Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Field Research Page 1 of 10

The Importance of Moms

Emily Bray, Ph.D., might have the best job ever. Since earning her bachelor’s at Duke in 2012, she has been researching cognitive development in puppies, which basically means she’s spent the last seven years playing with dogs. If that’s not success, I don’t know what is.

Last Friday marked the 10th birthday of Duke’s Canine Cognition Center, and the 210th birthday of Charles Darwin. To celebrate, Brian Hare, Ph.D., invited former student Bray back to campus to share her latest research with a new generation of Duke undergraduates. The room was riveted — both by her compelling findings and by the darling photos of labs and golden retrievers that accompanied each slide.

Dr. Emily Bray shows photos of her study participants

During her Ph.D. program at the University of Pennsylvania, Bray worked with Robert Seyfarth, Dorothy Cheney, and James Serpell to investigate the effects of mothering on puppy development. For her dissertation, she studied a population of dog moms and their puppies at The Seeing Eye, Inc. The Seeing Eye is one of the oldest and largest guide dog schools in the U.S. They have been successfully raising and training service dogs for the blind since 1929, but like most things, it is still an imperfect science. Approximately half of the puppies bred at The Seeing Eye fail out of program. A dog that completes service training at The Seeing Eye represents two years of intensive training and care, and investing so much time and money into a dog that might eventually fail is problematic. Being able to predict the outcomes of puppies would save a lot of wasted time and energy, and Emily Bray has been doing just this.

What makes a good dog mom? (Photo from Dirk Vorderstraße, from Wikimedia Commons)

Through her work at The Seeing Eye, Bray found that, similar to humans, dogs have several types of mothering styles. She discovered that dog moms tend to fall somewhere on the spectrum from low to high maternal involvement. Some of the moms were very involved with their puppies, and seldom left their side. These hovering moms had high levels of cortisol, and became quite stressed when separated briefly from a puppy. They coddled their children, and often nursed from a laying down position, doing everything they could to make life easy for their babies. On the other side of the spectrum, Bray also observed moms that displayed much more relaxed mothering. They often took personal time, and let their puppies fend for themselves. They were more likely to nurse while sitting or standing up, which made their children work harder to feed. They were less stressed when separated from a puppy, and also just had generally lower levels of cortisol. Sound like bad parenting? Believe it or not, this tough love actually resulted in more successful puppies.

Duke’s very own assistance dogs in training!

As the puppies matured, Bray conducted a series of cognitive and temperament tests to determine if maternal style was associated with a certain way of thinking in the puppies. Turns out, dogs who experienced high maternal care actually performed much worse on the tests than dogs who were shown tough love when they were young. At The Seeing Eye graduation, it was also determined that high maternal care and ventral nursing was associated with failure. Puppies that were over-mothered were more likely to fail as service dogs.

Her theory is that tough love raises more resilient puppies. When mom is always around, the puppies don’t get the chance to experience small stressors and learn how to deal with challenge. The more relaxed moms actually did their kids a favor by not being so overbearing, and allowed for much more independent development.

Bray is now doing post-doctoral research at the University of Arizona, where she is working with Canine Companions for Independence (CCI) to determine if maternal style has similar effects on the outcomes of dogs that will be trained to assist people with a wide range of disabilities. She is also now doing cognition and temperament tests on moms pre-pregnancy to determine if maternal behavior can be predicted before the dogs have puppies. Knowing this could be a game changer, as this information could be used for selective breeding of better moms.

Me snuggling Ashton, one of the Puppy Kindergarten dogs

If you got the chance to hang out with puppies Ashton, Aiden, or Dune last semester, you have an idea of how awesome Bray’s day-to-day work is. These pups were bred at CCI, and sent to Duke to be enrolled in Duke Puppy Kindergarten, a new program on campus run through Duke’s Canine Cognition Center. Which of these three will make it to graduation? I’ve got money on Ashton, but I guess we’ll have to wait and see.

The bottom line according to Bray? “Mothering matters, but in moderation.”

An Indirect Path to Some Extreme Science

Dr. Cynthia Darnell’s path to becoming a postdoctoral researcher in the Amy Schmid Labat Duke University was, in her words, “not straightforward.”

Dr. Cynthia Darnell is a Postdoc at Duke, studying ‘extremophiles.’

At the start of her post-high school career, Darnell had no clue what she wanted to do, so she went to community college for the first two years while she decided. She had anticipated that she was going to go to college as an art major, but had always enjoyed biology.

While at community college she took a couple biology courses. She transferred to another college where she took a course in genetics and according to her, “it blew my mind.” While at the college she took a variety of different biology courses. Her genetics professor’s wife was looking for a lab technician in the microbiology lab she ran. After Darnell worked there for two years, she decided to go to graduate school and had a whole list of places/universities she could attend.

However, after going to a conference in Chicago and meeting her future graduate advisor, Darnell made the decision to go to Iowa for six years of Graduate school. She ended up in the Schmid Lab at Duke University for her “postdoc” after her boss had recommended the lab to her.

Previously, Darnell had done research on the connectedness of genetic pathways in halophilic extremophiles — bacteria that lived in extremely salty conditions. She developed projects to understand the how their genetic network sends and receives signals.

Darnell is continuing that research at Duke while also looking at the effects of different environmental factors on growth and the genetic network using mutant halophilic extremophiles.

Darnell with some plated archaebacteria in her Duke lab

There are generally three different paths Darnell’s day in the lab can take. The first path is a bench day. During a bench day, she will be doing experiments looking at growth curves, microscopes or RNA extracts. The second path is a computational day in which she will do sequencing to look at gene expression. The third option is a writing day in which she spends a majority of her time writing up grants, papers, and applications.

Dr. Darnell wishes to open up her own lab in the future and serve underprivileged students in underserved areas. She wishes to do more research in the area of archaebacteria because of how under researched and underrepresented it is in the scientific community. Dr. Darnell hopes to study more about the signaling networks in archaebacteria in her own lab someday.

She especially wishes to be able to open her lab up to underprivileged students, exposing them to the possibilities of research and graduate programs.

Guest Post by Tejaswi Siripurapu, NCSSM 2019

The Importance of Evidence in Environmental Conservation

What counts as good evidence?

In medical research, a professional might answer this question as you would expect: evidence can be trusted if it is the result of a randomized, controlled, double-blind experiment, meaning the evidence is only as strong as the experiment design. And in medicine, it’s possible (and important) to procure this kind of strong evidence.

But when it comes to conservation, it’s a whole different story.

Dr. David Gill (photo from The Nicholas School)

The natural world is complicated, and far beyond our control. When studying the implications of conservation, it’s not so easy to design the kind of experiment that will produce “good” evidence.

David Gill, a professor in Duke’s Nicholas School for the Environment, recently led a study featured in the journal Nature that needed to  define what constitutes good evidence in the realm of marine conservation. Last Wednesday, he made a guest appearance in my Bass Connections meeting to share his work and a perspective on the importance of quality evidence.

Gill’s research has been centered around evaluating the effectiveness of Marine Protected Areas (or MPAs) as a way of protecting marine life. Seven percent of the world’s oceans are currently designated as MPAs, and by 2020, the goal is to increase this number to 10 percent. MPAs arguably have massive effects on ecosystem health and coastal community functioning, but where is the evidence for this claim?

Although past investigations have provided support for creating MPAs,  Gill and his team were concerned with the quality of this evidence, and the link between how MPAs are managed and how well they work. There have historically been acute gaps in study design when researching the effects of MPAs. Few experiments have included pre-MPA conditions or an attempt to control for other factors. Most of these studies have been done in hindsight, and have looked only at the ecological effects within the boundaries of MPAs, without any useful baseline data or control sites to compare them to.

As a result of these limitations, the evidence base is weak. Generating good evidence is a massive undertaking when you are attempting to validate a claim by counting several thousand moving fish.

Gill’s measure of ecosystem health includes counting fish. (Photo from Avoini)

So is there no way to understand the impacts of MPAs? Should conservation scientists just give up? The answer is no, absolutely not.

To produce better evidence, Gill and his team needed to design a study that would isolate the effects of MPAs. To do this, they needed to account for location biases and other confounding variables such as the biophysical conditions of the environment, the population density of nearby human communities, and the national regulations in each place.

The solution they came up with was to compare observations of current conditions within MPAs to “counterfactual” evidence, which is defined as what would have happened had the MPA not been there. Using statistical matching of MPAs to nearby non-MPA and pre-MPA sites, they were able to obtain high-quality results.

A happy sea turtle pictured in a marine protected area (photo from English Foreign and Commonwealth Office.)

The research showed that across 16,000 sampled sites, MPAs had positive ecological impacts on fish biomass in 71 percent of sites. They also discovered that MPAs with adequate staffing had far greater ecological impacts than those without, which is a pretty interesting piece of feedback when it comes to future development. It’s probably not worth it to create MPAs before there is sufficient funding in place to maintain them.

Gill doesn’t claim that his evidence is flawless; he fully admits to the shortcomings in this study, such as the fact that there is very little data on temperate, coldwater regions — mostly because there are few MPAs in these regions.

The field is ripe for improvement, and he suggests that future research look into the social impacts of MPAs and the implications of these interventions for different species. As the evidence continues to improve, it will be increasingly possible to maximize the win-wins when designing MPAs.

Conservation science isn’t perfect, but neither is medicine. We’ll get there.

Detangling Stigma and Mental Illness

Can you imagine a world without stigma? Where a diagnosis of autism or schizophrenia didn’t inevitably stick people with permanent labels of “handicap,” “abnormal,” “disturbed,” or “dependent”?

Roy Richard Grinker can. In fact, he thinks we’re on the way to one.

It’s a subject he’s studied and lectured on extensively—stigmas surrounding mental health conditions, that is. His expertise, influence, and unique insight in the field led him to April 12, where he was the distinguished speaker of an annual lecture commemorating Autism Awareness Month. The event was co-sponsored by the Duke Center for Autism and Brain Development, the Duke Institute for Brain Sciences, and the Department of Cultural Anthropology.

Roy Richard Grinker was the invited speaker to this year’s annual Autism Awareness Month commemorative lecture. Photo credit: Duke Institute for Brain Sciences

Grinker’s credentials speak to his expertise. He is a professor of Anthropology, International Affairs, and Human Sciences at George Washington University; he has authored five books, several New York Times op-eds, and a soon-to-be-published 600-page volume on the anthropology of Africa; he studied in the Democratic Republic of the Congo as a Fulbright scholar in his early career; and, in the words of Geraldine Dawson, director of the Center for Autism and Brain Development, “he fundamentally changed the way we think about autism.”

Grinker began with an anecdote about his daughter, who is 26 years old and “uses the word ‘autism’ to describe herself—not just her identity, but her skills.”

She likes to do jigsaw puzzles, he said, but in a particular fashion: with the pieces face-down so their shape is the only feature she can use to assemble them, always inexplicably leaving one piece out at the end. He described this as one way she embraces her difference, and a metaphor for her understanding that “there’s always a piece missing for all of us.”

Grinker and Geraldine Dawson, director of the Center for Autism and Brain Development, pose outside Love Auditorium in the minutes before his talk. Source: Duke Institute for Brain Sciences

“What historical and cultural conditions made it possible for people like Isabel to celebrate forms of difference that were a mark of shame only a few decades ago?” Grinker asked.  “To embrace the idea that mental illnesses are an essential feature of what it means to be human?”

He identified three processes as drivers of what he described as the “pivotal historical moment” of the decoupling of stigma and mental illness: high-profile figures, from celebrity talk-show hosts to the Pope, speaking up about their mental illnesses instead of hiding them; a shift from boxing identities into racial, spiritual, gender, and other categories to placing them on a spectrum; and economies learning to appreciate the unique skills of people with mental illness.

This development in the de-stigmatization of mental illness is recent, but so is stigma itself. Grinker explained how the words “normal” and “abnormal” didn’t enter the English vocabulary until the mid-19th century—the idea of “mental illness” had yet to make its debut.

“There have always been people who suffer from chronic sadness or had wildly swinging moods, who stopped eating to the point of starvation, who were addicted to alcohol, or only spoke to themselves.” Grinker said. “But only recently have such behaviors defined a person entirely. Only recently did a person addicted to alcohol become an alcoholic.”

Grinker then traced the development of mental illness as an idea through modern European and American history. He touched on how American slaveowners ascribed mental illness to African Americans as justification for slavery, how hysteria evolved into a feminized disease whose diagnoses became a classist tool after World War I, and how homosexuality was gradually removed from the Diagnostic and Statistical Manual of Mental Disorders (DSM) by secretly gay psychiatrists who worked their way up the rankings of the American Psychiatric Association in the 1960s and 70s.

Source: Duke Institute for Brain Sciences

Next, Grinker described his anthropological research around the world on perceptions of mental illness, from urban South Korea to American Indian tribes to rural villages in the Kalahari Desert. His findings were wide-ranging and eye-opening: while, at the time of Grinker’s research, Koreans viewed mental illness of any kind as a disgrace to one’s heritage, members of Kalahari Desert communities showed no shame in openly discussing their afflictions. Grinker told of one man who spoke unabashedly of his monthly 24-mile walk to the main village for antipsychotic drugs, without which, as was common knowledge among the other villagers, he would hear voices in his head urging him to kill them. Yet, by Grinker’s account, they didn’t see him as ill — “a man who never hallucinates because he takes his medicine is not crazy.”

I could never do justice to Grinker’s presentation without surpassing an already-strained word limit on this post. Suffice it to say, the talk was full of interesting social commentary, colorful insights into the history of mental illness, and words of encouragement for the future of society’s place for diversity in mental health. Grinker concluded on such a note:

“Stigma decreases when a condition affects us all, when we all exist on a spectrum,” Grinker said. “We see this in the shift away from the categorical to the spectral dimension. Regardless, we might need the differences of neurodiversity to make us, humans, interesting, vital, and innovative.”

Post by Maya Iskandarani

How a Museum Became a Lab

Encountering and creating art may be some of mankind’s most complex experiences. Art, not just visual but also dancing and singing, requires the brain to understand an object or performance presented to it and then to associate it with memories, facts, and emotions.

A piece in Dario Robleto’s exhibit titled “The Heart’s Knowledge Will Decay” (2014)

In an ongoing experiment, Jose “Pepe” Contreras-Vidal and his team set up in artist Dario Robleto’s exhibit “The Boundary of Life Is Quietly Crossed” at the Menil Collection near downtown Houston. They then asked visitors if they were willing to have their trips through the museum and their brain activities recorded. Robleto’s work was displayed from August 16, 2014 to January 4, 2015. By engaging museum visitors, Contreras-Vidal and Robleto gathered brain activity data while also educating the public, combining research and outreach.

“We need to collect data in a more natural way, beyond the lab” explained Contreras-Vidal, an engineering professor at the University of Houston, during a talk with Robleto sponsored by the Nasher Museum.

More than 3,000 people have participated in this experiment, and the number is growing.

To measure brain activity, the volunteers wear EEG caps which record the electrical impulses that the brain uses for communication. EEG caps are noninvasive because they are just pulled onto the head like swim caps. The caps allow the museum goers to move around freely so Contreras-Vidal can record their natural movements and interactions.

By watching individuals interact with art, Contreras-Vidal and his team can find patterns between their experiences and their brain activity. They also asked the volunteers to reflect on their visit, adding a first person perspective to the experiment. These three sources of data showed them what a young girl’s favorite painting was, how she moved and expressed her reaction to this painting, and how her brain activity reflected this opinion and reaction.

The volunteers can also watch the recordings of their brain signals, giving them an opportunity to ask questions and engage with the science community. For most participants, this is the first time they’ve seen recordings of their brain’s electrical signals. In one trip, these individuals learned about art, science, and how the two can interact. Throughout this entire process, every member of the audience forms a unique opinion and learns something about both the world and themselves as they interact with and make art.

Children with EEG caps explore art.

Contreras-Vidal is especially interested in the gestures people make when exposed to the various stimuli in a museum and hopes to apply this information to robotics. In the future, he wants someone with a robotic arm to not only be able to grab a cup but also to be able to caress it, grip it, or snatch it. For example, you probably can tell if your mom or your best friend is approaching you by their footsteps. Contreras-Vidal wants to restore this level of individuality to people who have prosthetics.

Contreras-Vidal thinks science can benefit art just as much as art can benefit science. Both he and Robleto hope that their research can reduce many artists’ distrust of science and help advance both fields through collaboration.

Post by Lydia Goff

To Frack or Not to Frack

We’ve all heard about fracking, and some of us may even claim to understand it. Politicians on both ends of the spectrum certainly do, with some touting the oil and gas drilling technology as the savior of the U.S. energy industry and others decrying it as the harbinger of doom for the planet.

Duke alumnus Daniel Raimi, in his new book The Fracking Debate: The Risks, Benefits, and Uncertainties of the Shale Revolution, hopes to show people the gray area that lies in between.

Image credit to Daniel Raimi.

At a talk last week co-sponsored by the Duke Energy Initiative and the Nicholas Institute for Environmental Policy Solutions, Raimi shared some of the insights he gained in traveling the country to investigate the community-level impact of the shale revolution in the U.S. Raimi, a Durham native and 2012 graduate of the Sanford School of Public Policy, first made sure to explain that “fracking” and “the shale revolution” aren’t actually interchangeable terms.

“Fracking is short for hydraulic fracturing, which involves pumping water, sand and chemicals underground to stimulate production from an oil or gas well,” Raimi said. “Companies have been stimulating oil and gas wells since the 1950s, but it’s been applied at an extremely large scale recently and combined with other technologies like horizontal drilling.”

The shale revolution, which began in the early 2010s, has caused U.S. natural gas

U.S crude oil production from 1950 to 2015. Image credit to Daniel Raimi.

and crude oil production to explode — reaching an all-time high of 10 million barrels per day in the last few months.

With this in mind, Raimi began his investigative journey in Marcellus Shale, Pennsylvania, a place he’d read was booming with thousands of new wells and where he expected to encounter trucks, oil rigs and an influx of eager workers from other states reminiscent of the California Gold Rush. Instead, he found rolling green hills and untouched corn fields.

The township of Dimock, Pennsylvania. Image credit to Daniel Raimi.

Even more puzzling was his later discovery that residents of a local township, Dimock, were pining for drilling to return after the Pennsylvania Department for Environmental Protection discovered contamination of the town’s water supply by stray gas leaking from underground wells and promptly banned any shale drilling within a nine-mile radius of the site.

Heading south to the Permian Basin in West Texas, a leading region for oil production in the U.S. where, according to Raimi, “there are oil wells in people’s backyards and gas pipelines running through their lawns,” Raimi came across another incongruity. Though the community has long been supportive of the oil industry and its proposals for more drilling, he spoke to community members —including industry leaders in the shale movement — adamantly opposed to drilling

Balmorhea State Park in Texas. Image credit to Daniel Raimi.

in the pristine Balmorhea State Park, despite a company’s claim of having discovered an untapped oil reserve in the area.

In his last anecdote, Raimi highlighted perhaps the most contentious point in the shale debate: its ramifications for global climate change. In Barrow, Alaska, the northernmost city in the U.S. (300 miles north of Arctic Circle, to be exact), he spoke to local government officials who described million-dollar plans for protective measures against accelerating coastal erosion. This community also depends on increasingly scarce permafrost to keep cold the whale meat they subsist on for most of the year. Nevertheless, they also yearned for a greater presence of the oil industry.

All this was food for thought for an attentive audience. Raimi accomplished the stated goal of his presentation: getting pro- or anti-fracking audience members to at least see the other side of the debate. He offered some conclusions from his research in his closing words:

“Shale development has been a clear climate win in the short term, although climate benefits in the long term are less clear,” Raimi said. “Regardless, the current low-cost supply for natural gas is window of opportunity for policy that policymakers need to take advantage of.”

Post by Maya Iskandarani

 

Meet Africa’s Bird Master of Vocal Imitation

The red-capped robin-chat (Cossypha natalensis) can mimic the songs and calls of dozens of other bird species – even their duets, says Duke researcher Tom Struhsaker.

The red-capped robin-chat (Cossypha natalensis) can mimic the songs and calls of dozens of other bird species – even their duets, says Duke researcher Tom Struhsaker.

Singing a duet in a foreign language isn’t just for opera stars — red-capped robin-chats do it too. These orange-brown birds with grey wings can imitate the sounds of 40 other bird species, even other species’ high-speed duets.

The latter finding comes from Tom Struhsaker, adjunct professor of evolutionary anthropology at Duke. Struhsaker didn’t set out to study robin-chats. His interest in their vocal abilities developed while studying monkeys in Kibale Forest in Uganda, where he lived for nearly two decades from 1970 to 1988.

Their typical song “sounds like a long, rambling human-like whistle,” Struhsaker said. But during the 18 years he spent studying and living in Kibale, Struhsaker also heard these birds impersonate the tambourine-like courtship call of the crested guineafowl, the crow of a rooster, and the “puweepuweepuwee” of a crowned eagle, among others.

“The robin-chat’s ability to imitate is so good that many a bird watcher has looked skyward vainly searching for a crowned eagle performing its aerial display, when in fact the source of the eagle’s undulating whistle was a robin-chat in the nearby understory,” Struhsaker said.

He also noticed that if he whistled, eavesdropping robin-chats would approach and call back, and if he tweaked the pitch and sequence of notes in his whistle, the birds sometimes changed their reply.

This suggests red-capped robin-chats may be lifelong learners, unlike many other bird species that only learn songs during critical time windows, Struhsaker said.

But the robin-chat doesn’t stop at mimicking others’ solo performances. Notably, Struhsaker also heard them imitate the duet of the black-faced rufous warbler.

Black-faced rufous warblers sing a rapid-fire “seee-oooo-ee” duet with their mates. The two birds take turns such that the male sings the “seee,” the female chimes in with the “oooo” and the male fires back with the final “ee,” with no pauses between the three notes. The partners sing back and forth so seamlessly that they are often mistaken for a single bird.

“In order to do this, birds have an incredibly rapid reaction time, much greater than that of humans,” Struhsaker said.

On two occasions he heard single robin-chats sing both the male and female parts of the warbler duet by themselves. On another occasion he heard two robin-chats make music together as the warblers do, with one singing the male warbler’s part and the other singing the female part.

“This suggests these birds have an unusually high level of auditory perception and reaction time and cognitive ability,” Struhsaker said.

CITATION:  “Two Red-Capped Robin-Chats Cossypha Natalensis Imitate Antiphonal Duet of Black-Faced Rufous Warblers Bathmocercus rufus,” Thomas Struhsaker. Journal of East African Natural History, Dec. 2017. https://doi.org/10.2982/028.106.0201.

 

Kathleen Pryer: A Passion for the Little-Loved Fern

Most people don’t see in ferns the glory and grandeur of the mighty angiosperms — the flowering plants — but to those who can, ferns may seem like the only thing you could spend your time researching.

Fei-wei Li, Kathleen Pryer

Kathleen Pryer, with former graduate student Fei-Wei Li. (Duke photography)

Kathleen Pryer, a professor of biology at Duke, is an example of one of these people who found their calling in ferns. But she didn’t know it would be ferns from the beginning.

As an undergraduate, she had thought she wanted to be an animal behaviorist, having read books by Jane Goodall, so she enrolled in McGill University in Montreal (she’s Canadian by the way) in the animal behavior program and didn’t end up taking a single botany course until her senior year.  For her final project she worked with snails, a starkly slow endeavor, she thought. Slower even than ferns. After getting her degree in animal behavior, she decided she wanted a masters working with plants, but before jumping right in with only one class’ worth of experience with plants, she worked as a technician for a budding ecologist.  While working there, the ecologist’s wife, who did her masters on ferns, took her on a trip to the annual meeting of the botanical society of America in Blacksburg, VA, a 13-hour trip.

In Virginia, she went on a 2-day field trip through Virginia, led by fern expert Warren Wagner, finding ferns with 107 other people who were mad about ferns.

“It was just serendipity really.”

After that, the idea of ferns stuck, and she’s been working with them ever since.  She’s gotten the chance to name or rename many species of fern, and she created the genus Gaga, named after the singer.  Another new genus she found is soon to be named Mandela by her as well; a nice change from the usual names of “old white guys,” given to new genera, she said.

Through it all though, Pryer is most proud of a paper from 2001, which showed that all modern ferns originated from a central progenitor, showing that they aren’t as archaic as most people think. That paper made the cover of Nature, and has been cited hundreds of times since.

In the end, I guess it’s really hard to tell where you’ll end up.  If an aspiring animal behaviorist can jump to the world of ferns and make a successful career out of it, surely there’s hope for the rest of us too.  In the end, all that matters is if you’re doing what you love, and as for Kathleen Pryer, she’ll keep doing what she loves as long as there’s a “chair and a microscope” for her to sit at.

Isaac PoarchGuest Post by Isaac Poarch, a senior at the North Carolina School of Science and Math

Durham Traffic Data Reveal Clues to Safer Streets

Ghost bikes are a haunting site. The white-painted bicycles, often decorated with flowers or photographs, mark the locations where cyclists have been hit and killed on the street.

A white-painted bike next to a street.

A Ghost Bike located in Chapel Hill, NC.

Four of these memorials currently line the streets of Durham, and the statistics on non-fatal crashes in the community are equally sobering. According to data gathered by the North Carolina Department of Transportation, Durham county averaged 23 bicycle and 116 pedestrian crashes per year between 2011 and 2015.

But a team of Duke researchers say these grim crash data may also reveal clues for how to make Durham’s streets safer for bikers, walkers, and drivers.

This summer, a team of Duke students partnered with Durham’s Department of Transportation to analyze and map pedestrian, bicycle and motor vehicle crash data as part of the 10-week Data+ summer research program.

In the Ghost Bikes project, the team created an interactive website that allows users to explore how different factors such as the time-of-day, weather conditions, and sociodemographics affect crash risk. Insights from the data also allowed the team to develop policy recommendations for improving the safety of Durham’s streets.

“Ideally this could help make things safer, help people stay out of hospitals and save lives,” said Lauren Fox, a Duke cultural anthropology major who graduated this spring, and a member of the DATA+ Ghost Bikes team.

A map of Durham county with dots showing the locations of bicycle crashes

A heat map from the team’s interactive website shows areas with the highest density of bicycle crashes, overlaid with the locations of individual bicycle crashes.

The final analysis showed some surprising trends.

“For pedestrians the most common crash isn’t actually happening at intersections, it is happening at what is called mid-block crossings, which happen when someone is crossing in the middle of the road,” Fox said.

To mitigate the risks, the team’s Executive Summary includes recommendations to install crosswalks, median islands and bike lanes to roads with a high density of crashes.

They also found that males, who make up about two-thirds of bicycle commuters over the age of 16, are involved in 75% of bicycle crashes.

“We found that male cyclists over age 16 actually are hit at a statistically higher rate,” said Elizabeth Ratliff, a junior majoring in statistical science. “But we don’t know why. We don’t know if this is because males are riskier bikers, if it is because they are physically bigger objects to hit, or if it just happens to be a statistical coincidence of a very unlikely nature.”

To build their website, the team integrated more than 20 sets of crash data from a wide variety of different sources, including city, county, regional and state reports, and in an array of formats, from maps to Excel spreadsheets.

“They had to fit together many different data sources that don’t necessarily speak to each other,” said faculty advisor Harris Solomon, an associate professor of cultural anthropology and global health at Duke.  The Ghost Bikes project arose out of Solomon’s research on traffic accidents in India, supported by the National Science Foundation Cultural Anthropology Program.

In Solomon’s Spring 2017 anthropology and global health seminar, students explored the role of the ghost bikes as memorials in the Durham community. The Data+ team approached the same issues from a more quantitative angle, Solomon said.

“The bikes are a very concrete reminder that the data are about lives and deaths,” Solomon said. “By visiting the bikes, the team was able to think about the very human aspects of data work.”

“I was surprised to see how many stakeholders there are in biking,” Fox said. For example, she added, the simple act of adding a bike lane requires balancing the needs of bicyclists, nearby residents concerned with home values or parking spots, and buses or ambulances who require access to the road.

“I hadn’t seen policy work that closely in my classes, so it was interesting to see that there aren’t really simple solutions,” Fox said.

[youtube https://www.youtube.com/watch?v=YHIRqhdb7YQ&w=629&h=354]

 

Data+ is sponsored by Bass Connections, the Information Initiative at Duke, the Social Science Research Institute, the departments of Mathematics and Statistical Science and MEDx.

Other Duke sponsors include DTECH, Duke Health, Sanford School of Public Policy, Nicholas School of the Environment, Development and Alumni Affairs, Energy Initiative, Franklin Humanities Institute, Duke Institute for Brain Sciences, Office for Information Technology and the Office of the Provost, as well as the departments of Electrical & Computer Engineering, Computer Science, Biomedical Engineering, Biostatistics & Bioinformatics and Biology.

Government funding comes from the National Science Foundation. Outside funding comes from Accenture, Academic Analytics, Counter Tools and an anonymous donation.

Community partnerships, data and interesting problems come from the Durham Police Department, Durham Neighborhood Compass, Cary Institute of Ecosystem Studies, Duke Marine Lab, Center for Child and Family Policy, Northeast Ohio Medical University, TD Bank, Epsilon, Duke School of Nursing, University of Southern California, Durham Bicycle and Pedestrian Advisory Commission, Duke Surgery, MyHealth Teams, North Carolina Museum of Art and Scholars@Duke.

Writing by Kara Manke; video by Lauren Mueller and Summer Dunsmore

A Summer Well-Spent In and Around Toxic Waste Sites

Edison, NJ is just 40 miles from Manhattan and 70 miles from Philadelphia. It’s also home to the US EPA’s Emergency Response Team (ERT), where I spent the summer as an intern.

Stella Wang and an EPA contractor used lifts to test oil being pumped out of these huge tanks. It was found to be contaminated with mercury, benzene and lead.

At the start of my internship, I had little idea of how ERT functioned. Unlike the 10 regional offices of the Environmental Protection Agency, ERT is a “headquarters” or Washington, DC-based group, which means it responds to incidents all over the country such as oil spills, train derailments, and natural disasters.

For example, my mentor, an air specialist who generally works from his cubicle in Edison, aided in the immediate aftermath of Hurricane Katrina by employing equipment to analyze air for hazardous pollutants. Other ERT team members have conducted sediment sampling to expedite the hazardous waste removal process, given consultation advice to other EPA members for long-term remedial site work, and led the innovation of new technology.

I was able to shadow and help my mentor and fellow ERT members with their Superfund site removal work. I created accurate maps showing injection well locations, learned how to use air monitoring instruments, and helped perform chemical lab experiments that will be employed for future site analysis.

Perhaps my favorite part of the internship was traveling to a myriad of active sites. At these sites, I not only got to see how ERT members worked with EPA’s on-scene coordinators, but also observed the physical removal and remediation processes. I was fortunate to visit a particular site multiple times — I witnessed the removal of contaminated oil from an abandoned lot as the summer progressed.

Stella Wang (left) and an EPA air specialist calibrating a air monitoring instrument before a public event.

At another site, I saw the beginning of an injection process intended to prevent the contamination of underground drinking water by hexavalent chromium. By pumping sodium lactate into underground wells, the hexavalent is converted into the insoluble and benign chromium-3 ion. If the injection process works, the community will no longer be threatened by this particular hazardous material.

ERT also acts in anticipation of possible contamination to protect the public. At largely attended events like the Democratic National Convention, a few ERT members will arrive with monitoring equipment. They pride themselves in their real-time data collection for a reason: throughout the event, they can detect whether a contaminant has been released and immediately instigate an emergency response to protect attendees.

Thanks to various ERT members, I felt accepted and welcome. They were open and patient with my never-ending questions about their career paths and other things. They’ve graciously taken me out to lunch so that they could get to know me better, ensuring my inclusion in their small community.

Of course, the experiences I had this summer, while brief, have taught me a tremendous amount and I have a clearer sense of how this division of the US federal government functions. But, it would be inaccurate and unjust to omit the impact that its people made on me.

Stella Wang, Duke 2019Guest post by Stella Wang, Class of 2019

Page 1 of 10

Powered by WordPress & Theme by Anders Norén