Research Blog

Following the people and events that make up the research community at Duke

Category: Field Research Page 1 of 12

Paleo Fact and Fiction: the Key to Being Healthy

Humans have conquered smallpox and drastically reduced child mortality rates, yet we now face problems never seen before. Conditions like heart disease, obesity, cancer, and diabetes pose serious threats to our health. How can we overcome them? The answer may lie in our past.

Herman Pontzer, an associate professor of evolutionary anthropology at Duke, thinks we have something to learn by looking at hunter gatherers.

For most of human evolution, we had to work for our food. Recent developments like supermarkets and cities are strange and have flipped the script on daily life. Pontzer believes if we could live more like our ancestors, maybe we wouldn’t get sick.

Pontzer started off by studying a hunter gatherer group in Tanzania known as the Hadza. The Hadza cling tight to cultural traditions and live off the land in the African savannah. There are no domesticated animals, no guns, and no vehicles. Women spend their days digging for fibrous tubers and gathering berries and baobab fruits. When men aren’t hunting game, they collect honey. Honey plays a major role in the Hadza diet — around 15-20% of their caloric intake.

The Hadza live a very active lifestyle. They walk between 13,000 and 20,000 steps a day, compared to the generic Fitbit goal of 10,000 steps (which most of us don’t even meet, if we’re being honest).

Curious to see if the Hadza’s vigorous activity levels had something to do with their superior health, Pontzer used the doubly labeled water technique to measure total energy expenditure. Shockingly, he found that Hadza and Americans burn the same amount of calories on average.

All our lives we’ve been told exercise converts to burned calories. But evidence from the Hadza tells us this is not the case. What really happens is natural systems in our body adjust to suppress other activity, keeping total expenditure constant. This means that exercise alone is an ineffective tool for weight loss. But don’t quit the gym quite yet — while the Hadza spend most of their total energy being active, an inactive body will spend it on unhealthy things such as inflammation and stress reactivity. This constrained energy mechanism makes exercise essential for overall health. But in the words of Pontzer, “in order to end obesity, we need to fix our diet.”

Image result for paleo diet

The idea that the “paleo diet” is necessarily low-carb is a myth, Pontzer says. Hadza rely heavily on starches and fructose for sustenance. Furthermore, what you eat as a hunter gatherer is entirely dependent on geographical location. Hunter gatherer diets do things in common, though: they eat no processed foods, and energy dense foods are hard to come by. 

Never before have we had so much food high in energy available at such a low effort. In supermarkets, the cheapest food is the most rich in energy. In the wild, it’s the complete opposite. Pontzer says, “traditional diets are diverse, modern diets are perverse.”

Image result for supermarket cereal aisle

He calculated that an American can get twenty times as much food energy in an hour’s work as a Hadza could with the same effort. Plus, the Hadza don’t have irresistible Doritos they can’t stop eating. When the Hadza are full, they’re full.

The Hadza are naturally protected from the same “diseases of civilization” that we are likely to die from. A beautiful combination of diet and how they expend energy provides a shield that modernization seems to have taken from us. Energy has become too available. But staying healthy is still in our control. It’s about finding the right balance of exercise and eating right.  

There is still a lot to be learned from hunter gatherer societies. For now, let the Hadza inspire you to get outside, get active, and cut out processed foods!

For Lemurs, Water Holes Are a Matter of Taste

It’s 1 PM and you’re only halfway through a 6-hour hike, climbing in steep terrain under a 100° cloudless sky. Your water bottle is nearly empty, and you’ve heard the worst of this hike is yet to come.

And then, just as you are making peace with the fact that you may collapse from dehydration at any second, you approach a small river. The germaphobe side of your brain is shouting for you not to drink from that. The dehydrated animal in you, however, is seriously considering it.

What do you do?

That is the question that Dr. Caroline Amoroso and her collaborators from Duke’s department of evolutionary anthropology, set out to answer. With a slight difference: rather than unprepared hikers, they asked that question to red-fronted lemurs in Madagascar.

Although we often associate Madagascar with lush forests, some regions have a very marked dry season during which water becomes a limited resource. Water holes are few and far apart.

A red-fronted lemur in Kirindy Forest, Madagascar, tanks up at a watering hole. (Photo: Caroline Amoroso)

“On my first visit to Kirindy forest I was amazed at how these waterholes – which are essentially just puddles of standing water – serve as a source of life for so many animals,” says Amoroso.

However, with animals, comes poop. Throughout the season, these water holes quickly become contaminated with fecal matter from all the mammals, birds and reptiles that come have a drink. Amoroso says that fecal contamination was easily detectable even to human observers. “Approaching some waterholes I could tell that lemurs had been there recently because their droppings left such a smell!”

By experimentally manipulating water quality, following groups of radio-collared lemurs and observing lemur behavior at natural water holes, Amoroso and her team found that, all else being equal, lemurs prefer to drink clean water.

Indeed, when offered the choice between a bucket of clean water and a bucket of water containing lemur feces that had been disinfected by boiling, to kill all possible pathogens, lemurs virtually always drank from the clean water bucket. When the buckets were removed and lemurs had to go visit natural water holes, however, they prioritized water holes closer to their resting site, even if they were more contaminated than further ones. Proximity was more important than cleanliness, but if multiple water holes were at similar distances, then lemurs seem to choose the least-contaminated source.

“I was surprised to find evidence that the lemurs chose natural waterholes with lower levels of fecal contamination,” says Amoroso. “I thought that [in a natural setting] avoidance of fecal contamination would be relatively low on the lemurs’ list of priorities.”

After some watchful waiting for predators, and a discussion perhaps, a quartet of Kirindy lemurs visits a tiny watering hole. (Photo: Caroline Amoroso)

The authors highlight that many other factors can influence a lemur’s choice of water hole, such as exposure to potential predators or visits by competing groups. Indeed, Amoroso says that drinking water can be a very risky business for lemurs: “Lemurs would spend upwards of thirty minutes scanning the vegetation nervously and making sure there was no sign of predators before approaching the waterhole and drinking.”

Lemurs prefer clean water, unless it’s too much trouble. In that hike you were on? Lemurs would definitely drink from the river.

Guest Post by Marie Claire Chelini, a postdoctoral fellow in evolutionary anthropology.

Contaminated Drinking Water in Our Backyard

About 70% of the human body is made up of water. Water is something we consume on a daily basis. Therefore, when a community’s water source is threatened or contaminated it can be extremely detrimental. 

In 2017, it became apparent that there was water contamination in eastern North Carolina. Specifically, PFAS or per- and polyfluoroalkyl Alkyl chemicals were found in the water supply. As a result, several legislative mandates were issued in 2018 establishing a PFAS Testing Network to investigate the contamination.

Lee Ferguson, an Associate Professor of Civil and Environmental Engineering at Duke and Kathleen Gray, a professor at UNC’s Institute for the Environment, are testing PFAS water contamination and communicating any risks to the public. 

Gray is part of the network’s risk communication team. She explained that PFASs are hard to address because the health effects are unknown and they have yet to determine a standard or guideline for these substances. However, because this water contamination affects the lives of everyone connected to the water supply it is extremely important to communicate risk to the affected community but without eliciting panic. 

Gray explained that people often ask, “Are my family and I safe?” “What can I do to protect myself and my family?” “Why did this happen?” and “Why wasn’t it prevented?”

In the last year Ferguson and his research team have tested 409 sites in North Carolina for PFAS compounds.

He explained that PFAS substances are particularly dangerous because they are non-degradable, potentially toxic and constantly changing. Long-chain PFASs are being replaced by fluorinated alternatives.

Ferguson described this phenomenon as “playing environmental ‘whack-a-mole’ with different substances.”

Ferguson and his testing team have found two contaminated water supply sites in North Carolina. Dangerous contamination is based on the EPA health advisory level of 70ng/Liter. The exceedances were found in Maysville and Orange Water and Sewer Authority. Maysville was able to switch to the Jones County water source once the problem was identified.

New data that came in within the last couple weeks found high month-to-month variability in PFAS in the Haw River near Pittsboro. Ferguson and his team predict that it is coming downstream from a waste treatment plant. 

Brunswick County is shown having the worst PFAS concentrations. However, Dr. Ferguson and his team have recently found that the contamination in Haw River is even worse.

While all of this information may seem very alarming, Gray and Ferguson both reiterated that it is not necessary to panic. Instead, people should make sure they are drinking filtered water or invest in a water filter. 

Ferguson added, “The best choice is reverse osmosis.”

Gray and Ferguson presented their work at a SciComm Lunch-and-Learn, a monthly event sponsored by Duke Science & Society Initiative that explores interesting and innovative aspects of science communication. The event is free and open to anyone in the Duke community.

By Anna Gotskind

A Research Tour of Duke’s Largest Lab

“Lightning is like a dangerous animal that wants to go places. And you can’t stop it,” smiled Steve Cummer, Ph.D. as he gestured to the colorful image on the widescreen TV he’d set up outside his research trailer in an open field in Duke Forest.

Cummer, the William H. Younger Professor of electrical and computer engineering at Duke, is accustomed to lecturing in front of the students he teaches or his peers at conferences. But on this day, he was showing spectacular videos of lightning to curious members of the public who were given exclusive access to his research site on Eubanks Road in Chapel Hill, about 8 miles west of campus.

Steve Cummer shows a time-lapse video of lightning to the visitors on the annual Duke Forest Research Tour in the Blackwood Division of the Duke Forest.

More than two dozen members of the community had signed up for a tour of research projects in the Blackwood Division of Duke Forest (which recently expanded), a research-only area that is not normally open to the public. Cummer’s research site was the last stop of the afternoon research tour. The tour also covered native trees, moths and geological features of the Blackwood Division with biologist and ecologist Steve Hall, and air quality monitoring and remote sensing studies with John Walker and Dave Williams, from the U.S. Environmental Protection Agency.

The Hardwood Tower in the Blackwood Division is used for air quality monitoring and remote sensing studies. Researchers frequently climb the 138 foot tall tower to sample the air above the tree canopy.

Cummer’s research on lightning and sprites (electrical discharges associated with lightning that occur above thunderstorm clouds) sparked a lively question and answer session about everything from hurricanes to how to survive if you’re caught in a lightning storm. (Contrary to popular belief, crouching where you are is probably not the safest solution, he said. A car is a great hiding spot as long as you don’t touch anything made of metal.)

Cummer kept his tone fun and casual, like a live science television host, perched on the steps of his research trailer, referring to some of the scientific equipment spread out across the field as “salad bowls,” “pizza pans” and “lunar landers,” given their odd shapes. But the research he talked about was serious. Lightning is big business because it can cause billions of dollars in damage and insurance claims every year.

An ash tree (Fraxinus spp.) being examined by one of the visitors on the Duke Forest Research tour. Blackwood Division ash trees are showing signs of the highly destructive emerald ash borer invasion.

Surprisingly little is known about lightning, not even how it is first formed. “There are a shocking number of things,” he said, pausing to let his pun sink in, “that we really don’t understand about how lightning works. Starting with the very beginning, nobody knows exactly how it starts. Like, really the physics of that.”  But Cummer loves his research and has made some advances in this field (like devising more precise sensor systems), “When you’re the first person to understand something and you haven’t written about it yet or told anyone about it… that’s the best feeling.”

The Duke Forest hosted 49 research projects last year, which —with less than half of the projects reporting—represented over a million dollars of investment in Duke Forest-based work. 

“The Duke Forest is more than just a place to walk and to jog. It’s an outdoor classroom. It’s a living laboratory. It’s where faculty and teachers and students of all ages come to learn and explore,” explained Sara Childs, Duke Forest director.

The Duke Forest offers their research tour every year. Members of the public can sign up for the email newsletter to be notified about future events.

Post by Véronique Koch

Traveling Back in Time Through Smart Archaeology

The British explorer George Dennis once wrote, “Vulci is a city whose very name … was scarcely remembered, but which now, for the enormous treasures of antiquity it has yielded, is exalted above every other city of the ancient world.” He’s correct in assuming that most people do not know where or what Vulci is, but for explorers and historians – including Duke’s Bass Connections team Smart Archaeology – Vulci is a site of enormous potential.

Vulci, Italy, was an ancient Etruscan city, the remains of which are situated about an hour outside of Rome. The Etruscan civilization originated in the area roughly around Tuscany, western Umbria, northern Lazio, and in the north of Po Valley, the current Emilia-Romagna region, south-eastern Lombarty, southern Veneto, and some areas of Campania. The Etruscan culture is thought to have emerged in Italy around 900 BC and endured through the Roman-Etruscan Wars and coming to an end with the establishment of the Roman Empire. 

As a dig site, Vulci is extremely valuable for the information it can give us about the Etruscan and Roman civilizations – especially since the ruins found at Vulci date back beyond the 8th century B.C.E. On November 20th, Professor Maurizio Forte, of the Art, Art History and Visual Studies departments at Duke as well as Duke’s Dig@Lab, led a talk and interactive session. He summarized the Smart Archaeology teams’ experience this past summer in Italy as well as allowing audience members to learn about and try the various technologies used by the team. With Duke being the first university with a permit of excavation for Vulci in the last 60 years, the Bass Connections team set out to explore the region, with their primary concerns being data collection, data interpretation, and the use of virtual technology. 

Trying out some of the team’s technologies on November 20th (photo by Renate Kwon

The team, lead by Professor Maurizio Forte, Professor Michael Zavlanos, David Zalinsky, and Todd Barrett, sought to be as diverse as possible. With 32 participants ranging from undergraduate and graduate students to professionals, as well as Italian faculty and student members, the team flew into Italy at the beginning of the summer with a research model focused on an educational approach of practice and experimentation for everyone involved. With a naturally interdisciplinary focus ranging from classical studies to mechanical engineering, the team was divided, with people focusing on excavation in Vulci, remote sensing, haptics, virtual reality, robotics, and digital media. 

Professor Maurizio Forte

So what did the team accomplish? Well, technology was a huge driving force in most of the data collected. For example, with the use of drones, photos taken from an aerial view were patched together to create bigger layout pictures of the area that would have been the city of Vulci. The computer graphics created by the drone pictures were also used to create a video and aided in the process of creating a virtual reality simulation of Vulci. VR can be an important documentation tool, especially in a field as ever-changing as archaeology. And as Professor Forte remarked, it’s possible for anyone to see exactly what the researchers saw over the summer – and “if you’re afraid of the darkness of a cistern, you can go through virtual reality instead.” 

An example of one of the maps created by the team
The team at work in Vulci

In addition, the team used sensor technology to get around the labor and time it would take to dissect the entire site – which by the team’s estimate would take 300 years! Sensors in the soil, in particular, can sense the remnants of buildings and archaeological features up to five meters below ground, allowing researchers to imagine what monuments and buildings might have looked like. 

One of the biggest takeaways from the data the team collected based on discovering remnants of infrastructure and layout of the city was of the Etruscan mastery of water, developing techniques that the Romans also used. More work was also done on classification of Etruscan pottery, tools, and materials based on earlier work done by previous researchers. Discovering decorative and religious artifacts was also impactful for the team, because as Professor Forte emphasized, these objects are the “primary documentation of history.” 

But the discoveries won’t stop there. The Smart Archaeology team is launching their 2019-2020 Bass Connections project on a second phase of their research – specifically focusing on identifying new archaeological sites, analyzing the landscape’s transformation and testing new methods of data capturing, simulation and visualization. With two more years of work on site, the team is hopeful that research will be able to explain in even greater depth how the people of Vulci lived, which will certainly help to shine a light on the significance of the Etruscan civilization in global history.

By Meghna Datta

Understanding and Addressing Vaccine Hesitancy

In the midst of increasing outbreaks of vaccine-preventable disease, Duke global health researcher Lavanya Vasudevan (PhD, MPH, LPH) is investigating the reasons for vaccine hesitancy with focus on America and Tanzania.

Vaccine hesitancy refers to the refusal of or delay in accepting vaccinations, despite their availability. Vasudevan hopes to figure out what interventions will change the minds of target populations on such a heated topic.

She presented at Duke’s Global Health Institute on November 15th about her “big 5 research areas:” identification of sub-optimal vaccine uptake, contextualization of barriers to uptake, measuring parental concern, debunking misinformation, and developing and testing strategies aimed at addressing vaccine hesitancy.

Lavanya Vasudevan presenting at Duke’s Global Health Institute.

Globally, Vasudevan says that there are too many kids playing catch-up with their vaccines, meaning that even when children are getting vaccinated, the vaccinations they receive are not on time with the scheduled progression of immunizations, putting them at risk for contracting disease. Different countries measure vaccination coverage in different ways and on different timelines, which makes it harder to understand where sub-optimal vaccine uptake is happening. A better standard for assessing timeliness of vaccines is crucial. Vasudevan is working to confront this issue to gain better understanding of who and where hesitancy is coming from.

Identification of specific regions of vaccine hesitancy is crucial to navigating interventions, she added. Vasudevan wants to be able to pinpoint areas and understand the context-specific issues that vary across time, place, and vaccine type in order to be most effective.

She said that her work in Tanzania has provided insight to the problem of geographic accessibility and lack of proper supplies in the country, prompting delayed and missed vaccinations among 72% of children, according to self-reporting by their mothers. Tanzanian mothers expressed their frustrations during interviews. They frequently arrange to go to a clinic where vaccinations are offered on specific dates and travel long distances to get there. However, if there are not enough kids who come to be vaccinated, the facilities just won’t vaccinate those who did manage to show up for immunizations.  

Though the qualitative data gained through extensive interviewing and group discussions has been extremely useful and rich, Vasudevan says there is a need for quantitative tools that can rapidly screen for parent’s concerns when it comes to the vaccination of their children. Qualitative data is simply not informative on a large scale.

A review of pre-existing measures evaluated 159 studies, but the quantitative scales found were often complex and context-specific, as well as designed and validated for high-income settings. On this basis, Vasudevan and her larger research team decided to design a scale for use in Tanzania because of its specificity in addressing the contexts of the region. Tailored counseling is also being used to address the local concerns and issues.

Another parallel research project that Vasudevan is involved with aims to identify common vaccine myths, creating a taxonomy to tag these myths and developing and testing an intervention that will highlight and debunk misinformation found on the internet. The current end-goal for the work being done is a “vaccine fact-checker” that could be used on web browsers to identify the myths in vaccine-related information found online.

A common example of needles and vials containing immunization products (Creative Commons).

In closing, Vasudevan identified three main areas for developing and testing intervention strategies. She says these are behavioral nudges, educational strategies, and vaccination policy and legislation.

There is a need for parent-focused strategies that recognize parental concern for their child’s safety on all sides of the vaccination issue, she said. Stringent policies are likely to alienate hesitant parents rather than increasing vaccine uptake. This is why Vasudevan is so focused on understanding and contextualizing issues specific to hesitancy among parents. It seems that increase of vaccinations and improvement of immunization timeliness lies in hearing and reconciling with parental apprehensions and underlying root causes of these hesitations.

One area of focus that Vasudevan feels is underutilized is pre-natal care. Reduction of the divide between obstetrician/gynecologists (OBGYNs) and pediatric care may be a crucial component to educate parents and enrich their understanding about vaccinations following the birth of the child.

Beyond everything else, she said, building trust is essential; simply providing information to parents is not enough. It takes time and empathy to be enable parents to make healthy vaccination choices. Providing credible resources in a safe environment while tuning in to the causes of hesitancy may be the next step to the reduction of vaccine-preventable disease, a current top ten threat to global health.

Post by Cydney Livingston

The Anthropology of “Porkopolis”

Alex Blanchette, cultural anthropologist and lecturer in anthropology and environmental studies at Tufts University, is a scholar of pork production.

As America’s pork industry is continually pushed to ever greater production, so are the human beings who labor to breed, care for, and slaughter these animals.

Blanchette, who gave a talk hosted by the Ethnography Workshop at Duke on November 4th, said there is an intimate relationship between pig and person. The quality of the factory farm worker’s life is tied to that of the porcine species.

Alex Blanchette of Tufts University

Blanchette’s current work will be published in the 2020 ethnographic book – Porkopolis: American Animality, Standardized Life, and the “Factory” Farm. The book is focused on the consequences of human labor and identity that are bound to the pig – an animal which has become more industrialized over time due to corporations’ goal of a mass produced, standardized pig predictable in nature, uniform in existence, and easy to slaughter.

A common practice in factory farming is the ‘runting’ of litters, genetically making piglets smaller to increase the number each sow produces. But this practice has propelled a fundamental shift in the need for human workers to act as neonatal nurses, what Blanchette calls “external prosthetics,” to care for the newborns. Blanchette described one extraordinary worker responsible for taking care of piglet litters, saving the weak and deformed after birth. She has taken measures so drastic as to give a piglet mouth-to-mouth, incubate them in her pockets, and quickly form body-casts out of duct-tape for the small creatures. This worker has had the chance to study over 400,000 piglets in her seven-year career, encountering conditions of the pig body that no scientist has seen in real life.

Blanchette explained the active engagement required in any portion of the factory production. For example, people working with pregnant sows have to be extremely conscious of the way that the pigs are perceiving them to keep the sensory state of the mother pigs balanced. This means avoiding touching them unless work requires it, not wearing perfumes on the job, and taking overall care and precision in every motion throughout the workday. The danger is the risk of causing mass miscarriages and spontaneous abortions within a barn of sows because of their genetically engineered weakness and inability to handle stresses.

Piglets nursing in a device known as a farrowing crate.

Blanchette said one worker could be seen standing in the exact same place over the course of 1,000 compiled picture frames. He developed this habit to prevent large hogs in open pens from knocking him down and biting his legs while he was working. This is something that Blanchette said he couldn’t manage for more than a few minutes even though he too has worked within the pork industry before.

Workers on slaughter and “disassembly” lines are responsible for making the same exact cut or slice 9,500 times a day.

And finally, the conformation of human labor to the precisions of the factory pig often does not stop at the end of the work shift. In rural factory farming areas, corporations try to re-engineer the human communities in which their workers live to further regulate the human body outside of work because of potential impacts on the pigs. For example, workers’ socialization has been monitored by companies in some cases due to the threat of communicable disease reaching the hogs through human kinship.

No worker knows the pig from birth to death, but for the individual portion of the pig’s life for which they are responsible, they are bound intimately and intricately to the hog, Blanchette said. These people are also disproportionately people of color and immigrant workers who are underpaid for how strenuous, demanding, and encapsulating this labor is. Workers in factory farms often have little protections, and Blanchette’s work gives new life to the consequences of industrial capitalism in America as the pig has become a product of vertical integration in rural communities.

We have long been moving at the speed limits of human physiology in the pork industry,  Blanchette said. In 2011, one company’s annual effort to improve their corporation was to build a new human clinic on the jobsite to treat cuts and injuries acquired on the slaughter lines. This clinic was also responsible for assessing new hires in order to match the strongest part of their body to a place on the line where they would be most productive.

The interior of a typical confined animal feeding operation (CAFO).

Factory farms are actively searching for new money to be found in the pig and to have a closed-loop system which uses every aspect of its life and death for profit. This has caused a deep integration of the “capital swine” into everyday human life for the laborers and communities sustained by these economic ventures.

The Trump administration recently removed standards for pork slaughter line speeds and ultimately reduced overall regulations. People like Blanchette are already considering something you too might be wondering, What happens next? Where does pork and the human labor behind it go from here?

Post by Cydney Livingston

Stalking Elusive Ferns Down Under

Graduate student Karla Sosa (left) photographs and presses newly collected ferns for later analysis while Ashley Field (in truck) marks the GPS location of the find.

In Queensland, Australia, early March can be 96 degrees Fahrenheit. It’s summer in the Southern Hemisphere, but that’s still pretty hot.

Although hot, dry Australia probably isn’t the first place you’d think to look for ferns, that’s precisely why I’m here and the sole reason we’ve hit the road at 6 a.m. Our schedule for the day: to drive as far south as we can while still letting us come home at the end of the day.

My local colleague, Ashley Field, grew up just the next town over. A skinny, speedy man, he works at James Cook University in Cairns and knows most of northern Queensland like the back of his hand.

Cairns is on the coast at the upper right, where the little green airplane is.

The ferns I’m looking for today are interesting because some species can move from their original home in Australia to the tiny islands in the Pacific. But some cannot. Why? Understanding what makes them different could prove useful in making our crops more resilient to harsh weather, or preventing weeds from spreading.

We’ve been driving for four hours before we turn off onto a dirt road. If you haven’t been to Australia, it’s worth noting that four hours here is unlike any four hours I’ve experienced before. The roads are fairly empty, flat, and straight, meaning you can cover a lot of terrain. Australia is also incredibly big and most of the time you’re travelling through unpopulated landscapes. While it may be only four hours, your mind feels the weight of the distance.

Here’s the one they were looking for!
Cheilanthes tenuifolia with lots of little spore babies on the undersides of its leaves.

The dirt road begins to climb into the mountains. We are leaving behind low scrub and big granite rocks that sit on the flat terrain. Ashley knows where we can find the ferns I’m looking for, but he’s never driven this road before. Instead, we’re trusting researchers who came before us. When they explored this area, they took samples of plants that were preserved and stored in museums and universities. By reviewing the carefully labelled collections at these institutions, we can know which places to revisit in hopes of finding the ferns.

Often, however, having been collected before there was GPS, the location information on these samples is not very precise, or the plants may no longer live there, or maybe that area got turned into a parking lot, as happened to me in New Zealand. So, despite careful planning, you may drive five hours one way to come up empty handed.

As we move higher up the mountain, the soil turns redder and sparse eucalyptus forests begin to enclose us. We locate the previous collections coordinates, an area that seems suitable for ferns to grow. We park the truck on the side of the road and get out to look.

We comb 300 feet along the side of the road because these ferns like the edges of forest, and we find nothing. But as we trudge back to the truck, I spot one meager fern hiding behind a creeping vine! It’s high up off the road-cut and I try to scramble up but only manage to pull a muscle in my arm. Ashley is taller, so he climbs partway up a tree and manages to fetch the fern. It’s not the healthiest, only 6 inches tall for a plant that usually grows at least 12 to 14 inches. It’s also not fertile, making it less useful for research, and in pulling it out of the ground, Ashley broke one of its three leaves off. But it’s better than nothing!

This delicate beauty has no name yet. Karla has to compare it to other ferns in the area to know whether it’s just an odd-looking variant or possibly … a new species!

Ashley excels at being a field botanist because he is not one to give up. “We should keep looking,” he says despite the sweat dripping down our faces.

We pile back in and continue up the road. And who could have predicted that just around the bend we would find dozens of tall, healthy looking ferns! There are easily fifty or so plants, each a deep green, the tallest around 12 inches. Many others are at earlier stages of growth, which can be very helpful for scientists in understanding how plants develop. We take four or five plants, enough to leave a sample at the university in Cairns and for the rest to be shipped back to the US. One sample will be kept at Duke, and the others will be distributed amongst other museums and universities as a type of insurance.

The long hours, the uncertainty, and the harsh conditions become small things when you hit a jackpot like this. Plus, being out in remote wilderness has its own soothing charm, and chance also often allows us to spot cool animals, like the frilled lizard and wallaby we saw on this trip.

Funding for this type of fieldwork is becoming increasingly rare, so I am grateful to the National Geographic Society for seeing the value in this work and funding my three-week expedition. I was able to cover about 400 miles of Australia from north to south, visiting twenty-four different sites, including eight parks, and ranging from lush rainforest to dry, rocky scrub. We collected fifty-five samples, including some that may be new species, and took careful notes and photographs of how these plants grow in the wild, something you can’t tell from dried-up specimens.

Knowing what species are out there and how they exist within the environment is important not only because it may provide solutions to human problems, but also because understanding what biodiversity we have can help us take better care of it in the future.

Guest Post by graduate student Karla Sosa

Malaria Hides In People Without Symptoms

It seems like the never-ending battle against Malaria just keeps getting tougher. In regions where Malaria is hyper-prevalent, anti-mosquito measures can only work so well due to the reservoir that has built up of infected humans who do not even know they carry the infection.

In high-transmission areas, asymptomatic malaria is more prevalent than symptomatic malaria. Twenty-four percent of the people in sub-Saharan Africa are estimated to harbor an asymptomatic infection, including 38 to 50 percent of the school-aged children in western Kenya. Out of the 219 million malaria cases in 2017 worldwide, over 90%  were in sub-Saharan Africa.  

Using a special vacuum-like tool, Kelsey Sumner, a former Duke undergraduate now completing her Ph.D. at UNC-Chapel Hill, collected mosquitoes in households located in rural western Kenya. These weekly mosquito collections were a part of her pre-dissertation study on asymptomatic, or invisible, malaria. She visited Duke in September to catch us up on her work in Data Dialogue event sponsored by the mathematics department.

Sumner and colleague Verona Liao, in front of a sticky trap for mosquitoes

People with asymptomatic malaria carry the infection but have no idea they do because they do not have any indicators. This is incredibly dangerous because without symptoms, they will not get treated and can then infect countless others with the disease. As a result, people with an asymptomatic infection or infections have become a reservoir for malaria — a place for it to hide. Reservoirs are a group that is contributing to transmission at a higher rate or proportion than others.

Sumner’s study focused on examining the effect of asymptomatic malaria on malaria transmission as well as whether asymptomatic malaria infections would protect a person against future symptomatic infections from the same or different malaria infections. They were particularly looking into Plasmodium falciparum malaria. In Kenya, more than 70% of the population lives in an area with a high transmission of this potentially lethal parasite.

“P. falciparum malaria is very diverse in the region,” she said. “It’s constantly mutating, which is why it’s so hard to treat. But because of that, we’re able to actually measure how many infections people have at once.” 

The researchers discovered that many study participants were infected with multiple, genetically-distinct malaria infections. Some carried up to fourteen strains of the parasite.

Participants in the study began by filling out an enrollment questionnaire followed by monthly questionnaires and dried blood spot collections. The project has collected over nearly 3,000 dried blood spots from participants. These blood spots were then sent to a lab where DNA was extracted and tested for P. falciparum malaria using qPCR

“We used the fact that we have this really diverse falciparum species in the area and sequenced the DNA from falciparum to actually determine how many infections people have,” Sumner said. “And then, if there’s a shared infection between humans and mosquitoes.”

Sumner and her team also visited symptomatic participants who would fill out a behavioral questionnaire and undergo a rapid diagnostic test. Infected participants were able to receive treatment. 

While people in the region have tried to prevent infection through means like sleeping under insecticide-treated nets, malaria has persisted. 

One of the Kenyan staff members hanging a CDC light trap for mosquitoes

Sumner is continuing to analyze the collected DNA to better understand asymptomatic malaria, malarial reservoirs and how to best intervene to help stop this epidemic. 

“We’re basically looking at how the number of shared infections differ between those that have asymptomatic malaria versus those that have symptomatic malaria.”

She and her team hypothesize that there are more asymptomatic infections that would result in and explain the rapid transmission of malaria in the region.

Post by Anna Gotskind

Across the Atlantic: Caribbean Music and Diaspora in the UK

According to Professor Deonte Harris, many of us here in the U.S. have a fascination with Black music. But at the same time, we tend not to realize that it’s. . . well, Black music.

Harris, an International Comparative Studies professor at Duke, holds a freshly minted Ph.D. in Ethnomusicology from UCLA. At the moment, his research focuses especially on the practice and influence of Afro-Caribbean music and diaspora in London.

Image result for deonte harris ethnomusicology
Deonte Harris, Ph.D.,
Assistant Professor of the Practice of the International Comparative Studies Program

He chose to conduct his research in the UK because of its large overseas Caribbean population and because he found that not much scholarship was dedicated to Black Europe. “It’s such a rich space to think about different historical entanglements that affect the lives and trajectories of Black people,” he explained.

Those entanglements include the legacies of colonialism, the Slave Trade, empire, and much more. The racialization of such historical processes is necessary to note.

For example, Harris found that a major shift in Black British music occurred in the 1950s due to anti-Black racism in England. Black individuals were not allowed to socialize in white spaces, so they formed community in their own way: through soundsystems.

These soundsystem originated in Jamaica and debuted in the UK in the postwar years. A soundsystem was the organization of Black individuals, music, and machines, typically in basements and warehouses, for the enjoyment of Black music and company. It became a medium through which a Black community could form in a racialized nation.

Notting Hill Carnival 2007 004.jpg
Notting Hill Carnival, London: An annual celebration of Black British culture.
Photo by Dominic Alves.

Today, Black British music has greatly expanded, but still remains rooted in sound systems.

While the formation of community has been positive, Harris explains that much of his research is a highly complex and often disheartening commentary on Blackness.

Blackness has been created as a category by dominant society: the white community, mostly colonizers. Black music became a thing only because of the push to otherize Black Britons; in many ways, Black culture exists only as an “other” in relation to whiteness. This raises a question of identity that Harris continues to examine: Who has the power to represent self?

In the U.S. especially, Black music is a crucial foundation to American popular music. But as in the UK, it finds its origins in community, folk traditions, and struggle. The industrial nature of the U.S. allows that struggle to be commercialized and disseminated across the globe, creating a sort of paradox. According to Harris, Black individuals must reconcile “being recognized and loved globally, but understanding that people still despise who you are.”

To conduct his research, Harris mostly engages in fieldwork. He spends a significant amount of time in London, engaging with Black communities and listening to live music. His analysis typically involves both sonic and situational elements.

But the most valuable part of Harris’ fieldwork, perhaps, is the community that he himself finds. “Ethnomusicology has for me been a very transformative experience,” he said. “It has helped me to create new global relationships with people ⁠— I consider myself now to have homes in several different places.”

By Irene Park

Page 1 of 12

Powered by WordPress & Theme by Anders Norén