subramanian wants to continue studying the specific mechanics behind DNA breaks and repair, including how the chromosomes reorganize during and after this process. She is also curious about how Mek1 suppresses repair and has more than 200 Mek1 mutants in her current study.

Kelly Clarkson may prove that heartbreaks don’t destroy you, but Viji Subramanian proves that DNA breaks create a stronger, more unique genetic code.         

Post by Lydia Goff

        

Obesity: Do Your Cells Have a Sweet Tooth?

Obesity is a global public health crisis that has doubled since 1980. That is why Damaris N. Lorenzo, a professor of  Cell Biology and Physiology at UNC-Chapel Hill, has devoted her research to this topic.

Specifically, she examines the role of ankyrin-B variants in metabolism. Ankyrins play a role in the movement of substances such as ions into and out of the cell. One of the ways that ankyrins affect this movement is through the glucose transporter protein GLUT4 which is present in the heart, skeletal muscles, and insulin-responsive tissues. GLUT4 plays a large role in glucose levels throughout the entire body.

Through her research, Lorenzo discovered that with modern life spans and high calorie diets, ankyrin-B variants can be a risk factor for metabolic disease. She presented her work for the Duke Developmental & Stem Cell Biology department on March 7th.

Prevalence of Self-Reported Obesity Among U.S. Adults by State, 2016

GLUT4 helps remove glucose from the body’s circulation by moving it into cells. The more GLUT4, the more sugar cells absorb.

Ankyrin-B’s role in regulating GLUT4 therefore proves really important for overall health. Through experiments on mice, Lorenzo discovered that mice manipulated to have ankyrin-B mutations also had high levels of cell surface GLUT4. This led to increased uptake of glucose into cells. Ankyrin-B therefore regulates how quickly glucose enters adipocytes, cells that store fat. These ankyrin-B deficient mice end up with adipocytes that have larger lipid droplets, which are fatty acids.

Lorenzo was able to conclude that ankyrin-B deficiency leads to age-dependent obesity in mutant mice. Age-dependent because young ankyrin-B mutant mice with high fat diets are actually more likely to be affected by this change.

Obese mouse versus a regular mouse

Ankyrin-B has only recently been recognized as part of GLUT4 movement into the cell. As cell sizes grow through increased glucose uptake, not only does the risk of obesity rise but also inflammation is triggered and metabolism becomes impaired, leading to overall poor health.

With obesity becoming a greater problem due to increased calorie consumption, poor dietary habits, physical inactivity, environmental and life stressors, medical conditions, and drug treatments, understanding factors inside of the body can help. Lorenzo seeks to discover how ankyrin-B protein might play a role in the amount of sugar our cells internalize.

Post by Lydia Goff

How Earth’s Earliest Lifeforms Protected Their Genes

A colorful hot spring in Yellowstone National Park

Heat-loving thermophile bacteria may have been some of the earliest lifeforms on Earth. Researchers are studying their great great great grandchildren, like those living in Yellowstone’s Grand Prismatic Spring, to understand how these early bacteria repaired their DNA.

Think your life is hard? Imagine being a tiny bacterium trying to get a foothold on a young and desolate Earth. The earliest lifeforms on our planet endured searing heat, ultraviolet radiation and an atmosphere devoid of oxygen.

Benjamin Rousseau, a research technician in David Beratan’s lab at Duke, studies one of the molecular machines that helped these bacteria survive their harsh environment. This molecule, called photolyase, fixes DNA damaged by ultraviolet (UV) radiation — the same wavelengths of sunlight that give us sunburn and put us at greater risk of skin cancer.

“Anything under the sun — in both meanings of the phrase — has to have ways to repair itself, and photolyase proteins are one of them,” Rousseau said. “They are one of the most ancient repair proteins.”

Though these proteins have been around for billions of years, scientists are still not quite sure exactly how they work. In a new study, Rousseau and coworkers, working with Professor David Beratan and Assistant Research Professor Agostino Migliore, used computer simulations to study photolyase in thermophiles, the great great great great grandchildren of Earth’s original bacterial pioneers.

The study appeared in the Feb. 28 issue of the Journal of the American Chemical Society.

DNA is built of chains of bases — A, C, G and T — whose order encodes our genetic information. UV light can trigger two adjacent bases to react and latch onto one other, rendering these genetic instructions unreadable.

Photolyase uses a molecular antenna to capture light from the sun and convert it into an electron. It then hands the electron over to the DNA strand, sparking a reaction that splits the two bases apart and restores the genetic information.

A ribbon diagram of a photolyase protein

Photolyase proteins use a molecular antenna (green, blue and red structure on the right) to harvest light and convert it into an electron. The adenine-containing structure in the middle hands the electron to the DNA strand, splitting apart DNA bases. Credit: Benjamin Rousseau, courtesy of the Journal of the American Chemical Society.

Rousseau studied the role of a molecule called adenine in shuttling the electron  from the molecular antenna to the DNA strand. He looked at photolyase in both the heat-loving ancestors of ancient bacteria, called thermophiles, and more modern bacteria like E. Coli that thrive at moderate temperatures, called mesophiles.

He found that in thermophiles, adenine played a role in transferring the electron to the DNA. But in E. coli, the adenine was in a different position, providing mainly structural support.

The results “strongly suggest that mesophiles and thermophiles fundamentally differ in their use of adenine for this electron transfer repair mechanism,” Rousseau said.

He also found that when he cooled E. Coli down to 20 degrees Celsius — about 68 degrees Fahrenheit — the adenine shifted back in place, resuming its transport function.

“It’s like a temperature-controlled switch,” Rousseau said.

Though humans no longer use photolyase for DNA repair, the protein persists in life as diverse as bacteria, fungi and plants — and is even being studied as an ingredient in sunscreens to help repair UV-damaged skin.

Understanding exactly how photolyase works may also help researchers design proteins with a variety of new functions, Rousseau said.

“Photolyase does all of the work on its own — it harvests the light, it transfers the electron over a huge distance to the other site, and then it cleaves the DNA bases,” Rousseau said. “Proteins with that kind of plethora of functions tend to be an attractive target for protein engineering.”

Post by Kara Manke

Page 1 of 7

Powered by WordPress & Theme by Anders Norén