Following the people and events that make up the research community at Duke

Category: Field Research Page 1 of 13

Why Ruffed Lemurs (and Their Gut Microbes) Need to Eat Greens

Sticky post

We offered fruit-eating ruffed lemurs at the Duke Lemur Center fresh lettuce each afternoon for 10 days. They happily ate it and their gut microbiomes shifted, suggesting that leafy greens could be incorporated into the lemurs’ standard dietary regimen to boost foraging opportunity and fiber intake.

Red-ruffed lemurs and black-and-white ruffed lemurs are some of Madagascar’s most iconic wildlife. Sporting a long snout and a neck ruff to rival those of the Elizabethan court, these primates naturally live in the rainforests, where they mostly eat fruits and flowers, and make their living as seed dispersers and pollinators.

Ruffed lemurs really like romaine lettuce and their gut bugs do too! (Lydia Greene)

Ruffed lemurs also live in zoos worldwide, where they are given fruit-rich diets to match those foraged by their wild peers. But scientists are starting to realize that the fruit eaten by wild lemurs is quite different from the domesticated fruit provided at zoos. Wild fruits are seedy, pulpy, and thick-skinned, whereas orchard fruits are fleshy, plump, and sweet. From a nutritional standpoint, wild fruits contain more fiber, whereas orchard fruits contain more sugar. 

Our team wondered if a fiber boost might benefit Duke’s ruffed lemur colony. But would these fruit-loving lemurs eat their veggies?  

Cue the salad bar.

To test this idea, we offered ruffed lemurs at the Duke Lemur Center a lot of lettuce. Lettuce seemed like a pretty palatable way to stimulate foraging behavior, while boosting fiber intake.

With help from the research department, we offered 19 ruffed lemurs 150-200 grams of romaine lettuce each day, which is about double the weight of their standard diet. We repeated this regimen every day for 10 days, while recording the lemurs’ feeding behavior and collecting fecal samples for gut microbiome analysis. Because gut microbes are chiefly responsible for converting plant fiber into energy for the lemurs, measuring changes to the lemurs’ microbiomes offered a way to ‘see’ the impact of lettuce consumption.

It turns out that ruffed lemurs really like lettuce. They consistently ate lettuce every day and showed no decline in consumption across the study. Younger animals ate more lettuce than did geriatric lemurs, but all lemurs spent more time crunching on lettuce stalks than the leaves.

And their gut microbiomes responded. We noted two microbes that were more abundant on the lettuce diet: a known fiber digester from the Ruminococcaceae family, and a microbe known for its positive association with host health in other animals called Akkermansia.

Despite their classification as fruit eaters, ruffed lemurs readily eat lettuce. We think lettuce can be used to extend the lemurs’ foraging time while boosting dietary fiber. And it might just help replicate the lifestyles experienced by wild ruffed lemurs in their native Malagasy rainforests.     At the Duke Lemur Center, lettuce is now a routine item offered to ruffed lemurs (and other species too!). Next time you come out for a tour (once it’s safe to do so), you might get to see them crunching away on their new favorite snack!

( Read our paper here: https://onlinelibrary.wiley.com/doi/abs/10.1002/zoo.21555 )

Guest Post by Lydia Greene Ph.D., an NSF-sponsored postdoctoral fellow in biology working at the Duke Lemur Center.

Saving Africa’s Biggest Trees to Help Earth Breathe

Sticky post

Like wine, cheese, and savvy financial investments, many tropical trees become more valuable with age. This is particularly true when it comes to carbon storage, because old trees are often the biggest trees and the larger the tree, the more carbon it stores.

The value of big, old trees in combating climate change was underscored in a recent study of Gabon’s forests, led by the Nicholas School of the Environment’s John Poulsen. The team’s striking finding — that half of Gabon’s wealth of carbon is found in the largest 5% of trees — has implications that reach far beyond the sparsely populated Central African country’s borders.

Nicholas School Ph.D. student Graden Froese admires a forest giant in Ivindo National Park, Gabon.

Tropical forests play a key role in the global carbon cycle by keeping carbon out of the atmosphere. Trees take in CO2 — one of the infamous, heat-trapping greenhouse gases — during photosynthesis and use the carbon to grow, making new leaves, thicker and taller trunks, and more expansive root systems.

Scientists can estimate how much carbon a tree holds by measuring its trunk. So, like rainforest tailors, trained technicians traveled to all corners of the country to measure the girth and height of tens of thousands of trees.

This extraordinary two-year long effort was one of the first nationwide forest inventories in the tropics, making Gabon a leader in comprehensive forest monitoring.

John Poulsen is an associate professor of tropical ecology.

Poulsen and collaborators used the tree measurements to estimate the amount of carbon stored in Gabon’s forests and to determine why some forests hold more carbon than others.

“The field techs deserve all the credit”, Poulsen explained, “as they often walked for days through thick forest, traversing swamps and enduring humid, buggy conditions to measure trees. We turned their sweat and toil into information that could be used by Gabon’s government to prioritize areas for conservation.”

Who needs ladders, when you have colleagues? The field team collaborates to measure a forest giant.

The team analyzed a suite of environmental factors to see their effects on carbon storage. Of the natural factors, only soil fertility had a noticeable positive effect on tree biomass. Much more important was the impact of humans. As human activities such as agriculture and logging tend to target large trees, more heavily human-disturbed forests had a much different structure than pristine forests. The farther a study area was from human settlements, the more likely it was to host large trees and consequently, higher amounts of carbon.

The paper notes that Gabon stands out as a country with “one of the highest densities of aboveground forest carbon.” In fact, Gabon’s undisturbed forests store more carbon than those in the Amazon, which have been referred to as the lungs of the planet.

According to Poulsen, “Gabon is the second most forested country in the world with 87% forest cover, a deforestation rate near zero…” Because of its impressive forest cover and its location straddling the equator, Gabon’s forests host an incredibly diverse array of plants and animals, including many threatened and endangered species. Rural communities depend on these forests for their livelihoods.

Unfortunately, even Gabon’s ‘small’ trees make for spectacular felled logs.

However, Gabon’s impressive forests are valuable to more than just wildlife, climate researchers, and local communities. The logging industry also sees these forests as a chance for profit. More than half (about 67%) of Gabon’s forests are under contract with logging companies to harvest timber, putting them at risk of losing many of their carbon-storing giants.

Poulsen’s study highlights the importance of a more nuanced approach to forest conservation in Gabon. One that doesn’t simply focus on stopping deforestation or promoting restoration, as is prescribed in many international climate change plans, but an approach that recognizes the necessity of preserving high conservation value, old growth forests.

Anna Nordseth

Guest Post by Anna Nordseth, a graduate student in the Nicholas School of the Environment.

Following In The Footsteps of Elephants

Sticky post

Imagine for a moment that you’re 6,000 pounds, living in one of the wildest places on Earth, with no schedule, nowhere to be. How do you decide where to spend your time? Where to go next? Do you move where food is most plentiful? Is water your main priority?

Amelia Meier in the field.

These are some of the questions addressed by Duke Ph.D. candidate Amelia Meier and former postdoctoral researcher Dr. Chris Beirne in Dr. John Poulsen’s lab. Their recent study published in Trends in Ecology and Evolution focused on the African forest elephant–the slightly smaller yet still undeniably huge cousin of the savanna elephant.  

The team wanted to know what influences certain aspects of elephant behavior. Specifically, how much climate and resource availability drives elephant movement and influences their diet. To do this, the team looked at fruit abundance (a high-energy staple of elephants’ diets), water availability from rainfall, and elephant identity and how those factors affect how an individual moves and eats.

One might think that such a massive animal is easy to spot in the forest. However, the dense vegetation of Central African rainforests can be an impenetrable wall, allowing the massive animals to move unseen through the forest, leaving broken branches and steaming dung piles in their wake.

To better track them, the researchers fitted individual elephants with GPS collars that turn an iPhone into an elephant-tracking tool. This also allowed trackers to follow the elephants at a distance and avoid conflict with the sometimes temperamental animals.

Collared elephant, Marijo, (left) enjoying the rich minerals found at the Langoue Bai forest clearing.

Meier, Beirne, and colleagues also wanted to know more about the diets of the tracked elephants to see if what they ate changed with how much fruit is available. This less-than-glamorous job was done by dissecting fresh dung piles, estimating the proportions of leafy and woody material, and counting the number of seeds in each one.

Tropical rainforests are lush, yet have patchy resources, making it important for many frugivores to have flexible diets. Some trees only produce fruit in the wet season. Others fruit every other year. To gauge fruit availability, the research team conducted “fruit-walks” at the beginning and end of each day of following an elephant, in which trackers counted all of the ripe fruit on the ground.

A key finding of the study was that the most important factor driving movement was an elephant’s individuality; some respond to food or water availability differently and some simply move around more than others.

Field researcher Marius Edang getting the straight poop on elephant diets.

Interestingly, elephants appear to be affected by resources differently depending on the timescale the authors looked at. Water was important on both a day-to-day and month-to-month basis. Yet on a daily basis, fruit and water were more equally matched, with water still maintaining a slight lead.

Fruit availability was also critical in determining how much elephants moved and what they ate. When there was more fruit available, the elephants ate more fruit, as evidenced by the proportion of seeds in dissected dung piles.

Aside from being an awe-inspiring species, forest elephants are important to the health of their native ecosystems. They are unwitting gardeners, planting seeds of the fruits they consume in piles of dung and giving those seeds a better chance of survival. That’s part of why understanding what motivates forest elephant movement is more than the satisfaction of an elephant enthusiast’s curiosity; it is critical to managing and conserving a species that is vulnerable to multiple threats from humans.

Meier’s dissertation research focuses on elephant social behavior and the effects of human disturbance on elephant social groups, allowing her to pursue her long-term interest in animal behavior with a practical conservation application.

“I was living in Congo and I knew I wanted to keep working in the region. There, you have elephants–this amazing, highly intelligent, social species that is surrounded by conflict.”

Poachers seek elephants for their ivory tusks, which are valuable on the black market. The pachyderms are also prone to conflict with humans when they start foraging in village plantations, destroying crops and damaging livelihoods.

The team’s findings open the way for new questions about why different elephants exhibit different patterns of movement. What underlying factors affect behavior, and why? Does it have to do with age? Sex? Their social environment?

These questions remain unanswered for now, but the work of Meier and colleagues represents a critical step in understanding elephant behavior to improve forest elephant management and conservation strategies.

Guest Post by Anna Nordseth, a Ph.D. Candidate in the Nicholas School of the Environment

Paleo Fact and Fiction: the Key to Being Healthy

Humans have conquered smallpox and drastically reduced child mortality rates, yet we now face problems never seen before. Conditions like heart disease, obesity, cancer, and diabetes pose serious threats to our health. How can we overcome them? The answer may lie in our past.

Herman Pontzer, an associate professor of evolutionary anthropology at Duke, thinks we have something to learn by looking at hunter gatherers.

For most of human evolution, we had to work for our food. Recent developments like supermarkets and cities are strange and have flipped the script on daily life. Pontzer believes if we could live more like our ancestors, maybe we wouldn’t get sick.

Pontzer started off by studying a hunter gatherer group in Tanzania known as the Hadza. The Hadza cling tight to cultural traditions and live off the land in the African savannah. There are no domesticated animals, no guns, and no vehicles. Women spend their days digging for fibrous tubers and gathering berries and baobab fruits. When men aren’t hunting game, they collect honey. Honey plays a major role in the Hadza diet — around 15-20% of their caloric intake.

The Hadza live a very active lifestyle. They walk between 13,000 and 20,000 steps a day, compared to the generic Fitbit goal of 10,000 steps (which most of us don’t even meet, if we’re being honest).

Curious to see if the Hadza’s vigorous activity levels had something to do with their superior health, Pontzer used the doubly labeled water technique to measure total energy expenditure. Shockingly, he found that Hadza and Americans burn the same amount of calories on average.

All our lives we’ve been told exercise converts to burned calories. But evidence from the Hadza tells us this is not the case. What really happens is natural systems in our body adjust to suppress other activity, keeping total expenditure constant. This means that exercise alone is an ineffective tool for weight loss. But don’t quit the gym quite yet — while the Hadza spend most of their total energy being active, an inactive body will spend it on unhealthy things such as inflammation and stress reactivity. This constrained energy mechanism makes exercise essential for overall health. But in the words of Pontzer, “in order to end obesity, we need to fix our diet.”

Image result for paleo diet

The idea that the “paleo diet” is necessarily low-carb is a myth, Pontzer says. Hadza rely heavily on starches and fructose for sustenance. Furthermore, what you eat as a hunter gatherer is entirely dependent on geographical location. Hunter gatherer diets do things in common, though: they eat no processed foods, and energy dense foods are hard to come by. 

Never before have we had so much food high in energy available at such a low effort. In supermarkets, the cheapest food is the most rich in energy. In the wild, it’s the complete opposite. Pontzer says, “traditional diets are diverse, modern diets are perverse.”

Image result for supermarket cereal aisle

He calculated that an American can get twenty times as much food energy in an hour’s work as a Hadza could with the same effort. Plus, the Hadza don’t have irresistible Doritos they can’t stop eating. When the Hadza are full, they’re full.

The Hadza are naturally protected from the same “diseases of civilization” that we are likely to die from. A beautiful combination of diet and how they expend energy provides a shield that modernization seems to have taken from us. Energy has become too available. But staying healthy is still in our control. It’s about finding the right balance of exercise and eating right.  

There is still a lot to be learned from hunter gatherer societies. For now, let the Hadza inspire you to get outside, get active, and cut out processed foods!

For Lemurs, Water Holes Are a Matter of Taste

It’s 1 PM and you’re only halfway through a 6-hour hike, climbing in steep terrain under a 100° cloudless sky. Your water bottle is nearly empty, and you’ve heard the worst of this hike is yet to come.

And then, just as you are making peace with the fact that you may collapse from dehydration at any second, you approach a small river. The germaphobe side of your brain is shouting for you not to drink from that. The dehydrated animal in you, however, is seriously considering it.

What do you do?

That is the question that Dr. Caroline Amoroso and her collaborators from Duke’s department of evolutionary anthropology, set out to answer. With a slight difference: rather than unprepared hikers, they asked that question to red-fronted lemurs in Madagascar.

Although we often associate Madagascar with lush forests, some regions have a very marked dry season during which water becomes a limited resource. Water holes are few and far apart.

A red-fronted lemur in Kirindy Forest, Madagascar, tanks up at a watering hole. (Photo: Caroline Amoroso)

“On my first visit to Kirindy forest I was amazed at how these waterholes – which are essentially just puddles of standing water – serve as a source of life for so many animals,” says Amoroso.

However, with animals, comes poop. Throughout the season, these water holes quickly become contaminated with fecal matter from all the mammals, birds and reptiles that come have a drink. Amoroso says that fecal contamination was easily detectable even to human observers. “Approaching some waterholes I could tell that lemurs had been there recently because their droppings left such a smell!”

By experimentally manipulating water quality, following groups of radio-collared lemurs and observing lemur behavior at natural water holes, Amoroso and her team found that, all else being equal, lemurs prefer to drink clean water.

Indeed, when offered the choice between a bucket of clean water and a bucket of water containing lemur feces that had been disinfected by boiling, to kill all possible pathogens, lemurs virtually always drank from the clean water bucket. When the buckets were removed and lemurs had to go visit natural water holes, however, they prioritized water holes closer to their resting site, even if they were more contaminated than further ones. Proximity was more important than cleanliness, but if multiple water holes were at similar distances, then lemurs seem to choose the least-contaminated source.

“I was surprised to find evidence that the lemurs chose natural waterholes with lower levels of fecal contamination,” says Amoroso. “I thought that [in a natural setting] avoidance of fecal contamination would be relatively low on the lemurs’ list of priorities.”

After some watchful waiting for predators, and a discussion perhaps, a quartet of Kirindy lemurs visits a tiny watering hole. (Photo: Caroline Amoroso)

The authors highlight that many other factors can influence a lemur’s choice of water hole, such as exposure to potential predators or visits by competing groups. Indeed, Amoroso says that drinking water can be a very risky business for lemurs: “Lemurs would spend upwards of thirty minutes scanning the vegetation nervously and making sure there was no sign of predators before approaching the waterhole and drinking.”

Lemurs prefer clean water, unless it’s too much trouble. In that hike you were on? Lemurs would definitely drink from the river.

Guest Post by Marie Claire Chelini, a postdoctoral fellow in evolutionary anthropology.

Contaminated Drinking Water in Our Backyard

About 70% of the human body is made up of water. Water is something we consume on a daily basis. Therefore, when a community’s water source is threatened or contaminated it can be extremely detrimental. 

In 2017, it became apparent that there was water contamination in eastern North Carolina. Specifically, PFAS or per- and polyfluoroalkyl Alkyl chemicals were found in the water supply. As a result, several legislative mandates were issued in 2018 establishing a PFAS Testing Network to investigate the contamination.

Lee Ferguson, an Associate Professor of Civil and Environmental Engineering at Duke and Kathleen Gray, a professor at UNC’s Institute for the Environment, are testing PFAS water contamination and communicating any risks to the public. 

Gray is part of the network’s risk communication team. She explained that PFASs are hard to address because the health effects are unknown and they have yet to determine a standard or guideline for these substances. However, because this water contamination affects the lives of everyone connected to the water supply it is extremely important to communicate risk to the affected community but without eliciting panic. 

Gray explained that people often ask, “Are my family and I safe?” “What can I do to protect myself and my family?” “Why did this happen?” and “Why wasn’t it prevented?”

In the last year Ferguson and his research team have tested 409 sites in North Carolina for PFAS compounds.

He explained that PFAS substances are particularly dangerous because they are non-degradable, potentially toxic and constantly changing. Long-chain PFASs are being replaced by fluorinated alternatives.

Ferguson described this phenomenon as “playing environmental ‘whack-a-mole’ with different substances.”

Ferguson and his testing team have found two contaminated water supply sites in North Carolina. Dangerous contamination is based on the EPA health advisory level of 70ng/Liter. The exceedances were found in Maysville and Orange Water and Sewer Authority. Maysville was able to switch to the Jones County water source once the problem was identified.

New data that came in within the last couple weeks found high month-to-month variability in PFAS in the Haw River near Pittsboro. Ferguson and his team predict that it is coming downstream from a waste treatment plant. 

Brunswick County is shown having the worst PFAS concentrations. However, Dr. Ferguson and his team have recently found that the contamination in Haw River is even worse.

While all of this information may seem very alarming, Gray and Ferguson both reiterated that it is not necessary to panic. Instead, people should make sure they are drinking filtered water or invest in a water filter. 

Ferguson added, “The best choice is reverse osmosis.”

Gray and Ferguson presented their work at a SciComm Lunch-and-Learn, a monthly event sponsored by Duke Science & Society Initiative that explores interesting and innovative aspects of science communication. The event is free and open to anyone in the Duke community.

By Anna Gotskind

A Research Tour of Duke’s Largest Lab

“Lightning is like a dangerous animal that wants to go places. And you can’t stop it,” smiled Steve Cummer, Ph.D. as he gestured to the colorful image on the widescreen TV he’d set up outside his research trailer in an open field in Duke Forest.

Cummer, the William H. Younger Professor of electrical and computer engineering at Duke, is accustomed to lecturing in front of the students he teaches or his peers at conferences. But on this day, he was showing spectacular videos of lightning to curious members of the public who were given exclusive access to his research site on Eubanks Road in Chapel Hill, about 8 miles west of campus.

Steve Cummer shows a time-lapse video of lightning to the visitors on the annual Duke Forest Research Tour in the Blackwood Division of the Duke Forest.

More than two dozen members of the community had signed up for a tour of research projects in the Blackwood Division of Duke Forest (which recently expanded), a research-only area that is not normally open to the public. Cummer’s research site was the last stop of the afternoon research tour. The tour also covered native trees, moths and geological features of the Blackwood Division with biologist and ecologist Steve Hall, and air quality monitoring and remote sensing studies with John Walker and Dave Williams, from the U.S. Environmental Protection Agency.

The Hardwood Tower in the Blackwood Division is used for air quality monitoring and remote sensing studies. Researchers frequently climb the 138 foot tall tower to sample the air above the tree canopy.

Cummer’s research on lightning and sprites (electrical discharges associated with lightning that occur above thunderstorm clouds) sparked a lively question and answer session about everything from hurricanes to how to survive if you’re caught in a lightning storm. (Contrary to popular belief, crouching where you are is probably not the safest solution, he said. A car is a great hiding spot as long as you don’t touch anything made of metal.)

Cummer kept his tone fun and casual, like a live science television host, perched on the steps of his research trailer, referring to some of the scientific equipment spread out across the field as “salad bowls,” “pizza pans” and “lunar landers,” given their odd shapes. But the research he talked about was serious. Lightning is big business because it can cause billions of dollars in damage and insurance claims every year.

An ash tree (Fraxinus spp.) being examined by one of the visitors on the Duke Forest Research tour. Blackwood Division ash trees are showing signs of the highly destructive emerald ash borer invasion.

Surprisingly little is known about lightning, not even how it is first formed. “There are a shocking number of things,” he said, pausing to let his pun sink in, “that we really don’t understand about how lightning works. Starting with the very beginning, nobody knows exactly how it starts. Like, really the physics of that.”  But Cummer loves his research and has made some advances in this field (like devising more precise sensor systems), “When you’re the first person to understand something and you haven’t written about it yet or told anyone about it… that’s the best feeling.”

The Duke Forest hosted 49 research projects last year, which —with less than half of the projects reporting—represented over a million dollars of investment in Duke Forest-based work. 

“The Duke Forest is more than just a place to walk and to jog. It’s an outdoor classroom. It’s a living laboratory. It’s where faculty and teachers and students of all ages come to learn and explore,” explained Sara Childs, Duke Forest director.

The Duke Forest offers their research tour every year. Members of the public can sign up for the email newsletter to be notified about future events.

Post by Véronique Koch

Traveling Back in Time Through Smart Archaeology

The British explorer George Dennis once wrote, “Vulci is a city whose very name … was scarcely remembered, but which now, for the enormous treasures of antiquity it has yielded, is exalted above every other city of the ancient world.” He’s correct in assuming that most people do not know where or what Vulci is, but for explorers and historians – including Duke’s Bass Connections team Smart Archaeology – Vulci is a site of enormous potential.

Vulci, Italy, was an ancient Etruscan city, the remains of which are situated about an hour outside of Rome. The Etruscan civilization originated in the area roughly around Tuscany, western Umbria, northern Lazio, and in the north of Po Valley, the current Emilia-Romagna region, south-eastern Lombarty, southern Veneto, and some areas of Campania. The Etruscan culture is thought to have emerged in Italy around 900 BC and endured through the Roman-Etruscan Wars and coming to an end with the establishment of the Roman Empire. 

As a dig site, Vulci is extremely valuable for the information it can give us about the Etruscan and Roman civilizations – especially since the ruins found at Vulci date back beyond the 8th century B.C.E. On November 20th, Professor Maurizio Forte, of the Art, Art History and Visual Studies departments at Duke as well as Duke’s Dig@Lab, led a talk and interactive session. He summarized the Smart Archaeology teams’ experience this past summer in Italy as well as allowing audience members to learn about and try the various technologies used by the team. With Duke being the first university with a permit of excavation for Vulci in the last 60 years, the Bass Connections team set out to explore the region, with their primary concerns being data collection, data interpretation, and the use of virtual technology. 

Trying out some of the team’s technologies on November 20th (photo by Renate Kwon

The team, lead by Professor Maurizio Forte, Professor Michael Zavlanos, David Zalinsky, and Todd Barrett, sought to be as diverse as possible. With 32 participants ranging from undergraduate and graduate students to professionals, as well as Italian faculty and student members, the team flew into Italy at the beginning of the summer with a research model focused on an educational approach of practice and experimentation for everyone involved. With a naturally interdisciplinary focus ranging from classical studies to mechanical engineering, the team was divided, with people focusing on excavation in Vulci, remote sensing, haptics, virtual reality, robotics, and digital media. 

Professor Maurizio Forte

So what did the team accomplish? Well, technology was a huge driving force in most of the data collected. For example, with the use of drones, photos taken from an aerial view were patched together to create bigger layout pictures of the area that would have been the city of Vulci. The computer graphics created by the drone pictures were also used to create a video and aided in the process of creating a virtual reality simulation of Vulci. VR can be an important documentation tool, especially in a field as ever-changing as archaeology. And as Professor Forte remarked, it’s possible for anyone to see exactly what the researchers saw over the summer – and “if you’re afraid of the darkness of a cistern, you can go through virtual reality instead.” 

An example of one of the maps created by the team
The team at work in Vulci

In addition, the team used sensor technology to get around the labor and time it would take to dissect the entire site – which by the team’s estimate would take 300 years! Sensors in the soil, in particular, can sense the remnants of buildings and archaeological features up to five meters below ground, allowing researchers to imagine what monuments and buildings might have looked like. 

One of the biggest takeaways from the data the team collected based on discovering remnants of infrastructure and layout of the city was of the Etruscan mastery of water, developing techniques that the Romans also used. More work was also done on classification of Etruscan pottery, tools, and materials based on earlier work done by previous researchers. Discovering decorative and religious artifacts was also impactful for the team, because as Professor Forte emphasized, these objects are the “primary documentation of history.” 

But the discoveries won’t stop there. The Smart Archaeology team is launching their 2019-2020 Bass Connections project on a second phase of their research – specifically focusing on identifying new archaeological sites, analyzing the landscape’s transformation and testing new methods of data capturing, simulation and visualization. With two more years of work on site, the team is hopeful that research will be able to explain in even greater depth how the people of Vulci lived, which will certainly help to shine a light on the significance of the Etruscan civilization in global history.

By Meghna Datta

Understanding and Addressing Vaccine Hesitancy

In the midst of increasing outbreaks of vaccine-preventable disease, Duke global health researcher Lavanya Vasudevan (PhD, MPH, LPH) is investigating the reasons for vaccine hesitancy with focus on America and Tanzania.

Vaccine hesitancy refers to the refusal of or delay in accepting vaccinations, despite their availability. Vasudevan hopes to figure out what interventions will change the minds of target populations on such a heated topic.

She presented at Duke’s Global Health Institute on November 15th about her “big 5 research areas:” identification of sub-optimal vaccine uptake, contextualization of barriers to uptake, measuring parental concern, debunking misinformation, and developing and testing strategies aimed at addressing vaccine hesitancy.

Lavanya Vasudevan presenting at Duke’s Global Health Institute.

Globally, Vasudevan says that there are too many kids playing catch-up with their vaccines, meaning that even when children are getting vaccinated, the vaccinations they receive are not on time with the scheduled progression of immunizations, putting them at risk for contracting disease. Different countries measure vaccination coverage in different ways and on different timelines, which makes it harder to understand where sub-optimal vaccine uptake is happening. A better standard for assessing timeliness of vaccines is crucial. Vasudevan is working to confront this issue to gain better understanding of who and where hesitancy is coming from.

Identification of specific regions of vaccine hesitancy is crucial to navigating interventions, she added. Vasudevan wants to be able to pinpoint areas and understand the context-specific issues that vary across time, place, and vaccine type in order to be most effective.

She said that her work in Tanzania has provided insight to the problem of geographic accessibility and lack of proper supplies in the country, prompting delayed and missed vaccinations among 72% of children, according to self-reporting by their mothers. Tanzanian mothers expressed their frustrations during interviews. They frequently arrange to go to a clinic where vaccinations are offered on specific dates and travel long distances to get there. However, if there are not enough kids who come to be vaccinated, the facilities just won’t vaccinate those who did manage to show up for immunizations.  

Though the qualitative data gained through extensive interviewing and group discussions has been extremely useful and rich, Vasudevan says there is a need for quantitative tools that can rapidly screen for parent’s concerns when it comes to the vaccination of their children. Qualitative data is simply not informative on a large scale.

A review of pre-existing measures evaluated 159 studies, but the quantitative scales found were often complex and context-specific, as well as designed and validated for high-income settings. On this basis, Vasudevan and her larger research team decided to design a scale for use in Tanzania because of its specificity in addressing the contexts of the region. Tailored counseling is also being used to address the local concerns and issues.

Another parallel research project that Vasudevan is involved with aims to identify common vaccine myths, creating a taxonomy to tag these myths and developing and testing an intervention that will highlight and debunk misinformation found on the internet. The current end-goal for the work being done is a “vaccine fact-checker” that could be used on web browsers to identify the myths in vaccine-related information found online.

A common example of needles and vials containing immunization products (Creative Commons).

In closing, Vasudevan identified three main areas for developing and testing intervention strategies. She says these are behavioral nudges, educational strategies, and vaccination policy and legislation.

There is a need for parent-focused strategies that recognize parental concern for their child’s safety on all sides of the vaccination issue, she said. Stringent policies are likely to alienate hesitant parents rather than increasing vaccine uptake. This is why Vasudevan is so focused on understanding and contextualizing issues specific to hesitancy among parents. It seems that increase of vaccinations and improvement of immunization timeliness lies in hearing and reconciling with parental apprehensions and underlying root causes of these hesitations.

One area of focus that Vasudevan feels is underutilized is pre-natal care. Reduction of the divide between obstetrician/gynecologists (OBGYNs) and pediatric care may be a crucial component to educate parents and enrich their understanding about vaccinations following the birth of the child.

Beyond everything else, she said, building trust is essential; simply providing information to parents is not enough. It takes time and empathy to be enable parents to make healthy vaccination choices. Providing credible resources in a safe environment while tuning in to the causes of hesitancy may be the next step to the reduction of vaccine-preventable disease, a current top ten threat to global health.

Post by Cydney Livingston

The Anthropology of “Porkopolis”

Alex Blanchette, cultural anthropologist and lecturer in anthropology and environmental studies at Tufts University, is a scholar of pork production.

As America’s pork industry is continually pushed to ever greater production, so are the human beings who labor to breed, care for, and slaughter these animals.

Blanchette, who gave a talk hosted by the Ethnography Workshop at Duke on November 4th, said there is an intimate relationship between pig and person. The quality of the factory farm worker’s life is tied to that of the porcine species.

Alex Blanchette of Tufts University

Blanchette’s current work will be published in the 2020 ethnographic book – Porkopolis: American Animality, Standardized Life, and the “Factory” Farm. The book is focused on the consequences of human labor and identity that are bound to the pig – an animal which has become more industrialized over time due to corporations’ goal of a mass produced, standardized pig predictable in nature, uniform in existence, and easy to slaughter.

A common practice in factory farming is the ‘runting’ of litters, genetically making piglets smaller to increase the number each sow produces. But this practice has propelled a fundamental shift in the need for human workers to act as neonatal nurses, what Blanchette calls “external prosthetics,” to care for the newborns. Blanchette described one extraordinary worker responsible for taking care of piglet litters, saving the weak and deformed after birth. She has taken measures so drastic as to give a piglet mouth-to-mouth, incubate them in her pockets, and quickly form body-casts out of duct-tape for the small creatures. This worker has had the chance to study over 400,000 piglets in her seven-year career, encountering conditions of the pig body that no scientist has seen in real life.

Blanchette explained the active engagement required in any portion of the factory production. For example, people working with pregnant sows have to be extremely conscious of the way that the pigs are perceiving them to keep the sensory state of the mother pigs balanced. This means avoiding touching them unless work requires it, not wearing perfumes on the job, and taking overall care and precision in every motion throughout the workday. The danger is the risk of causing mass miscarriages and spontaneous abortions within a barn of sows because of their genetically engineered weakness and inability to handle stresses.

Piglets nursing in a device known as a farrowing crate.

Blanchette said one worker could be seen standing in the exact same place over the course of 1,000 compiled picture frames. He developed this habit to prevent large hogs in open pens from knocking him down and biting his legs while he was working. This is something that Blanchette said he couldn’t manage for more than a few minutes even though he too has worked within the pork industry before.

Workers on slaughter and “disassembly” lines are responsible for making the same exact cut or slice 9,500 times a day.

And finally, the conformation of human labor to the precisions of the factory pig often does not stop at the end of the work shift. In rural factory farming areas, corporations try to re-engineer the human communities in which their workers live to further regulate the human body outside of work because of potential impacts on the pigs. For example, workers’ socialization has been monitored by companies in some cases due to the threat of communicable disease reaching the hogs through human kinship.

No worker knows the pig from birth to death, but for the individual portion of the pig’s life for which they are responsible, they are bound intimately and intricately to the hog, Blanchette said. These people are also disproportionately people of color and immigrant workers who are underpaid for how strenuous, demanding, and encapsulating this labor is. Workers in factory farms often have little protections, and Blanchette’s work gives new life to the consequences of industrial capitalism in America as the pig has become a product of vertical integration in rural communities.

We have long been moving at the speed limits of human physiology in the pork industry,  Blanchette said. In 2011, one company’s annual effort to improve their corporation was to build a new human clinic on the jobsite to treat cuts and injuries acquired on the slaughter lines. This clinic was also responsible for assessing new hires in order to match the strongest part of their body to a place on the line where they would be most productive.

The interior of a typical confined animal feeding operation (CAFO).

Factory farms are actively searching for new money to be found in the pig and to have a closed-loop system which uses every aspect of its life and death for profit. This has caused a deep integration of the “capital swine” into everyday human life for the laborers and communities sustained by these economic ventures.

The Trump administration recently removed standards for pork slaughter line speeds and ultimately reduced overall regulations. People like Blanchette are already considering something you too might be wondering, What happens next? Where does pork and the human labor behind it go from here?

Post by Cydney Livingston

Page 1 of 13

Powered by WordPress & Theme by Anders Norén