Forests and farmland meet in the SAVA region of northern Madagascar. New research suggests that wildlife-human interactions in such areas could spread disease. Credit: James Herrera, Duke Lemur Center
COVID-19 continues to plague us, Mpox is an emerging global threat, and the avian flu is decimating industrial poultry as well as endangered wildlife. What do all these epidemics have in common? They originated in wild animals and spread to domestic animals and people.
This pattern of spread is a trademark of many diseases, termed zoonoses or zoonotic diseases. Our new research shows that in rural settings of Madagascar where forested landscapes were converted to agriculture and settlements, the potential transmission of a deadly virus, Hantavirus, is likely facilitated by invasive rodents, especially the black rat. Also responsible for cyclically occurring plague events in Madagascar, the black rats could be transmitting multiple diseases to people in rural communities, based on our studies.
The work was published April 7 in the journal Ecology and Evolution.
People can get Hantavirus from the droppings or urine of rodents like rats and mice. Credit: Wikimedia Commons
Hantavirus is mainly spread from rodents to people via exposure to their urine and feces in the environment, and being bitten. It can cause severe and deadly disease of the lungs and kidneys, resulting in fever, fatigue, aches and pains, followed later by coughing, shortness of breath, and fluid in the lungs, causing death in almost 40% of people who experience later-stage symptoms. In rural settings like in Madagascar, there are no tests available to diagnose Hantavirus, and the generalized symptoms are often confused for influenza or other diseases. With no specific treatment, either, Hantavirus is an important, though neglected, zoonotic pathogen.
This research, funded by the U.S. National Institute of Health and National Science Foundation, as well as Duke University, connects scientists from around the world with diverse specialties, including field biology, infectious disease epidemiology, social sciences, veterinary health, and more. Over the last eight years, our international and interdisciplinary team studied zoonotic pathogens in wildlife, domestic animals, and people. We compare how pathogens vary among different animals and in different landscapes.
Herrera and Malagasy student Tamby Ranaivoson check local mammals for pathogens.
There are more than 29 species of small mammals and another 12 species of bats in these wildlife communities, including native rodents and animals that look like hedgehogs and shrews but are a unique group from Madagascar, the tenrecs. There are also ubiquitous introduced mammals, including black rats, the house mouse, and the shrew, which have spread around the world wherever almost everywhere people go. We studied natural, pristine rainforests and compared to different features of the agroecosystem including regenerating forests, agroforests, and rice fields. We captured rodents and shrews in people’s households, as well, to compare how small mammals and zoonotic pathogens change over this gradient of human land use.
Our results show that black rats were the only species in our system that were infected with Hantavirus, with 10% of sampled individuals infected. Rat abundance and infection were higher in agricultural settings, including rice fields and agroforests, where rats were larger. While some rats in people’s homes were infected, no infected individuals were found in the more mature forests. Hantavirus infection was lower in the homes than in the agricultural fields, but exposure to infected rats is likely higher in homes because of the close contact in enclosed settings. The results highlight how infectious disease risk varies across the landscape because of complex impacts of human land use on natural ecosystems.
The Hantavirus results closely mirror those our team have shown for other disease-causing emerging pathogens, including Astroviruses and Leptospira. Rats and the house mouse were the most commonly infected species, and in the case of Astrovirus, only a single individual of a native species was infected. While Astrovirus infection was more common in the regenerating scrubby environments, Leptospira infection was most common in seasonally flooded rice fields. These varying landscapes of disease risk have important implications for the emergence of zoonotic diseases as well as applications to policy for public health.
Preserving natural forest and facilitating the regeneration of transformed forests may decrease disease risk because infected individuals were rarely captured in natural forests. This may be because there are natural predators to keep rodent populations in check, though further research is needed. Calls to eradicate black rat populations have seldom been successful, but through nature-based solutions like restoration to encourage natural predators, it may be possible to decrease abundance of nuisance rodents. Awareness-raising campaigns to teach about the signs and symptoms of common rodent-borne diseases for rural communities will also be rolled out, and encouraging local health care workers to check for these symptoms in the community members they serve.
We share our results with the Ministry of Public Health and Ministry of Environment and Sustainable Development, and will be organizing more think-tank meetings with relevant actors to co-design intervention strategies that can address these potentially emerging threats to human well-being.
By James Herrera, Ph.D., Duke Lemur Center SAVA Conservation Initiative
I had just spent the weekend at the Duke Marine Lab, listening to my classmates discuss solutions to the shrinking population of a critically endangered porpoise species. So when I attended the March 25 Oceans Week panel immediately after, marine megafauna were already at the forefront of my mind.
Image from Florida Fish and Wildlife Conservation Commission, CC BY-NC-ND 2.0
The open and interconnected nature of the ocean already presents unique conservation issues compared to terrestrial ecosystems, but it’s even more difficult to work on policies for marine megafauna that regularly traverse oceans. Countries establishing coastal estuaries or coral reefs as Marine Protected Areas (MPAs) can be effective for inhabitants like reef sharks that have limited ranges. However, protecting highly migratory animals like whale sharks and blue whales often requires international agreements and collaboration between countries.
To better protect these species, Dr. César Peñaherrera launched the nonprofit MigraMar, which researches them through extensive tagging in the Eastern Pacific and partners with a large network to share and aggregate data. They’ve tagged 642 hammerhead sharks so far, according to their website, and this is just one of the migratory species they work with. Peñaherrera, whose background is in quantitative marine science, spends much of his time when he isn’t in the field making sense of the vast sets of data points. One of MigraMar’s main goals is to provide evidence for greater connectivity between Marine Protected Areas. Think wildlife corridors, but underwater. By mapping out the most predictable migration routes for marine megafauna, they can inform the best routes for these “Swimways.”
Peñaherrera shared an image of a diver approaching hammerhead sharks with a pole spear, which helps them attach an acoustic tag to a shark.
Conserving sea turtles is a little different than other species–they face different threats throughout life as they go from land to sea and back to land to lay eggs. Carlos Diez, who researches turtles extensively at the Puerto Rico Department of Natural and Environmental Resources, outlined four “unresolved” main threats within terrestrial ecosystems: coastal development, light pollution, exotic species, and conflicts over habitat use.
Climate change also poses a potential threat, since sex determination in sea turtles is dependent on temperatures. As many parts of their range warm, the sex ratio of turtles in some locations has leaned increasingly female. That’s one area that Diez has conducted research in: determining when, where, and how much the balance of turtle sexes is changing.
While collecting accurate data on wildlife is necessary, the complexity of marine conservation hinges as much on the behavior of people as it does wildlife.
Perhaps that’s why shark researcher, science communicator and Puerto Rican native Melissa Cristina Márquez said one of her focuses is on the “human dimensions of shark conservation.”
Deep connection to the inhabitants of the oceans leads to more active conservation. Indigenous cultures, for example, have fished sustainably for ages. Márquez, who is currently based in Australia, said, “We’ve seen that a lot in Fiji, in Papua, New Guinea, with sharks and their cultural connection to sharks, and how that kind of spurred forward a bit more protection of those animals.”
“The cultural, historic and political contexts in conservation… these factors really shape the value placed on marine biodiversity, the policies that are developed and the resources that are allocated for conservation efforts,” she said.
As a fisheries officer for the Food and Agriculture Organization of the United Nations, Carlos Fuentevilla has a more specific focus when it comes to the human dimension: reconciling sustainable management with the need to feed people.
“We currently now eat around 20.7 kilograms per capita per day of food,” said Fuentevilla, pointing out that the world would have to ramp up production if this rate is to remain the same at 2050. “So it’s not a question of we have to eat less… It’s a question that we have to produce more–how can we do it sustainably?”
Much of it will have to come down to how we manage our fisheries. While most fish aren’t technically megafauna, Fuentevilla pointed out that marine megafauna regularly interact with, and are affected by, our fishing activities.
Fishery scientists will tell you they don’t manage fish, they manage people.
Scientists like Fuentevilla and those in government use ecosystem based management, which considers the species in an area as well as the stakeholders and competing interests that affect them, including fishermen and coastal developers. “You know, fishery scientists will tell you they don’t manage fish, they manage people, and that’s right,” Fuentevilla said.
The overarching theme is that the ocean is an open system, and nothing in marine conservation occurs in a vacuum. Fulfilling this work means having to go beyond national policy to international frameworks and understanding the other key players in sea and on land.
Perfectionism, although a way to control our surroundings, can often control us. As a student in the stressful and competitive environment of college, I’ve seen the pursuit of perfection overwhelm me and those around me. These incidents caught the attention of Duke psychiatry and behavioral science professors Nancy Zucker and Rachel Alison Adcock. The two decided to do an in-depth study of perfectionism, and how perfectionists can better handle their stress and be more productive.
Photo credits: Halyna Dorozhynska via Canva
When first trying to measure perfectionism, Zucker and Adcock found that “…the core essence of perfectionism was the sphere of failure,” meaning that out of everyone they studied, the majority of participants tended to be pushed to perfectionism because of a fear of failing. Given this, Zucker and Adcock were able to show a correlation between one’s concern over mistakes and their anxiety, social anxiety, and depressive symptoms.
Rachel Alison Adcock, M.D., Ph.D., and Nancy Zucker, Ph.D. Credit: Duke
Even with these correlations being present, “If given the choice between being a perfectionist and not being a perfectionist, 62.5% [of perfectionists] would choose to stay.” This means that in order to better support perfectionists in their everyday lives, Zucker and Adcock had to find ways to support perfectionists without trying to change them–in other words, you can’t just tell perfectionists to not be perfectionists anymore. So together, they created four different solutions to help minimize the harm of perfectionism:
Solution 1: Increase resource
Zucker and Adcock note that this is usually advice given for better mental health; “Go do something fun. Hang out with your friends. Go do yoga…” While these tips can be helpful, Zucker and Adcock were more interested in the opposite side of the issue–how instead perfectionists can work on optimizing their demands
Solution 2: Defining demands
Again, Zucker and Adcock mention some limitations to this argument. It is not expected that perfectionists will reduce their standards–for example, “Duke. A slightly less than exceptional education, Duke Health. Slightly less than exceptional care.” Therefore this solution of defining demands relies on both the perfectionist and those in the position to assign work to the perfectionist. An example of this is a professor reevaluating the importance of the work they are assigning–does the work really need to be completed by this date? By ensuring the work assigned and completed “respect[s] our own resources, prioritize[s] stamina and [is] orient[ed] to growth and progress,” the standards of work become more realistic and achievable.
Photo credits: Wikimedia
Solution 3: Change the reward value (and distress) of making mistakes via self-regulation
Through testing how individuals responded to high confidence versus low confidence errors (or in other words, individuals who confidently answer a question that is incorrect are more likely to remember the correct solution after being told than those who answer a question with low confidence and are incorrect), Zucker and Adcock found that “high perfectionism individuals are less sensitive to error than low perfectionism individuals” and “high perfectionism individuals are only sensitive to error after negative or positive framing.” This means that changing how perfectionists are made aware of their mistakes (showing them how mistakes are learning opportunities) can “increase perfectionists’ sensitivity to surprising feedback in updating beliefs,” and thus help those individuals learn from their mistakes better–so as to show how mistakes are crucial for learning.
Solution 4: Change reward value and distress of mistakes via social contingencies and milieu
Similar to solution three, solution four’s goal is to change the perception of mistakes, however, this solution proposes a change through group support instead of self-regulation. This could look like peer support groups for perfectionist individuals. Zucker and Adcock emphasize the importance of the message, “We are more than a single moment in time,” which can be beneficial for a perfectionist individual to hear from their trusted peers.
Photo credits: IconScout
The importance of mistakes was a theme that continued to pop up throughout Zucker and Adcock’s presentation. And while that can seem cliche, it’s something that we as students, professors, and people, should listen to more (thanks to Zucker and Adcock, we’ve also seen how making mistakes is scientifically proven to teach us the correct answer).
As the researchers wrapped up their talk, they left us with one more quote that stuck with me. “We are in the pursuit of the unknown. Hope is medicine. Imperatives are not hope.”
In a place like college, where just one failure can feel like the end of the world, Zucker and Adcock’s research encourages us to grow comfortable with the unknown so that our mistakes too can be something to be proud of.
Through three compelling anecdotes, Emanuel showed us how environmental science and environmental justice can be viewed as a bidirectional relationship.
Ryan Emanuel (photo by Duke University)
Story one: After earning his degree in hydrology from Duke in the 90s, Emanuel pursued advanced studies in evaporation and carbon cycling. With an education, Emanuel began fieldwork — conducting studies and climbing tall towers (all the fun sciencey stuff). However, as a person from North Carolina’s Lumbee Tribe, he noticed the disconnect between his work and his community. He was acutely aware of a cultural emphasis on education –the expectation that you will use your education to give back to your community. He didn’t feel his work in hydrology was serving the Lumbee tribe’s interest, so he decided to change that.
Sean Jones from the Lumbee Tribe (photo by News & Record Final)
During his talk, Emanuel emphasized the significance of “accountability” and “motivation.”
“Examining our motivation can allow us to better understand who we are accountable to in our work… We are all accountable somehow, and we can be accountable in different ways to different groups.”
Understanding that his work had to be accountable for the Lumbee tribe, Emanuel became an ambassador for STEM in higher education. This new path enabled him to mentor youth with tribal backgrounds, prepare them for higher education, and even form strong relationships with them.
Story two:
The EPA says environmental justice is “fair treatment and meaningful involvement of all people in environmental decision-making.”
Emanuel recognized that governments should be accountable for including the voices and opinions of marginalized groups — ‘all people’ — within their environmental decision-making. But Emanuel said there was a dissonance between these promises and reality. One example is the placement of Concentrated Animal Feeding Operations (CAFOs) where livestock are raised in confinement for agricultural purposes.
CAFOs in North Carolina are disproportionately located in communities of minority groups. Many issues arise from this, such as the pollution produced from CAFOs (air and water).
I was shocked to see the many ways that smaller, marginalized communities are affected. These issues are often relatively hidden — not surprising given that mainstream media usually focuses on large (easily observable) community-based discrimination.
Map of locations of CAFOs in North Carolina (photo by Jiyoung Son)
Emanuel began to look at the interplay between environmental science (observation, analysis, testing) and environmental justice (lived experience, regulations, fairness). He let go of the previous idea that environmental science only seeks to provide data and support to drive change in environmental justice. He began to ask, “How can environmental justice improve environmental science?”
Story 3: Combining his accountability for the Lumbee tribe with his hypothesis about the bidirectional relationship of environmental science and environmental justice, Ryan Emanuel began looking into the observably negative impacts of the Atlantic Coast Pipeline (ACP). Spanning over 600 miles, this gas pipeline will provide many benefits for North Carolina communities, such as lower costs, new jobs, and less pollution, according to Duke Energy.
Emanuel saw that the pipeline route went right through Lumbee territory, which could mean devastating effects for the community, such as health impacts and declining property values.
Proposed Atlantic Coast Pipeline route (photo by SAS Blogs)
The crux of the issue lay in the negligence of project developers who failed to connect with the marginalized communities the pipeline would run through (such as the Lumbee). Tribal voices and input were completely ignored.
Emanuel helped prepare tribal leaders for meetings with corporate representatives and wrote a commentary on the need for the federal government to collaborate with the tribes they would be affecting.
Eventually, after years of lawsuits, the companies in charge of the project abandoned the ACP project. When I searched “Why was the Atlantic Coast Pipeline project canceled?” Duke Energy claimed the cancellation was because of “ongoing delays and increasing cost uncertainty, which threaten(ed) the economic viability of the project.” Other sources provide details on the legal challenges and criticism the project faced.
After the companies dropped the plan, they were quick to purchase forest land near the Lumbee tribe and begin the development of natural gas infrastructures that would allow for the storage of gas when the demand was low and the ability to release the gas when prices went up.
I found it quite impressive that Ryan was able to attend many meetings between the Lumbee Tribe and the company, without saying a word. The tribal council had asked him to only observe and not speak. During one meeting, a representative from the company that purchased the forest land said that they wanted to clarify that “pipelines are not disproportionately located in marginalized communities — they are everywhere.”
Emanuel began testing this hypothesis, eventually gathering enough evidence to statistically prove that there is a “spatial correlation between social vulnerability and pipeline density.” His findings gathered significant media attention and have even been expanded on to show the need for change and increased safety within pipeline communities.
Emanuel concluded by explaining that the principles of environmental justice can show us what questions we should be asking, who we should be asking them of, and who we should be keeping in mind when conducting research.
The statement Emanuel made that stuck with me the most was, “If we value examining problems from all angles, we have to pay attention to which perspectives are missing.”
Ryan Emanuel’s book (photo by The Magazine of the Sierra Club)
After Emanuel’s talk, I was surprised that I had never been introduced to this way of thinking before. It seems like common knowledge that focusing on justice and equity can improve how we investigate problems scientifically. However, it is not completely surprising that this information is not common sense, given the systematic issues within our country.
Emanuel’s book, “On the Swamp: Fighting for Indigenous Environmental Justice,” dives deeper into these concepts about the relationship between environmental justice and environmental science. I believe this book would bring nuance to our world today, where there is a clear need for change and the uplifting of voices that have been quieted for so long.
When we think about global interconnectedness we often focus on varied cultures, but we tend to forget about innumerable systemic dynamics that could enrich our understanding of the world. The senior presentations given by students in International Comparative Studies to mark the end of the term shared their mission to understand the world better through research.
The exploration of language ideologies in Mauritius, the complex yet fascinating web of transitional justice, the contentious aspects of medical missions in global health, and the intersection between superficiality and urban dynamics in Los Angeles all demonstrated understanding the unseen world at play.
Language and Identity in Mauritius
Katy Turner’s research into the Mauritian education system sheds light on the complex interplay between language and colonial histories. Even though one could argue colonialism is a tale of the past, Turner’s research proved otherwise. In Mauritius, where the creole language — formed by enslaved individuals and now a mother tongue — meets societal resistance, the educational emphasis remains on English and French. Turner’s exploration raises critical questions: How do Mauritian primary school teachers perceive the role of Mauritian Creole, especially given its contentious status? How has the colonial past shaped these perceptions?
Her findings reveal a conflicted landscape. While some view the Mauritian Creole as a relic of the past, advocating for a future aligned with English, others see it as vital for a holistic educational experience. Its colloquial use in classrooms helps connect students with their history, and according to her observation, students didn’t mind its use over English and French, but their parents very much did. They preferred English and French over their own local language. This put me in a daze. Afterall, being Pakistani born and raised, this wasn’t a surprise: English is the language of the rich, and Urdu is the language of the poor. These complex linguistic preferences of these countries highlight how colonized some developing countries are till today.
In Mauritius, the narratives of slaves, parents and educational policies often discourage this practice. This ‘hidden curriculum‘ suggests a deep-seated struggle with identity and linguistic heritage, hinting at a broader dialogue about language as a carrier of culture and history. This colonial hangover is one we need to fight to connect with what our culture really means.
The Anti-Politics of Memory in Transitional Justice
GraceEndrud delves into the “anti-politics” of memory, examining how transitional justice often morphs into a universal narrative that may overlook local truths. Her focus on the International Center for Transitional Justice (ICTJ) illuminates the challenges of defining justice in varied contexts — ranging from criminal justice to truth commissions. The ICTJ’s extensive work is reflected in their archival collections spanning several decades. Grace sat in the library searching through archives for days, and went to great lengths (like analyzing the order they were in) to show their global influence also reveals tensions, such as in Iraq where document manipulation was used to sway electoral outcomes.
Blindfolded suspected militants, with possible links to al-Qaeda, are seen at Iraqi police headquarters in Diyala province, north of Baghdad December 5, 2011. Police forces arrested 30 suspected militants during a raid in Diyala province, a police source said. REUTERS/Stringer
This research was inspired by James Ferguson’s analysis in “The Anti-Politics Machine.” It suggested that transitional justice can sometimes strip away the political layers that are essential for understanding and addressing the root causes of injustice.
Reassessing Medical Missions Through a Decolonial Lens
Catherine Purnell’s investigation into medical missions driven by evangelical Christian beliefs poses questions about the possibility of decolonizing global health. The narrative that divides the world into those who help and those who need help is deeply entrenched in the ethos of many medical missions. Purnell’s interviews with medical missionaries reveal an underlying intention to provide care in remote areas, which often includes building schools and water systems alongside healthcare.
However, the real challenge lies in shifting these missions from a model of evangelical humanitarianism to one of genuine decolonization. According to her, true decolonized care would prioritize giving autonomy back to local communities and focusing on solidarity rather than charity. Purnell’s findings suggest a fundamental conflict between the traditional goals of medical missions and the emerging needs of decolonial, equitable healthcare practices.
The Multicultural Dynamics of Urban Spaces
Jess Blumenthal’s exploration into the complex narratives of multiculturalism in Los Angeles offers a fascinating lens through which to view urban dynamics and identity. Starting with the historic intersections in neighborhoods like Little Tokyo/Bronzeville, Jess examines the fluid and often contentious shifts in community compositions and their cultural implications. Originally a Japanese neighborhood, Bronzeville became predominantly African American during World War II when Japanese residents were interned. Such shifts underscore the impermanence and adaptability of urban ethnic landscapes.
Jess connects these historical and cultural narratives to broader literary works like “Tropic of Orange” and Octavia Butler’s “Parable of the Sower.” These works critique the superficiality of multiculturalism, suggesting a more interconnected and deeply woven fabric of society that transcends simplistic understandings of diversity. Jess uses these stories to highlight a poignant metaphor: just as characters in Butler’s work envision a destiny among the stars, our own societal evolution might be seen as an ongoing journey towards a more genuinely integrated multiculturalism.
Conclusion
Together, these presentations accentuated the complexities of cultural identity, memory politics, and health equity in a globalized world. They challenge us to think critically about how languages shape national identity, how justice processes can reflect deeper truths without falling into the traps of depoliticization, and how global health initiatives might genuinely respect and uplift the communities they intend to serve. As our world becomes increasingly interconnected, these discussions are crucial for fostering a more just and equitable global society.
Two of the buildings at Bennett Place, a preserved family farm in Durham known largely for its role in a Civil War surrender. Kalei Porter, a Duke Liberal Studies graduate student, recently led an event focusing on the natural history and land use of Bennett Place over time.
Bennett Place, a North Carolina State Historic Site in Durham, is known for its role in a Civil War surrender, but a recent event focusing on the site’s natural history sought to broaden that story. Kalei Porter, a Graduate Liberal Studies student at Duke, led the event, which focused on changing land use at Bennett Place over time.
Jim Barrett, a volunteer tour guide, led a tour of Bennett Place focused on the more well known parts of its history. “The Civil War was a series of five military surrenders,” he explains. The first occurred in Appomattox Court House in Virginia, but while that marked a symbolic end to the war, technically only the Confederate Army of Northern Virginia surrendered there. Another surrender meeting occurred on the land now known as Bennett Place, where Union General Sherman and Confederate General Johnston met at the Bennett family’s small farm to discuss their terms of surrender.
That meeting ultimately led to the preservation of the farm as a historic site, but the history of Bennett Place “should not be an exclusive Civil War story,” Porter says. She has a degree in environmental biology, and her work at Bennett Place combines her interests in ecology and history.
For the past two academic years, Porter has been involved with the North Carolina Lives and Legacies Project, which uses research to tell more nuanced, inclusive stories about land use at sites like Bennett Place. The project, which is based in Duke’s Information Science + Studies, has also received support from Bass Connections in the Vice Provost’s Office for Interdisciplinary Studies and Duke University Libraries. This summer, Kalei will continue her research as a Graduate Project Manager in a History+ team.
James Bennett and his family were small-scale, yeoman farmers. They had about 200 acres, Porter says, “sustaining four to ten people.” They grew most of their own food and sold handmade clothing and crops like watermelons and vegetables at a local market, Barrett says. The site was preserved by civil leaders, including one of Washington Duke’s sons, according to Barrett. The original house was destroyed in a fire in 1921 but was rebuilt in 1962 with material from a similar house, Porter explains. On Barrett’s tour, he mentioned that Sherman brought an illustrator to the surrender meeting, and the pictures from that day still exist, so we know what the house originally looked like. The new house was rebuilt to resemble the old one.
Porter’s event included a display of plants from Duke’s herbarium. The dried plants she chose were collected in North Carolina in different decades, preserving important information about flowering time and native flora in specific sites. “You have a little slice of spring from as far back as the 30’s,” Porter says about the plants she chose.
Plants from Duke’s herbarium were on display at the event. Specimens like these can preserve important information like what time of year plants were flowering in different decades.
The exhibit at the event includes other items, too, like a list of who has used this land at different points in history. Before 1782, according to a sign at the event, several Native American tribes inhabited the area, including the Seponi, Cheraw, Catawba, Lumbee, Occaneechi, and Shakori. In 1782, Jacob Baldwin purchased the land, and it changed hands at least twice again before James Bennett bought it in 1846.
There is also a detailed soil map from 1920 on display. Such surveys can make farming more profitable since different crops do best in different soil conditions. Porter says the first geological survey in North Carolina was conducted in the 1850s, making North Carolina only the third state—and the first state in the South—to do soil surveys.
Porter has been working on transcribing Bennett’s ledger papers, which she describes as “a cross between a diary, a planner, and a credit card log.” They provide a record of daily life for a small farmer in North Carolina. Porter says Bennett made a lot of notes about fixing his tools.
Later in the day, Porter led a tour of the site with a focus on natural history. We start on a path lined with fences. Historically, it was a road that went from Raleigh to Hillsborough, and it also “roughly lines up with some of the Native American trading routes that predated the property,” Porter says.
The Unity Monument at Bennett Place. The monument was built in the 1920s, and its original meaning isn’t entirely clear.
We stop at the Unity monument, built in the 1920s soon after the Bennett house burned down. Robert Buerglener, Research Associate, Duke Information Science + Studies, explained to me earlier that the Unity monument may have survived because its meaning is more ambiguous than many Confederate monuments. Porter says the monument incorporated stone from the North, West, and South to represent the theme of unity.
We tour the house and separate kitchen. Both give glimpses into the lives of the Bennett Family. A ladle made from a dried gourd. Jars of persimmon seeds and other items that, according to Barrett, were used as wartime replacements for more typical ingredients. Wood siding on the house that Porter says dates from the 1850s.
It’s not just the buildings that reveal the story of this land. Porter points out trees, shrubs, and fences as well.
Before the Civil War, she says, livestock here roamed free. Buildings and gardens would have been fenced to keep the livestock out. After the war, however, fencing became more expensive, and people started creating fences around the livestock instead and building cheaper, less sturdy fences.
As we walk toward a nature trail at the back of the property, Porter draws our attention to the pine trees. Both loblolly and shortleaf pines grow here. Historically, shortleaf would have been more common in this area, but places that have been recently managed for timber tend to have loblolly. Most of these pines are still relatively young; they were not here when the Bennetts lived on this land.
In the forest, many of the low-growing plants we pass are species of blueberry. Porter has searched through digitized North Carolina newspapers for records of the word “blueberry.” It was first mentioned in the 1880s as a verb, blueberrying (women going out to pick wild blueberries) but wasn’t grown commercially in this area until the 1930s.
Porter ends her tour by asking us to look at the sky. Even the sky could have changed in the centuries since the Bennetts farmed this land. Today it’s clear and blue, but modern pollution could make it less blue than it used to be, Porter says, and some days we might see airplane contrails, which the Bennetts would never have seen back then. “Sometimes the sky is even asynchronous with time,” Porter says.
For some people, the word “rainforest” conjures up vague notions of teeming jungles. But Camille DeSisto sees something more specific: a complex interdependent web.
For the past few years, the Duke graduate student has been part of a community-driven study exploring the relationships between people, plants and lemurs in a rainforest in northern Madagascar, where the health of one species depends on the health of others.
Many lemurs, for example, eat the fruits of forest trees and deposit their seeds far and wide in their droppings, thus helping the plants spread. People, in turn, depend on the plants for things like food, shelter and medicines.
But increasingly, deforestation and other disturbances are throwing these interactions out of whack.
DeSisto and her colleagues have been working in a 750,000-acre forest corridor in northeast Madagascar known as the COMATSA that connects two national parks.
The area supports over 200 tree species and nine species of lemurs, and is home to numerous communities of people.
A red-bellied lemur (Eulemur rubriventer) in a rainforest in northeast Madagascar. Photo by Martin Braun.
“People live together with nature in this landscape,” said DeSisto, who is working toward her Ph.D. in ecology at the Nicholas School of the Environment.
But logging, hunting and other stressors such as poverty and food insecurity have taken their toll.
Over the last quarter century, the area has lost 14% of its forests, mostly to make way for vanilla and rice.
This loss of wild habitats risks setting off a series of changes. Fewer trees also means fewer fruit-eating lemurs, which could create a feedback loop in which the trees that remain have fewer opportunities to replace themselves and sprout up elsewhere — a critical ability if trees are going to track climate change.
DeSisto and her colleagues are trying to better understand this web of connections as part of a larger effort to maximize forest resilience into an uncertain future.
The research requires dozens of students and researchers from universities in Madagascar and the U.S., not to mention local botanists and lemur experts, the local forest management association, and consultants and guides from nearby national parks, all working together across time zones, cultures and languages.
Forest field team members at camp (not everyone present). Photo credit: Jane Slentz-Kesler.
Together, they’ve found that scientific approaches such as fecal sampling or transect surveys can only identify so much of nature’s interconnected web.
Many lemurs are small, and only active at night or during certain times of year, which can make them hard to spot — especially for researchers who may only be on the ground for a limited time.
To fill the gaps, they’re also conducting interviews with local community members who have accumulated knowledge from a lifetime of living on the land, such as which lemurs like to munch on certain plants, what parts they prefer, and whether people rely on them for food or other uses.
By integrating different kinds of skills and expertise, the team has been able to map hidden connections between species that more traditional scientific methods miss.
For example, learning from the expertise of local community members helped them understand that forest patches that are regenerating after clear-cutting attract nocturnal lemurs that may — depending on which fruits they like to eat — promote the forest’s regrowth.
Camille DeSisto after a successful morning collecting lemur fecal samples.
Research collaborations aren’t unusual in science. But DeSisto says that building collaborations with colleagues more than 9,000 miles away from where she lives poses unique challenges.
Just getting to her field site involves four flights, several bumpy car rides, climbing steep trails and crossing slippery logs.
“Language barriers are definitely a challenge too,” DeSisto said.
She’s been studying Malagasy for seven years, but the language’s 18 dialects can make it hard to follow every joke her colleagues tell around the campfire.
To keep her language skills sharp she goes to weekly tutoring sessions when she’s back in the U.S., and she even helped start the first formal class on the language for Duke students.
“I like to think of it as language opportunities, not just language barriers,” DeSisto said.”
“Certain topics I can talk about with much more ease than others,” she added. “But I think making efforts to learn the language is really important.”
When they can’t have face-to-face meetings the team checks in remotely, using videoconferencing and instant messaging to agree on each step of the research pipeline, from coming up with goals and questions and collecting data to publishing their findings.
“That’s hard to navigate when we’re so far away,” DeSisto said. But, she adds, the teamwork and knowledge sharing make it worth it. “It’s the best part of research.”
This research was supported by Duke Bass Connections (“Biocultural Sustainability in Madagascar,” co-led by James Herrera), Duke Global, The Explorers Club, Primate Conservation, Inc., Phipps Conservatory and Botanical Gardens, and the Garden Club of America.
Jonny Behrens looks for aquatic macroinvertebrates with Duke Forest Research Tour participants.
“Who would be surprised if I told you that rivers fart?”
Nick Marzolf, Ph.D., went on to explain that streams release greenhouse gases from decaying matter and gas-producing bacteria. This revelation was one of several new facts I learned at the annual Duke Forest Research Tour in December.
“First and foremost,” says Duke Forest Senior Program Coordinator Maggie Heraty, “the Duke Forest is a teaching and research laboratory.” The Office of the Duke Forest hosts an annual Research Tour to showcase research activities and connect to the wider community. “Connecting people to science and nature, and demystifying scientific research, is a key part of our goals here,” Heraty says.
Duke Forest, which consists of over 7,000 acres in Durham, Orange, and Alamance Counties, lies within the Cape Fear and Neuse river basins, two of seventeen river basins in North Carolina. What exactly is a river basin? Heraty quoted a poetic definition from North Carolina Environmental Education:
“A river basin encompasses all the land surface drained by many finger-like streams and creeks flowing downhill into one another and eventually into one river, which forms its artery and backbone. As a bathtub catches all the water that falls within its sides and directs the water out its drain, a river basin sends all the water falling within its surrounding ridges into its system of creeks and streams to gurgle and splash downhill into its river and out to an estuary or the ocean.”
Located within the Cape Fear River Basin, the headwaters of New Hope Creek, which passes through the Korstian Division of Duke Forest, are fed by roughly 33,000 acres of land, over 5,000 of which are in the Duke Forest. Land outside of the Forest is of vital importance, too. Duke Forest is working in partnership with other local conservation organizations through the Triangle Connectivity Collaboration, an initiative to connect natural areas, create wildlife corridors, reduce habitat fragmentation, and protect biodiversity in the Triangle region.
New Hope Creek in the Korstian Division of the Duke Forest.
Dwarf waterdogs
We walked down a short trail by the creek, and the tour split into two groups. Our group walked farther along the stream to meet two herpetologists studying the elusive dwarf waterdog.
Bryan Stuart, Ph.D., Research Curator of Herpetology at the North Carolina Museum of Natural Sciences, and Ron Grunwald, Ph.D., Duke University Senior Lecturer Emeritus, are involved in a study looking for dwarf waterdog salamanders (Necturus punctatus) in New Hope Creek. Dwarf waterdogs are paedomorphic, Stuart said, meaning they retain larval characteristics like external gills and a flat tail throughout their lives. In fact, the genus name Necturus means “tail swimmer” in reference to the species’s flat tail.
According to Stuart, on October 3, 1954, Duke professor and herpetologist Joe Bailey collected a dwarf waterdog in New Hope Creek. It was the first record of the species in Orange County.
The Duke Forest is in the westernmost part of the species’ Piedmont range, though it extends farther west in parts of the sandhills. “To have a dwarf waterdog record in Orange County—that’s almost as interesting as it gets,” Stuart said.
Ron Grunwald and Bryan Stuart discuss dwarf waterdog research at New Hope Creek. Photo provided by The Office of the Duke Forest.
In the late 1960s, Michael A. Fedak, Bailey’s graduate student, did a thesis on dwarf waterdogs in the area. His specimens are still stored in the collections of the North Carolina Museum of Natural Sciences.
No one had studied this population since—until now.
Dwarf waterdogs are very sensitive to pollution and habitat disturbance, Stuart said, on top of the fact that New Hope Creek is already at the edge of the species’s habitat. When Fedak studied them several decades ago, the salamanders were abundant. Are they still?
Stuart, Grunwald, and other researchers want to find out. “The challenge of salamander biology,” Grunwald said, “is that it always happens when it’s freezing.” Surveying salamander populations, he explains, isn’t like watching birds or counting trees. It requires you to go where the salamanders are, and for dwarf waterdog research, that means dark, cold streams on nights when the water temperature is below 55 degrees Fahrenheit.
Researchers bait funnel traps with chicken liver or cat food and set them underwater overnight. Sometimes they catch crayfish. Sometimes they catch nothing. And sometimes they catch exactly what they’re hoping to find: the elusive dwarf waterdog. After all this time, these slippery, nocturnal, chicken-liver-loving salamanders are still here.
Two dwarf waterdogs in a funnel trap before being released back into New Hope Creek.
Though the traps have been successful at capturing some individuals, they will never catch them all, so researchers calculate the recapture rate to estimate the total population. Imagine a bag of rice, Grunwald said. You could count each individual grain, but that would be challenging and time-consuming. Alternatively, you could pull out one grain of rice, color it, and put it back in the bag, then estimate the total number by calculating the probability of pulling out the same colored grain of rice again. In a very small bag, you might draw the same rice grain several times. But the more rice you have, the less likely you are to draw the same grain twice.
To figure out if any of the dwarf waterdogs they catch are recaptures, the researchers mark each individual with a visual implant elastomer, which is “just a fancy way of saying rubber that we can see,” Grunwald said. The material is injected under a salamander’s “armpit” with a small syringe, creating a pattern visible under ultraviolet light. With two colors (fluorescent yellow and red) and four possible injection locations (one behind each leg), there are plenty of distinct combinations. Grunwald showed us a waterdog that had already been marked. Under a UV flashlight, a spot just below its right foreleg glowed yellow.
Captured dwarf waterdogs are injected with a special rubber material that glows under a UV light. Each salamander is marked with a distinct pattern so researchers can recognize it if it’s ever recaptured.
Establishing a recapture rate is essential to predicting the total population in the area. The current recapture rate? Zero. The sample size so far is small—about a dozen individuals—and none of them have been caught twice. That’s an obstacle to statistical analysis of the population, but it’s good news for the salamanders. Every new individual is one more dwarf waterdog survivor in New Hope Creek.
Ron Grunwald with Research Tour participants looking at dwarf waterdogs in bags. Photo provided by The Office of the Duke Forest.
Stream health
Next, at a different spot along the stream, we met Nick Marzolf, Ph.D., a postdoctoral scholar, and Jonny Behrens, a Ph.D. student, to learn more about New Hope Creek itself. Marzolf and Behrens have both been involved with aquaterrestrial biogeochemistry research in the lab of Emily Bernhardt, Ph.D., at Duke University.
Nick Marzolf (right) and Jonny Behrens discuss stream health. Photo provided by The Office of the Duke Forest.
Protecting New Hope Creek requires understanding individual organisms—like dwarf waterdogs—but also temperature, precipitation, oxygen levels, pesticide runoff, and biodiversity overall. When humans get stressed, Behrens said, different organs have different physiological reactions. Similarly, different organisms in a stream play different roles and respond to stress in different ways.
Jonny Behrens and Research Tour participants look at aquatic macroinvertebrate samples. Photo provided by The Office of the Duke Forest.
Behrens passed around vials containing aquatic macroinvertebrates—specimens big enough to see with the naked eye—such as the larvae of mayflies, crane flies, stoneflies, and dragonflies. They are known for being good indicators of stream health because there are many species of macroinvertebrates, and they have different tolerances to stressors like pollution or changes in water temperature.
Aquatic macroinvertebrates can indicate the health of a stream through their species diversity and abundance. Photo provided by The Office of the Duke Forest.
The water downstream of a nearby wastewater treatment plant is much warmer in winter than other waterways in the area, so researchers see more emergent adult midges and caddisflies there than they do here. Aside from temperature, organisms need to adapt to other changing conditions like oxygen levels and storms.
“Rain is really fun to watch in streams,” Behrens said. The water level rises, pulling up organic matter, and sand bars change. You can tell how high the water got in the last storm by looking for accumulated debris on trees along river banks.
Farting rivers and the peanut butter cracker hypothesis
Marzolf studies hydrology, or “how water moves through not only the landscape but also the river itself.”
Nick Marzolf demonstrates a technique to measure gasses in streams using a syringe.
Part of his research involves measuring gases in water. Streams, like cars and cows and people, release greenhouse gases, including carbon dioxide and methane. In fact, Marzolf and colleagues hypothesize that New Hope Creek contributes more CO2 to the atmosphere per unit area than anywhere else in the Duke Forest.
Decaying matter produces CO2, but that isn’t the only source of greenhouse gasses in the creek. Microscopic organisms, like methane-producing bacteria, produce gases as well.
The “peanut butter cracker hypothesis,” Marzolf said, compares organic matter such as leaves to a cracker, while the “peanut butter,” which makes the cracker more palatable, is the microbes. Scrumptious.
Disturbing the sediment at the bottom of New Hope Creek causes bubbles to rise to the surface due to the metabolic activities of gas-producing bacteria.
Marzolf turned to Behrens. “Do you want to walk around and see if you can stir up some methane bubbles?” Behrens waded into the stream, freeing bubbles from the pressure of the overlying water keeping them in leaf mats. We watched the bubbles rise to the surface, evidence of the activities of organisms too small to see.
Behrens walks around in New Hope Creek to stir up gas bubbles from aquatic bacteria.
Restoring a stream to protect its pigtoe
Finally, Sara Childs, Executive Director of the Duke Forest, discussed stream restoration projects. Though structures in the Duke Forest like remnants of old mills and dams can alter and damage ecosystems, they can also have historical and cultural significance. Duke Forest prioritizes restoration projects that have meaningful ecological, teaching, and research benefits while honoring the history of the land.
For instance, the Patterson Mill Dam was built in the late 1700s and probably remained in use for about 100 years. The stream has already adapted to the structure’s presence, and there isn’t necessarily ongoing degradation because of it. Duke Forest restoration projects, Childs said, don’t revolve around very old structures like the Patterson Mill Dam. Instead, they are planning to remove two more recent structures that are actively eroding banks, threatening wildlife habitat, and creating impounded, oxygen-poor areas in the stream.
One of the structures they are hoping to remove is a concrete bridge that’s endangering a threatened freshwater mussel species called the Atlantic pigtoe (Fusconaia masoni). Freshwater mussels, according to Childs, require a fish species to host the developing mussel larvae on their gills, and the Atlantic pigtoe favors the creek chub (Semotilus atromaculatus). The concrete bridge forms a barrier between the pigtoe and the chub, but removing it could reunite them.
Before starting construction, they will relocate as many mussels as possible to keep them out of harm’s way.
New Hope Creek, home to waterdogs and pigtoe and farting microbes, is precious to humans as well. Heraty describes it as “a really spectacular and beautiful waterway that we are lucky to have right in our backyards here in Durham.”
As the world undergoes the great energy transition — from fossil fuels to alternative energy and batteries — rare earth metals are becoming more precious.
Open The Economist, Forbes, or Fortune, and you’ll see an article nearly every day on Lithium, Nickel, or Copper. For investors seeking to profit off of the transition, lithium seems like a sure bet. Dubbed “white gold” for electric vehicles, the lightweight metal plays a key role in the cathodes of all types of lithium-ion batteries that power electric vehicles (EVs). Although EVs produce fewer greenhouse gasses than gas- or diesel-powered vehicles, their batteries require more minerals, particularly lithium.
On Sept. 26, Duke’s campus welcomed the first in a series of discussions on climate and energy diplomacy focused on the challenges and opportunities of mining and development in South America’s Lithium Triangle. In a room crowded with curious undergraduate and graduate students alike, some lucky enough to have snagged a seat while others stood at the perimeters, three experts discussed the possible future of Bolivia as a major player in the global lithium market.
Professor Avner Vengosh of the Nicholas School
Duke Distinguished Professor Avner Vengosh, Nicholas Chair of Environmental Quality in the Nicholas School of the Environment, began by highlighting the staggering EV growth in 2020-2022: Sales of electric cars have more than tripled in three years, from around 4% of new car sales in 2020 to 14% in 2022. That number is expected to rise to 29.50% in 2028. Speaking of the critical element to EV production, lithium, Vengosh said frankly, “we don’t have enough.”
Lithium is mined from two major sources, Vengosh explained. The first is from hard-rock pegmatite, where lithium is extracted through a series of chemical processes. Most of these deposits are found in Australia, the world’s biggest source. The second is from lithium-rich brines, typically found in Argentina, Bolivia, and Chile, also known as the “Lithium Triangle.” These brine deposits are typically found in underground reservoirs beneath salt flats or saltwater lakes. The Salar de Uyuni in Bolivia is the world’s largest salt lake, and the largest lithium source in the world. It stretches more than 4,050 square miles and attracts tourists with its reflective, mirror-like surface.
Mountains surrounding the Uyuni salt flat during sunrise, (Diego Delso)
A group of Duke students led by a PhD candidate pursuing research on Bolivian lithium development recently traveled to Bolivia to understand different aspects of lithium mining. They asked questions including:
How renewable is the lithium brine?
Are there other critical raw minerals in the lithium-rich brines?
What are the potential environmental effects of lithium extraction?
What is the water footprint of the lithium extraction process?
Is water becoming a limiting factor for lithium production?
The Duke team conducted a study with the natural brine in the Salar, taking samples of deep brines, evaporation ponds, salts from evaporation ponds, wastewaters, and the lithium carbonate. Vengosh said that “we can see some inconsistency in the chemistry of the water that is flowing into the chemistry of the brine.”
This indicates that there is a more complex geological process in the formation of the brine than the simple flow of water into the lake. The team also confirmed the high purity of the lithium carbonate product and that there are no impurities in the material. Additionally, the Duke team found that the wastewater chemistry produced after lithium carbonate production is not different from that of the original brines. Thus, there are no limitations for recycling the water back to the Salar system.
After Vengosh shared the findings of the Duke research team, Kathryn Ledebur, director of the Andean Information Network (AIN) in Cochabamba, Bolivia and Dr. Scott MacDonald, chief economist at Smith’s Research & Gradings and a Caribbean Policy Consortium Fellow, discussed Bolivia’s lithium policy. With the largest untapped lithium deposits in the world, Bolivia has constructed a pilot plan for their lithium production, but Ledebur highlighted that the biggest hurdle is scaling. Additionally, with a unique prior-consultation system in place between the central government and 36 ethnic and indigenous groups in Bolivia, natural resources are a key topic of concern and grassroots action. Ledebur said, “I don’t see that issue changing any time soon.”
Another hurdle is that Bolivian law requires that the extraction process is controlled by the state (the state must own 51%). Foreign investors have been hesitant to work with the central government, which nationalized lithium in 2008 despite, critics said, lacking much of the necessary technology and expertise.
Maxwell Radwin, a writer for Mongabay, writes, “Evo Morales, the former socialist president who served from 2006 to 2019, nationalized the industry, promising that foreign interests wouldn’t plunder Bolivia’s natural resources as they had in the past. Instead, he said, lithium would propel the country to the status of a world power. Morales didn’t just want to export lithium, though; he wanted to produce batteries and cars for export. This complicated deals with potential investors from France, Japan, Russia and South Korea, none of which came to fruition because, among other things, they were required to take on YLB (the state-owned lithium company) as an equal partner.”
Ledebur said, “At this point in time, the Bolivian government has signed three contracts… and I think things will fall into place.”
Naysayers say that the Bolivian government hasn’t done anything to take advantage of the massive market sitting beneath their Salars and that grassroot consultations don’t work. Ledebur said, “I don’t think that it’s perfect, but it’s happening.”
Duke students will return to Bolivia with professor Vengosh next year to conduct more research on the lithium extraction process. Then, they’ll be able to see the effects of this ‘happening’ first-hand.
When I studied abroad in Paris, France, this summer, I became very familiar with the American tendencies that French people collectively despise. As I sat in a windowless back room of the school I would be studying at in the sixth arrondissement of Paris, the program director carefully warned us of the biggest faux-pas that would make our host families regret welcoming a foreign student into their home and the habitudes that would provoke irritated second glances on the street.
La Seine at dusk with Tour Eiffel.
One: American people are loud. Don’t be loud. We are loud when we talk on the phone, loud putting on our shoes, loud stomping around the Haussmanian apartment built in the 1800s with creaky parquet flooring.
Two: Americans smile too much. Don’t smile at people on the street. No need for a big, toothy grin at every passerby and at every unsuspecting dog-walker savoring the few tourist-free morning hours.
Three: Why do Americans love to ask questions without any intention of sticking around to hear the response? When French people ask you how you’re doing – Comment ça va?– how you slept – Vous-avez bien dormi? – how the meal was – Ça vous a plu? – they stand there and wait for an answer after asking the question. So when Americans exchange a jolly “How are you today!” in passing, it drives French people crazy. Why ask a question if you don’t even want an answer?
This welcome post feels a little bit like that American “How are you today!” Not to say that you, reader, are not a patient, intrigued Frenchman or woman, who is genuinely interested in a response – I am well-assured that the readers of Duke’s Research Blog are just the opposite. That is to say that the question of “who are you?” is quite complicated to answer in a single, coherent blog post. I will proudly admit that I am still in the process of figuring out who I am. And isn’t that what I’m supposed to be doing in college, anyway?
I can satisfyingly answer a few questions about me, though, starting with where I am from. I’m lucky enough to call Trabuco Canyon, California my home– a medium-sized city about fifteen minutes from the beach, and smack-dab in the middle of San Diego and Los Angeles. Demographically, it’s fairly uninteresting; 68% White, 19% Hispanic, and 8% Asian. I’ve never moved, so I suppose this would imply that most of my life has been fairly unexposed to cultural diversity. However, I think one of the things that has shaped me the most has been experiencing different cultures in my travels growing up.
My dad is a classically-trained archaeologist turned environmental consultant, and I grew up observing his constant anthropological analysis of people and situations in the countries we traveled to. I learned from him the richness of a compassionate, empathetic, multi-faceted life that comes from traveling, talking to people, and being curious. I am impassioned by discovering new cultures and uncovering new schools of thought through breaking down linguistic barriers, which is one of the reasons I am planning on majoring in French Studies.
Perhaps from my Korean mother I learned perseverance, mental strength, and toughness. I also gained practicality, which explains my second major, Computer Science. Do I go crazy over coding a program that creates a simulation of the universe (my latest assignment in one of my CS classes)? Not particularly. But, you have to admit, the degree is a pretty good security blanket.
Why blog? Writing is my therapy and has always been one of my passions. Paired with an unquenchable curiosity and a thirst to converse with people different from me, writing for the Duke Research Blog gives me what my boss Karl Bates – Executive Director, Research Communications – calls “a license to hunt.”
Exclusive, top-researcher-only, super-secret conference on campus about embryonics? I’ll be making a bee-line to the speakers with my notepad in hand, thank you. Completely-sold-out talk by the hottest genome researcher on the academic grapevine? You can catch me in the front row. In short, blogging on Duke Research combines multiple passions of mine and gives me the chance to flex my writing muscles.
Thus, I am also cognizant of the privilege and the responsibility that this license to hunt endows me with. It must be said that elite universities are famously – and in reality – extremely gated-off from the rest of society. While access to Duke’s physical space may still be exclusive, the knowledge within is for anyone’s taking.
In this blog, I hope to dismantle the barrier between you and what can sometimes seem like intimidating, high-level research that is being undertaken on Duke’s campus. I hope to make my blogs a mini bi-monthly revelation that can enrich your intellect and widen your perspective. And don’t worry – when it comes to posing questions to researchers, I plan to stick around to hear the response.
Read my summer blogs from my study abroad in Paris HERE!