Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Science Communication & Education (Page 1 of 15)

Looking at Cooking as a Science Experiment

From five-star restaurants to Grandma’s homemade cookies, cooking is an art that has transformed the way we taste food. But haven’t you ever wondered how cooking works? How in the world did people discover how to make Dipping Dots or Jell-O?

Patrick Charbonneau is an Associate Professor of Chemistry here at Duke and last Friday he gave a delicious talk about the science of cooking (with samples!).

Patrick Charbonneau, Duke Chemist and Foodie

Around 10,000 years ago humans discovered that by fermenting milk you could turn it into yogurt, something that is more transportable, lasts longer, and digests easier. In the 1600s a new cooking apparatus called the “bone digester” (pressure cooker) allowed you to cook things faster while enhancing the flavor. When the 1800s came around, a scientist named Eben Horsford discovered that adding an acid with sodium bicarbonate creates baking powder. Soon enough scientific and kitchen minds started to collaborate, and new creations were made in the culinary world. As you can see, a lot of fundamental cooking techniques and ingredients we use today are a product of scientific discoveries.

Old-school pressure cookers. Forerunners of the Instant Pot.

Whisked Toffee

Freezer toffee, AKA caramel

A huge part of cooking is controlling the transformation of matter, or “a change in phase.” Professor Charbonneau presented a very cool example demonstrating how controlling this phase shift can affect your experience eating something. He made the same toffee recipe twice, but he changed it slightly as the melted toffee mixture was cooling. One version you stick straight in the freezer; the other you whisk as it cools. The whisked version turns out crumbly and sweeter; the other one turns into a chewy, shiny caramel. The audience got samples, and I could easily tell how different each version looked and tasted.

Charbonneau explained that while both toffees have the same ingredients, most people prefer the crumbly one because it seems sweeter (I agreed). This is because the chewier one takes longer to dissolve onto your taste buds, so your brain registers it as less sweet.

I was fascinated to learn that a lot of food is mostly just water. It’s weird to think a solid thing could be made of water, yet some foods are up to 99% water and still elastic! We have polymers — long repeating patterns of atoms in a chain — to thank for that. In fact, you can turn almost any liquid into a gel. Polymers take up little space but play a vital role in not only foods but other everyday objects, like contact lenses.

Charbonneau also showed us a seemingly magical way to make cake. He took about half a Dixie cup of cake batter, stuck a whipping siphon charged with nitrous oxide inside it for a second, then threw it in the microwave for thirty seconds. Boom, easy as cake. Out came a cup full of some pretty darn good fluffy chocolate cake. The gas bubbles in the butter and egg batter expand when they are heated up, causing the batter to gel and form a solid network.

Professor Charbonneau is doing stuff like this in his class here at Duke, “The Chemistry and Physics of Cooking,” all the time.

In the past ten years a surge in science-cooking related classes has emerged. The experiments you could do in a kitchen-lab are so cool and can make science appealing to those who might normally shy away from it.

Another cool thing I learned at the stations outside of Charbonneau’s talk was that Dipping Dots are made by dripping melted ice cream into a bowl of liquid nitrogen. The nitrogen is so cold that it flash-freezes the ice cream droplet into a ball-like shape!

Post by Will Sheehan

Will Sheehan

Duke Alumni Share Their SpaceX Experiences

It was 8 o’clock on a Monday night and Teer 203 was packed. A crowd of largely Pratt Engineering students had crammed into practically every chair in the room, as if for lecture. Only, there were no laptops out tonight. No one stood at the blackboard, teaching.

SpaceX launches

SpaceX’s Falcon Heavy and Dragon rockets in simultaneous liftoff

No, these students had given up their Monday evening for something more important. Tonight, engineering professor Rebecca Simmons was videoconferencing with six recent Duke grads—all of whom are employed at the legendary aerospace giant SpaceX, brainchild of tech messiah Elon Musk.

Eager to learn as much as possible about the mythic world of ultracompetitive engineering, the gathered students spent the next hour and fifteen minutes grilling Duke alumni Anny Ning (structures design engineering), Kevin Seybert (integration and test engineering), Matthew Pleatman and Daniel Lazowski (manufacturing engineering), and Zachary Loncar (supply chain) with as many questions as they could squeeze through.

Over the course of the conversation, Duke students seemed particularly interested in the overall culture of SpaceX: What was it like to actually work there? What do the employees think of the SpaceX environment, or the way the company approaches engineering?

One thing all of the alumni were quick to key in on was the powerful emphasis their company placed on flexibility and engagement.

“It’s much harder to find someone that says ‘no’ at SpaceX,” Pleatman said. “It’s way easier to find someone who says ‘yes.’ ”

SpaceX’s workflow, Seybert added, is relentlessly adaptive. There are no strict boundaries on what you can work on in your job, and the employee teams are made up of continually evolving combinations of specialists and polymaths.

“It’s extremely dynamic,” Seybert said. “Whatever the needs of the company are, we will shift people around from week to week to support that.”

“It’s crazy—there is no typical week,” Lazowski added. “Everything’s changing all the time.”

SpaceX Launch

Launch of Hispasat 30W-6 Mission

Ning, for her part, focused a great deal on the flexibility SpaceX both offers and demands. New ideas and a willingness to question old ways of thinking are critical to this company’s approach to innovation, and Ning noted that one of the first things she had to learn was to be continuously on the lookout for ways her methods could be improved.

“You should never hear someone say, ‘Oh, we’re doing this because this is how we’ve always done it,’ ” she said.

The way SpaceX approaches engineering and innovation, Seybert explained, is vastly different from how traditional aerospace companies have tended to operate. SpaceX employees are there because of their passion for their work. They focus on the projects they want to focus on, they move between projects on a day-to-day basis, and they don’t expect to stay at any one engineering company for more than a few years. Everything is geared around putting out the best possible product, as quickly as humanly possible.

So now, the million dollar question: How do you get in?

“One thing that I think links us together is the ability to work hands-on,” Loncar offered.

Pleatman agreed. “If you want to get a job at SpaceX directly out of school, it’s really important to have an engineering project that you’ve worked on. It doesn’t matter what it is, but just something where you’ve really made a meaningful contribution, worked hard, and can really talk through the design from start to finish.”

Overall, passion, enthusiasm and flexibility were overarching themes. And honestly, that seems pretty understandable. We are talking about rockets, after all — what’s not to be excited about? These Duke alums are out engineering the frontier of tomorrow — bringing our species one step closer to its place among the stars.

As Ning put it, “I can’t really picture a future where we’re not out exploring space.”

Post by Daniel Egitto

Researcher Turns Wood Into Larger-Than-Life Insects

Duke biologist Alejandro Berrio creates larger-than-life insect sculptures. This wooden mantis was exhibited at the Art Science Gallery in Austin, Texas in 2013.

Duke biologist Alejandro Berrio creates larger-than-life insect sculptures. This wooden mantis was exhibited at the Art Science Gallery in Austin, Texas in 2013.

On a recent spring morning, biologist Alejandro Berrio took a break from running genetic analyses on a supercomputer to talk about an unusual passion: creating larger-than-life insect sculptures.

Berrio is a postdoctoral associate in professor Greg Wray’s lab at Duke. He’s also a woodcarver, having exhibited his shoebox-sized models of praying mantises, wasps, crickets and other creatures in museums and galleries in his hometown and in Austin, Texas, where his earned his Ph.D.

The Colombia-born scientist started carving wood in his early teens, when he got interested in model airplanes. He built them out of pieces of lightweight balsa wood that he bought in craft shops.

When he got to college at the University of Antioquia in Medellín, Colombia’s second-largest city, he joined an entomology lab. “One of my first introductions to science was watching insects in the lab and drawing them,” Berrio said. “One day I had an ‘aha’ moment and thought: I can make this. I can make an insect with wings the same way I used to make airplanes.”

Beetle carved by Duke biologist Alejandro Berrio.

His first carvings were of mosquitoes — the main insect in his lab — hand carved from soft balsa wood with an X-Acto knife.

Using photographs for reference, he would sketch the insects from different positions before he started carving.

He worked at his kitchen table, shaping the body from balsa wood or basswood. “I might start with a power saw to make the general form, and then with sandpaper until I started getting the shape I wanted,” Berrio said.

He used metal to join and position the segments in the legs and antennae, then set the joints in place with glue.

“People loved them,” Berrio said. “Scientists were like: Oh, I want a fly. I want a beetle. My professors were giving them to their friends. So I started making them for people and selling them.”

Soon Berrio was carving wooden fungi, dragons, turtles, a snail. “Whatever people wanted me to make,” Berrio said.

He earned just enough money to pay for his lunch, or the bus ride to school.

Duke biologist Alejandro Berrio carved this butterfly using balsa wood for the body and legs, and paper for the wings.

His pieces can take anywhere from a week to two months to complete. “This butterfly was the most time-consuming,” he said, pointing to a model with translucent veined wings.

Since moving to Durham in 2016, he has devoted less time to his hobby than he once did. “Last year I made a crab for a friend who studies crustaceans,” Berrio said. “She got married and that was my wedding gift.”

Still no apes, or finches, or prairie voles — all subjects of his current research. “But I’m planning to restart,” Berrio said. “Every time I go home to Colombia I bring back some wood, or my favorite glue, or one of my carving tools.”

Insect sculptures by Duke biologist Alejandro Berrio.

Insect sculptures by Duke biologist Alejandro Berrio.

Explore more of Berrio’s sculpture and photography at https://www.flickr.com/photos/alejoberrio/.

by Robin Smith

by Robin Smith

How a Museum Became a Lab

Encountering and creating art may be some of mankind’s most complex experiences. Art, not just visual but also dancing and singing, requires the brain to understand an object or performance presented to it and then to associate it with memories, facts, and emotions.

A piece in Dario Robleto’s exhibit titled “The Heart’s Knowledge Will Decay” (2014)

In an ongoing experiment, Jose “Pepe” Contreras-Vidal and his team set up in artist Dario Robleto’s exhibit “The Boundary of Life Is Quietly Crossed” at the Menil Collection near downtown Houston. They then asked visitors if they were willing to have their trips through the museum and their brain activities recorded. Robleto’s work was displayed from August 16, 2014 to January 4, 2015. By engaging museum visitors, Contreras-Vidal and Robleto gathered brain activity data while also educating the public, combining research and outreach.

“We need to collect data in a more natural way, beyond the lab” explained Contreras-Vidal, an engineering professor at the University of Houston, during a talk with Robleto sponsored by the Nasher Museum.

More than 3,000 people have participated in this experiment, and the number is growing.

To measure brain activity, the volunteers wear EEG caps which record the electrical impulses that the brain uses for communication. EEG caps are noninvasive because they are just pulled onto the head like swim caps. The caps allow the museum goers to move around freely so Contreras-Vidal can record their natural movements and interactions.

By watching individuals interact with art, Contreras-Vidal and his team can find patterns between their experiences and their brain activity. They also asked the volunteers to reflect on their visit, adding a first person perspective to the experiment. These three sources of data showed them what a young girl’s favorite painting was, how she moved and expressed her reaction to this painting, and how her brain activity reflected this opinion and reaction.

The volunteers can also watch the recordings of their brain signals, giving them an opportunity to ask questions and engage with the science community. For most participants, this is the first time they’ve seen recordings of their brain’s electrical signals. In one trip, these individuals learned about art, science, and how the two can interact. Throughout this entire process, every member of the audience forms a unique opinion and learns something about both the world and themselves as they interact with and make art.

Children with EEG caps explore art.

Contreras-Vidal is especially interested in the gestures people make when exposed to the various stimuli in a museum and hopes to apply this information to robotics. In the future, he wants someone with a robotic arm to not only be able to grab a cup but also to be able to caress it, grip it, or snatch it. For example, you probably can tell if your mom or your best friend is approaching you by their footsteps. Contreras-Vidal wants to restore this level of individuality to people who have prosthetics.

Contreras-Vidal thinks science can benefit art just as much as art can benefit science. Both he and Robleto hope that their research can reduce many artists’ distrust of science and help advance both fields through collaboration.

Post by Lydia Goff

High as a Satellite — Integrating Satellite Data into Science

Professor Tracey Holloway researches air quality at the University of Wisconsin-Madison.

Professor Tracey Holloway researches air quality at the University of Wisconsin-Madison.

Satellite data are contributing more and more to understanding air quality trends, and professor Tracey Holloway wants the world to know.

As a professor of the Department of Atmospheric and Oceanic Science at University of Wisconsin-Madison and the current Team Lead of the NASA Health and Air Quality Applied Sciences Team (HAQAST), she not only helps with the science related to satellites, but also the communication of findings to larger audiences.

Historically, ground-based monitors have provided estimates on changes in concentrations of air pollutants, Holloway explained in her March 2, 2018 seminar, “Connecting Science with Stakeholders,” organized by Duke’s Earth and Ocean Sciences department.

Despite the valuable information ground-based monitors provide, however, factors like high costs limit their widespread use. For example, only about 400 ground-based monitors for nitrogen dioxide currently exist, with many states in the U.S. entirely lacking even a single one. Almost no information on nitrogen dioxide levels had therefore existed before satellites came into the picture.

To close the gap, HAQAST employed earth-observing and polar-orbiting satellites — with fruitful results. Not only have they provided enough data to make more comprehensive maps showing nitrogen dioxide distributions and concentrations, but they also have detected formaldehyde, one of the top causes of cancer, in our atmosphere for the first time.

Satellites have additional long-term benefits. They can help determine potential monitoring sites before actually having to invest large amounts of resources. In the case of formaldehyde, satellite-generated information located areas of higher concentrations — or formaldehyde “hotspots” —  in which HAQAST can now prioritize placing a ground-based monitor. Once established, the site can evaluate air dispersion models, provide air quality information to the public and add to scientific research.

A slide form Holloway’s presentation, in the LSRC A building on March 2, explaining the purposes of a monitoring site.

A slide from Holloway’s presentation, in the LSRC A building on March 2, explaining the purposes of a monitoring site.

Holloway underscored the importance of effectively communicating science. She explained that many policymakers don’t have the strong science backgrounds and therefore need quick and friendly explanations of research from scientists.

Perhaps more significant, though, is the fact that some people don’t even realize that information exists. Specifically, people don’t realize that more satellites are producing new information every day; Holloway has made it a personal goal to have more one-on-one conversations with stakeholders to increase transparency.

Breakthroughs in science aren’t made by individuals: science and change are collaborative. And for Holloway, stakeholders also include the general public. She founded the Earth Science Women’s Network, with one of her goals being to change the vision of what a “scientist” looks like. Through photo campaigns and other communication and engagement activities, she interacted with adults and children to make science more appealing. By making science more sexy, it would be easier to inspire new and continue old discussions, create a more diverse research environment, and make the field more open for all.

Professor Tracey Holloway, air quality researcher at University of Wisconsin-Madison, presented her research at Duke on March 2, 2018.

Professor Tracey Holloway, air quality researcher at University of Wisconsin-Madison, presented her research at Duke on March 2, 2018.

Post by Stella Wang, class of 2019

Post by Stella Wang, class of 2019

Can Science Explain Everything? An Exploration of Faith

The Veritas Forum, Feb. 1 in Penn Pavilion

I found out about this year’s Veritas Forum an hour before it started — a friend, who two years ago helped me explore Christianity (I grew up non-religious and was curious), mentioned it when we ran into each other at the Brodhead Center.

So, to avoid my academic responsibilities, I instead listened to Duke physics professor Ronen Plesser, a non-practicing Jew, Troy Van Voorhis, a Christian who teaches chemistry at MIT, and moderator Ehsan Samei, a professor of radiology and biomedical engineering at Duke. They discussed the God Hypothesis and how it fit in with their views as hard scientists.

Ehsan Samei

As someone who has relied on the scientific method instead of an omniscient, higher power to understand the natural world, I found it amazing how the speakers used relatable examples to demonstrate their belief that humans cannot explain everything. They started answering the classic question “Why is the sky blue?,” using more and more complex chemistry and physics as answers only led to more questions.

At some point, science-based explanations about how and why molecules move the way they do and where they come from didn’t suffice — at some point, it just seems like something, or someone, is responsible for the unexplainable.

Troy Van Voorhis of MIT

Something that Van Voorhis said particularly stuck in my mind. Reproducibility and objectivity form the “bedrock of science,” but are also it’s “grand limitations.” They are essential to corroborating the results of a scientific study or experiment, but can they really confirm something as scientific truth? When does reproducibility adequately overcome variation in data, and can something be defined as truly objective?

So, I sat there in the audience, thinking about alternatives to explaining morals, ethics, and the feeling of being human since, to paraphrase Plesser, science just doesn’t cut it in these cases. He elaborated on faith after branching off Van Voorhis’ point of view. Plesser’s explanation made the overlap of science and religion become more and more prominent. As someone who also does not practice a religion, I felt that his comparison of faith in science and faith in religion comforting.

Ronan Plesser

Even though I still struggle to fully accept Christ, I was aware of the similarities of the path to scientific and spiritual enlightenment. In science, incessant questioning of our surroundings is necessary to understand the Truths of our world (“otherwise we wouldn’t be publishing papers and we would be out of our jobs!”), as are the calls to God to come down and help people improve themselves. It is impossible, then, to avoid faith entirely since being human inherently involves belief in some sort of system.

I was wowed by the connections that the three men were making between the seemingly divergent areas. I was even more astonished, though, by their emphasis on humility. They exemplified the need for understanding and patience when describing scientific theories and religious ideologies. To be humble is to accept that people have differences and to acknowledge these differences is the only way to reduce conflicts between religion and science.

Post by Stella Wang

Panic in the Poster Session!

For their recent retreat, Regeneration Next tried something a little different for the time-honored poster session.

Rather than simply un-tubing that poster they took to the American Association of Whatever a few months ago, presenters were asked to DRAW their poster fresh and hot on a plain sheet of white paper in 15 minutes, using nothing more than an idea and a couple of markers.

Concerns were shared, shall we say, with the leadership of the regenerative medicine initiative when the rules were announced.

“People are always nervous about something they haven’t tried before,” said Regeneration Next Executive Director Sharlini Sankaran. “There was a lot of anxiety about the new format and how they would explain their research without charts and graphs.”

There was palpable poster panic as the retreat moved to the wide open fifth floor of the Trent Semans Center in the late afternoon. Administrative coordinator Tiffany Casey had spread out a rainbow of brand-new sharpies and the moveable bulletin boards stood in neat, numbered ranks with plain white sheets of giant post-it paper.

After some nervous laughter and a few attempts at color-swapping, the trainees and junior faculty got down to drawing their science on the wobbly tackboards.

And then, it worked! It totally worked. “I think I saw a lot more interactivity and conversation,” Sankaran said.

Valentina Cigliola

A fist-full of colorful sharpies gave Valentina Cigliola a colorful launching point for some good conversations about spinal cord repair, rather than just standing there mutely while visitors read and read and read.

 

Louis-Jan Pilaz

Louis-Jan Pilaz used the entire height of the giant post-it notes to draw a beautifully detailed neuron, with labeled parts explaining how the RNA-binding protein FMRP does some neat tricks during development of the cortex.

 

Delisa Clay

Delisa Clay’s schematics of fruitfly cells having too many chromosomes made it easier to explain. Well, that and maybe a glass of wine.

 

Jamie Garcia

Jamie Garcia used her cell-by-cell familiarity with the zebrafish to make a bold, clear illustration of notochord development and the fish’s amazing powers of self-repair.

 

Lihua Wang

Don’t you think Lihua Wang’s schematic of experimental results is so much more clear than a bunch of panels of tiny text and bar charts?

In the post-retreat survey, Sankaran said people either absolutely loved the draw-your-poster or hated it, but the Love group was much larger.

“Those who hated it felt they couldn’t represent data accurately with hand-drawn charts and graphs,” Sankaran said. “Or that their artistic skills were ‘being judged’.”

A few folks also pointed out that the drawing approach might work against people with a disability of some sort – a concern Sankaran said they will try to address next time.

There WILL be a next time, she added. “I had a few trainees come up to me to say they weren’t sure how it was going to go, but then they said they had fun!”

Post and pix by Karl Leif Bates, whose hand-drawn poster on working with the news office contained no data and was largely ignored.

Global Health Research from Zika to Economics

Brazil, Kenya and China: this week, the sixth annual Global Health Research Showcase proved that Global Health majors truly represent global interests.

This past summer, Duke PhD student Tulika Singh explored complementary diagnosis techniques for Zika virus pregnant women in Vitoria, Brazil. Zika is difficult to diagnose “because the PCR-based test can only tell if you’ve had Zika virus within about ten days of the infection,” Singh said. “That’s a big problem for enrolling pregnant women into our study on Zika transmission and maternal immunity.”

To combat this issue, Singh and her thesis advisor Sallie Permar trained collaborators to use the whole virion ELISA (WVE) laboratory technique which may reveal if an individual has been exposed to Zika. ELISA detects Zika through testing for the antibodies that most likely would have been produced during a Zika infection. Singh’s work allows the research team to better assess whether women have been exposed to Zika virus during pregnancy, and will ultimately guide Zika vaccine design. 

Master of Science in Global Health candidate Carissa Novak examined why some HPV positive women in Western Kenya are not seeking preventive measures against cervical cancer. All the women diagnosed with HPV were referred to the Country Hospital but only “33 to 42 percent actually sought treatment” leading to Novak’s main research question, “Why did so few women seek treatment?” To answer this question, she sent out quantitative questionnaires to 100 women and then followed up by interviewing 20 of them. She surveyed and interviewed both women who had and had not sought treatment. Her results showed that transportation and cost hinder treatment acquirement and that the women who did seek treatment were often directed to by a health worker or actively trying to prevent cervical cancer. Novak believes that increasing women’s trust and understanding of the health care system will assist in improving the percentage who seek treatment.

In Kunshan, China, Brian Grasso evaluated the development of Kunshan’s health system in relation to its economic development. “Kunshan is now China’s richest county-level city and it used to be a small farm town…My main take away was that economic growth has strengthened Kunshan’s health systems while also creating new health challenges,” Grasso said. What are some of these new health challenges? Some of them include air pollution, increased stress in manufacturing jobs and more car accidents. Grasso determines that other developing health systems should learn from Kunshan that without proper regulations poor health can result in the midst of progress.

Post by Lydia Goff

Library’s Halloween Exhibit Fascinates and Thrills

Research is not always for the faint of heart.

scary doll_Duke Library

Screamfest V combed through centuries of Rubenstein materials to find the very spookiest of artifacts

At least, that’s what Rubenstein Library seemed to be saying this Halloween with the fifth installment of its sometimes freaky, always fascinating “Screamfest” exhibition. With everything from centuries-old demonology textbooks, to tarot cards, to Duke-based parapsychology studies, Screamfest V took a dive into the deep end of the research Duke has gathered throughout its long history.

There’s a lot to unpack about this exhibit, but one of the most unsettling parts has to be the 1949 written exchange between Duke parapsychologist Joseph Rhine and Lutheran Reverend Duther Schulze, speaking about a boy they thought could be demonically possessed.

“Now he has visions of the devil and goes into a trance and speaks a strange language,” Duther wrote.

Anything about that sound familiar? If so, that might be because this case was the basis for the 1973 horror classic The Exorcist. (And people say research isn’t cool!)

The Rubenstein also exhibited a pack of cards used by Rhine’s parapsychology lab to test for extrasensory perception. Inscribed with vaguely arcane symbols, one of these “Zener cards” would be flipped over by a researcher behind a screen, and a test subject on the other side would attempt to “sense” what card the researcher displayed.

Zener cards for ESP

A pack of “Zener cards” Duke researchers once used to test for ESP

Although the results of this test were never replicated outside of Duke and are today widely considered debunked, Rhine’s research did create a stir in some circles at the time. One of the most interesting things about this exhibit, in fact, was the way it showed how much methods and topics in science have changed over time.

A 1726 publication of the book Sadducismus triumphatus: or, A full and plain evidence concerning witches and apparitions, for example, was loaded with supernatural “research” and “findings” every bit as dense and serious as the title would suggest. The section this tome was opened to bore this subheading: “Proving partly by Holy Scripture, partly by a choice Collection of Modern Relations, the Real EXISTENCE of Apparitions, Spirits, & Witches.”

A similar book titled The Discoverie of Witchcraft, was also on display—only this one was printed over two centuries later, in 1930.

A Depression-era miniature of the Duke mascot, somewhat worse for wear.

Other historical gems the exhibit offered included an a threadbare ‘blue devil’ doll from the ‘30s; a book made up of a lengthy collection of newspaper clippings following the case of Lizzie Borden, a reported axe murderer from the 1890s; and an ad for the 1844 “Life Preserving Coffin … for use in doubtful cases of death.”

It’s not every day research will leave the casual viewer quaking in their boots, but Screamfest V was quick to live up to its name. Covering a broad swath of Duke materials from several centuries, this exhibit successfully pulled off vibes of education, spookiness, and Halloween fun, all at the same time.

Post by Daniel Egitto

The Internet of Things: Useful or Dangerous?

The Internet of Things has tons of possibilities and applications, but some of them could be malicious.

This week, the Duke Digital Initiative (DDI) held an open house in the Technology Engagement Center (TEC) where you could go in and check out the new equipment they’ve installed. They all have one central theme: the Internet of Things (IoT). What is the Internet of Things? It’s pretty simple. The Internet of Things “refers to the interconnectivity of devices on the internet.” In other words, if something can connect to things like wifi, social media, or your phone, it makes it an IoT device!

A classic example of an IoT device I’m sure you’re all familiar with is the Amazon Echo. You could ask it to order you something, look up a word, what the weather is like… you get the idea. Echo and Alexa are just one kind of IoT. We’re also talking lightbulbs, outlets, robots, thermostats…  Eventually your whole house might become an IoT device. The future is here!

Devices such as the Echo Dot, Philips Hue Smart Lightbulb, Samsung Smart Outlet, Meccano Robot, and Swipe-O-Matic are all showcased in the TEC. It’s part of the DDI’s “IoT Initiative” this year to give Duke faculty, staff, and students a better understanding of the power of IoT devices. As one expert on site said, “the devices are everywhere.”

The Co-Lab had actually hacked the Echo Dot and programmed in some of their own commands, so it was responding to questions like “Who is Maria?” and “Where is this place?”

The Meccano Robot (named “Techy”) was fun to mess around with, and a big hit among attendees. He’s more of a consumer-friendly toy, but just by using voice-commands I got him to give me a high-five and even tango.

Me, cheesin’ with Techy

The smart lightbulb was low-key the coolest thing there. By using multiple lights you can customize different “environments” like a TV watching environment or party environment, and the lights will change color/brightness accordingly with just a tap on your phone. The smart outlets were cool, too. They can be controlled remotely from your phone and even have timers set.

The student-built Swipe-O-Matic added me to the Co-Lab mailing list, just by swiping my Duke card.

One device — the “Swipe-O-Matic”—was actually invented by Duke students, and we used it to add my name to the Co-Lab mailing list just by swiping my Duke Card.

While these devices are all fun and useful, one expert I spoke with noted “there’s lots of consequences to using them—good, and bad.”

As they become more consumer available, if your machine is particularly vulnerable, bad people could hack into parts of your life. Think about a smart door lock. It’s super useful—you can create virtual keys for family members, let someone in remotely, or give your housekeepers access at certain times of the day. However, this could obviously go pretty badly if someone were to hack it and enter your house.

But don’t worry. As technology progresses, IoT devices will eventually be all around us. While security is an issue, these devices have way more good to them than bad. “Snapchat spectacles” are sunglasses that can record video and upload it straight to the Snapchat app. Someone at the TEC had the idea for “smart window blinds” that know when to open and close. Imagine a plant pot that sent you a notification when it needed to be watered. The uses are seemingly endless!

Will SheehanPost by Will Sheehan

Page 1 of 15

Powered by WordPress & Theme by Anders Norén