Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Science Communication & Education Page 1 of 17

Vaping: Crisis or Lost Opportunity?

Wikimedia Commons

Whether you’re doing vape tricks for YouTube views or kicking yourself for not realizing that “USB” was actually your teenager’s Juul, you know vaping is all the rage right now. You probably also know that President Trump has called on the FDA to ban all flavored e-cigarettes to combat youth vaping. This comes in reaction to the mysterious lung illness that has affected 1,080 people to date. 18 of them have died.

At Duke Law School’s “Vaping: Crisis or Lost Opportunity” panel last Wednesday, three experts shared their views. 

Jed Rose, a professor of psychiatry and behavioral sciences and director of the Duke Center for Smoking Cessation, has worked in tobacco research since 1979, focusing on smoking cessation and helping pioneer the nicotine patch. Rose also directs Duke’s Center for Smoking Cessation.

According to Rose, e-cigarettes are more effective than traditional Nicotine Replacement Therapy (NRT). A recent study found that e-cigarettes were approximately twice as effective as the state-of-the-art NRT in getting smokers to quit combustible cigarettes (CCs). This makes sense because smokers are addicted to the action of puffing, so a smoking cessation tool that involves inhaling will be more successful than one that does not, like the patch.

Rose also took issue with the labeling of the current situation surrounding vaping as an “epidemic.” He called it a “crisis of exaggeration,” then contrasted the 18 deaths from vaping to the 450 annual deaths from Tylenol poisoning

Even in the “pessimistic scenario,” where e-cigarettes turn out to be far more harmful than expected, Rose said deaths are still averted by replacing cigarettes with e-cigarettes. 

The enemy, Rose argued, is “disease and death, not corporations”, like the infamous (and under-fire) Juul. 

James Davis, MD, an internal medicine physician and medical director for the Center for Smoking Cessation, works directly with patients who suffer from addiction. His research focuses on developing new drug treatments for smoking cessation. Davis also spearheads the Duke Smoke-Free Policy Initiative.

Davis began by calling for humility when using statistics regarding e-cigarette health impacts, as long-term data is obviously not yet available. 

Davis did present some known drawbacks of e-cigarettes, though, stating that e-cigarettes are similarly addictive compared to conventional cigarettes, and that a whopping 21% of high school students and 5% of middle school students use e-cigarettes. Davis also contended that “When you quit CCs with e-cigarettes, you are merely transferring your addiction to e-cigarettes. Eighty-two percent [of test subjects who used e-cigarettes for smoking cessation] were still using after a year.” 

However, according to Davis, there is a flipside. 

Similar to Rose, Davis looked to the “potential for harm reduction” — e-cigarettes’ morbidity is projected to be only 5-10% that of CCs. If the main priority is to get smokers off CC, Davis argues e-cigarettes are important: 30-35% of CC smokers say they would use an e-cigarette to quit smoking, where only 13% would use a nicotine patch. 

Furthermore, Davis questioned whether the mysterious lung disease is attributable to e-cigarettes themselves — a recent study found that 80% of a sample of afflicted subjects had used (often black-market) THC products as well.

Lauren Pacek, an assistant professor in psychiatry and behavioral sciences at Duke, examines smoking in the context of addiction and decision-making.

Pacek stated that flavored electronic nicotine delivery systems (ENDS) are important to youth: 61-95% of current youth ENDS users use flavored products, and 84% of young users say they would not use the products without flavors. So, banning flavored ENDS would ostensibly reduce young adults’ use, potentially keeping them off nicotine entirely.

However, Pacek pointed to the importance of flavors for adult users too: the ones that are purportedly using ENDS not for recreation or social status (as young people have been known to do), but for smoking cessation. Many former CC smokers report that flavored ENDS were important for their cessation. By banning flavored ENDS, the products look less appealing, and smokers are more likely to return to much more harmful cigarettes.  

So where do we go from here? 

Pacek did not take a concrete stance, but said her “take-home message” was that policymakers need to consider the impact of the ban on the non-target population, those earnest cigarette smokers looking to quit, or at least turn to a less harmful alternative. 

Rose also did not offer a way forward, but made clear that he does not support the FDA’s impending ban on flavored e-cigarettes and thinks the hysteria around vaping is mostly unfounded.

Davis did not suggest a course of action for the US, but as leader of Duke’s Smoke-Free Policy Initiative, he certainly suggested a course of action for Duke. The Initiative prohibits combustible forms of tobacco at Duke, but does not (yet) prohibit e-cigarettes. 

By Zella Hanson

Big SMILES All Around for Polymer Chemists at Duke, MIT and Northwestern

Science is increasingly asking artificial intelligence machines to help us search and interpret huge collections of data, and it’s making a difference.

But unfortunately, polymer chemistry — the study of large, complex molecules — has been hampered in this effort because it lacks a crisp, coherent language to describe molecules that are not tidy and orderly.

Think nylon. Teflon. Silicone. Polyester. These and other polymers are what the chemists call “stochastic,” they’re assembled from predictable building blocks and follow a finite set of attachment rules, but can be very different in the details from one strand to the next, even within the same polymer formulation.

Plastics, love ’em or hate ’em, they’re here to stay.
Foto: Mathias Cramer/temporealfoto.com

Chemistry’s old stick and ball models and shorthand chemical notations aren’t adequate for a long molecule that can best be described as a series of probabilities that one kind of piece might be in a given spot, or not.

Polymer chemists searching for new materials for medical treatments or plastics that won’t become an environmental burden have been somewhat hampered by using a written language that looks like long strings of consonants, equal signs, brackets, carets and parentheses. It’s also somewhat equivocal, so the polymer Nylon-6-6 ends up written like this: 

{<C(=O)CCCCC(=O)<,>NCCCCCCN>}

Or this,

{<C(=O)CCCCC(=O)NCCCCCCN>}

And when we get to something called ‘concatenation syntax,’ matters only get worse.  

Stephen Craig, the William T. Miller Professor of Chemistry, has been a polymer chemist for almost two decades and he says the notation language above has some utility for polymers. But Craig, who now heads the National Science Foundation’s Center for the Chemistry of Molecularly Optimized Networks (MONET), and his MONET colleagues thought they could do better.

Stephen Craig

“Once you have that insight about how a polymer is grown, you need to define some symbols that say there’s a probability of this kind of structure occurring here, or some other structure occurring at that spot,” Craig says. “And then it’s reducing that to practice and sort of defining a set of symbols.”

Now he and his MONET colleagues at MIT and Northwestern University have done just that, resulting in a new language – BigSMILES – that’s an adaptation of the existing language called SMILES (simplified molecular-input line-entry system). They they think it can reduce this hugely combinatorial problem of describing polymers down to something even a dumb computer can understand.

And that, Craig says, should enable computers to do all the stuff they’re good at – searching huge datasets for patterns and finding needles in haystacks.

The initial heavy lifting was done by MONET members Prof. Brad Olsen and his co-worker Tzyy-Shyang Lin at MIT who conceived of the idea and developed the set of symbols and the syntax together. Now polymers and their constituent building blocks and variety of linkages might be described like this:

Examples of bigSMILES symbols from the recent paper

It’s certainly not the best reading material for us and it would be terribly difficult to read aloud, but it becomes child’s play for a computer.

Members of MONET spent a couple of weeks trying to stump the new language with the weirdest polymers they could imagine, which turned up the need for a few more parts to the ‘alphabet.’ But by and large, it holds up, Craig says. They also threw a huge database of polymers at it and it translated them with ease.

“One of the things I’m excited about is how the data entry might eventually be tied directly to the synthetic methods used to make a particular polymer,” Craig says. “There’s an opportunity to actually capture and process more information about the molecules than is typically available from standard characterizations. If that can be done, it will enable all sorts of discoveries.”

BigSMILES was introduced to the polymer community by an article in ACS Central Science last week, and the MONET team is eager to see the response.

“Can other people use it and does it work for everything?” Craig asks. “Because polymer structure space is effectively infinite.” Which is just the kind of thing you need Big Data and machine learning to address. “This is an area where the intersection of chemistry and data science can have a huge impact,” Craig says.

Vulci 3000: Technology in Archaeology

This is Anna’s second post from a dig site in Italy this summer. Read the first one here.

Duke PhD Candidate Antonio LoPiano on Site

Once home to Etruscan and Roman cities, the ruins found at Vulci date to earlier than the 8th century B.C.E.

As archaeologists dig up the remains of these ancient civilizations, they are better able to understand how humans from the past lived their daily lives. The problem is, they can only excavate each site once.

No matter how careful the diggers are, artifacts and pieces of history can be destroyed in the process. Furthermore, excavations take a large amount of time, money and strenuous labor to complete. As a result, it’s important to carefully choose the location.

Map of the Vulci Landscape Created Using GIS Technology

In response to these challenges Dr. Maurizio Forte decided to supplement the excavation of ancient Vulci sites by using innovative non-invasive technologies. 

Considering that it once housed entire cities, Vulci is an extremely large site. To optimize excavation time, money, and resources, Dr. Forte used technologies to predict the most important urban areas of the site. Forte and his team also used remote sensing which allowed them to interpret the site prior to digging. 

Georadar Imaging
Duke Post Doc Nevio Danelon Gathering Data for Photogrammetry

Having decided where on the site to look, the team was then able to digitally recreate both the landscape as well as the excavation trench in 3D. This allowed them to preserve the site in its entirety and uncover the history that lay below. Maps of the landscape are created using Web-GIS (Geographic Information Systems). These are then combined with 3D models created using photogrammetry to develop a realistic model of the site.

Forte decided to make the excavation entirely paperless. All “paperwork”  on site is done on tablets. There is also an onsite lab that analyzes all of the archaeological discoveries and archives them into a digital inventory.

This unique combination of archaeology and technology allows Forte and his team to study, interpret and analyze the ancient Etruscan and Roman cities beneath the ground of the site in a way that has never been done before. He is able to create exact models of historic artifacts, chapels and even entire cities that could otherwise be lost for good.

3D Model Created Using Photogrammetry

Forte also thinks it is important to share what is uncovered with the public. One way he is doing this is through integrating the excavation with virtual reality applications.

I’m actually on site with Forte and the team now. One of my responsibilities is to take photos with the Insta360x which is compatible with the OculusGo, allowing people to experience what it’s like to be in the trench with virtual reality. The end goal is to create interactive applications that could be used by museums or individuals. 

Ultimately, this revolutionary approach to archaeology brings to light new perspectives on historical sites and utilizes innovative technology to better understand discoveries made in excavations.

By: Anna Gotskind ’22

Vulci 3000: A High-Tech Excavation

This summer I have the incredible opportunity to work with the Vulci 3000 Bass Connections team. The project focuses on combining archaeology and innovative technology to excavate and understand an ancient Etruscan and Roman site. Over the next several weeks I will be writing a series of articles highlighting the different parts of the excavation. This first installment recounts the history of the project and what we plan to accomplish in Vulci.

Covered in tall grasses and grazing cows it’s hard to imagine that the Vulci Archaeology Park was ever something more than a beautiful countryside. However, in reality, it was home to one of the largest, most important cities of ancient Etruria. In fact, it was one of the biggest cities in the 1st millennium BCE on the entire Italian peninsula. Buried under the ground are the incredible remains of Iron Age, Etruscan, Roman, and Medieval settlements.

Duke’s involvement with the Vulci site began in 2015 when Maurizio Forte, the William and Sue Gross Professor of Classical Studies Art, Art History, and Visual Studies visited the site. What was so unique about the site was that most of it was untouched.

One of the perils of archaeology is that any site can only be physically excavated once and it is inevitable for some parts to be damaged regardless of how careful the team is. Vulci presented a unique opportunity. Because much of the site was still undisturbed, Forte could utilize innovative technology to create digital landscapes that could be viewed in succession as the site was excavated. This would allow him and his team to revisit the site at each stage of excavation. In 2015 he applied for his first permit to begin researching the Vulci site.

In 2016 Forte created a Bass Connections project titled Digital Cities and Polysensing Environments. That summer they ventured to Italy to begin surveying the Vulci site. Because Vulci is a large site it would take too much time and money to excavate the city. Instead, Forte and his team decided to find the most important spots to excavate. They did this by combining remote sensing data and procedural modeling to analyze the various layers underground. They collected data using magnetometry and ground-penetrating radar. They also used drones to capture aerial photography of the site.

These technologies allowed the team to locate the urban areas of the site through the discovery of large buildings and streets revealed by the aerial photographs, radiometrically-calibrated orthomaps, and 3D point cloud/mesh models.

Anne-Lise Baylé Cleaning a Discovered Artifact on Site

The project continued into 2017 and 2018 with a team returning to the site each summer to excavate. Within the trench were archaeologists ranging from undergrads to postdocs digging, scraping and brushing for months to discover what lay beneath the surface. As they began to uncover rooms, pottery, coins, and even a cistern, groups outside the trench continued to advanced technology to collect data and improve the understanding of the site.

Nevio Danelon Releasing a Drone

One unit focused on drone sensing to digitally create multispectral imagery as well as high-resolution elevation models. This allowed them to use soil and crop marks to better interpretation and classify the archaeological features.

By combining traditional archaeology and innovative technology the team has been able to more efficiently discover important, ancient artifacts and analyze them in order to understand the ancient Etruscan and Roman civilizations that once called Vulci their home.

Photo Taken Using the Insta360 Camera in “Planet” Mode

This year, archaeologists return to the site to continue excavation. As another layer of Vulci is uncovered, students and faculty will use technology like drones, photogrammetry, geophysical prosecutions and GIS to document and interpret the site. We will also be using a 360 camera to capture VR compatible content for the OculusGo in order to allow anybody to visit Vulci virtually.

By Anna Gotskind

800+ Teams Pitched Their Best Big Ideas. With Your Help, This Duke Team Has a Chance to Win

A Duke University professor says the time is ripe for new research on consciousness, and he needs your help.

More than 800 teams pitched their best “big ideas” to a competition sponsored by the National Science Foundation (@NSF) to help set the nation’s long-term research agenda. Only 33 are still in the running for the grand prize, and a project on the science of consciousness led by Duke artificial intelligence expert Vincent Conitzer is among them!

You can help shape the NSF’s research questions of the future by watching Conitzer’s video pitch and submitting your comments on the importance and potential impact of the ideas at https://nsf2026imgallery.skild.com/entries/theory-of-conscious-experience.

But act fast. The public comment period ends Wednesday, June 26. Winners will be announced and prizes awarded by October 2019. Stay tuned.

Watch all the video pitches until June 26 at nsf2026imgallery.skild.com.

Kicking Off a Summer of Research With Data+

If the May 28 kickoff meeting was any indication, it’s going to be a busy summer for the more than 80 students participating in Duke’s summer research program, Data+.

Offered through the Rhodes Information Initiative at Duke  (iiD), Data+ is a 10-week summer program with a focus on data-driven research. Participants come from varied backgrounds in terms of majors and experience. Project themes range  from health, public policy, energy and environment, and interdisciplinary inquiry.

“It’s like a language immersion camp, but for data science,” said Ariel Dawn, Rhodes iiD Events & Communication Specialist. “The kids are going to have to learn some of those [programming] languages like Java or Python to have their projects completed,” Dawn said.

Dawn, who previously worked for the Office of the Vice Provost for Research, arrived during the program’s humble beginnings in 2015. Data+ began in 2014 as a small summer project in Duke’s math department funded by a grant from the National Science Foundation. The following year the program grew to 40 students, and it has grown every year since.

Today, the program also collaborates with the Code+ and CS+ summer programs, with  more than 100 students participating. Sponsors have grown to include major corporations such as Exxonmobil, which will fund two Data+ projects on oil research within the Gulf of Mexico and the United Kingdom in 2019.

“It’s different than an internship, because an internship you’re kind of told what to do,” said Kathy Peterson, Rhodes iiD Business Manager. “This is where the students have to work through different things and make discoveries along the way,” Peterson said.

From late May to July, undergraduates work on a research project under the supervision of a graduate student or faculty advisor. This year, Data+ chose more than 80 eager students out of a pool of over 350 applicants. There are 27 projects being featured in the program.

Over the summer, students are given a crash course in data science, how to conduct their study and present their work in front of peers. Data+ prioritizes collaboration as students are split into teams while working in a communal environment.

“Data is collected on you every day in so many different ways, sometimes we can do a lot of interesting things with that,” Dawn said.  “You can collect all this information that’s really granular and relates to you as an individual, but in a large group it shows trends and what the big picture is.”

Data+ students also delve into real world issues. Since 2013, Duke professor Jonathan Mattingly has led a student-run investigation on gerrymandering in political redistricting plans through Data+ and Bass Connections. Their analysis became part of a 205-page Supreme Court ruling.

The program has also made strides to connect with the Durham community. In collaboration with local company DataWorks NC, students will examine Durham’s eviction data to help identify policy changes that could help residents stay in their homes.

“It [Data+] gives students an edge when they go look for a job,” Dawn said. “We hear from so many students who’ve gotten jobs, and [at] some point during their interview employers said, ‘Please tell us about your Data+ experience.’”

From finding better sustainable energy to examining story adaptations within books and films, the projects cover many topics.

A project entitled “Invisible Adaptations: From Hamlet to the Avengers,” blends algorithms with storytelling. Led by UNC-Chapel Hill grad student Grant Class, students will make comparisons between Shakespeare’s work and today’s “Avengers” franchise.

“It’s a much different vibe,” said computer science major Katherine Cottrell. “I feel during the school year there’s a lot of pressure and now we’re focusing on productivity which feels really good.”

Cottrell and her group are examining the responses to lakes affected by multiple stressors.

Data+ concludes with a final poster session on Friday, August 2, from 2 p.m. to 4 p.m. in the Gross Hall Energy Hub. Everyone in the Duke Community and beyond is invited to attend. Students will present their findings along with sister programs Code+ and the summer Computer Science Program.

Writing by Deja Finch (left)
Art by Maya O’Neal (right)

The Power of Bass Connections Teamwork

Does yoga improve emotional regulation? Why don’t youth vote in elections? Can regular exercise combat anxiety and depression? How do we encourage girls to pursue careers in STEM fields? These are some of the questions explored by Bass Connections teams at Duke this year. After a year of hard work, several teams presented their answers in 5-minute flash talks at the EHDx event on April 9, and their audience was very impressed by their research.

Karina Heaton and Caleb Cooke present on their Bass Connections project, Wired for Learning

Bass Connections is a program at Duke that allows students to engage with real world problems, and apply their classroom knowledge to solve problems in society. Accepted students spend a year or more working with an interdisciplinary team of faculty, undergraduates, and graduate students on a project within the five theme areas of Bass Connections: Brain & Society, Information, Society & Culture, Global Health, Education & Human Development, and Energy & Environment.

The eleven teams that presented at EHDx were part of the Education and Human Development theme, so they spent the year exploring questions related to advancing educational systems, or exploring other areas in support of positive life outcomes for youth. Each team selected representatives to speak for five minutes on the work they have accomplished this year, and the event became a competition when the moderators announced the audience would vote for the best talk at the end.

The winning talk was presented by Bruny Kenou, a Duke undergraduate

The winner of this competition was Bruny Kenou, presenting on behalf of the Virtual Avatar Coaches project. The goal of this team was to create a peer to peer coaching program to support college students struggling with mental health. This project aims to fight stigma with a platform that allows students to send an anonymous text and receive immediate help from a peer. Peer coaches will take a semester-long course to prepare for their role in the program, and the hope is for this to eventually improve the lives of many students suffering from a fear of stigmas and labels.

The talks were followed by a reception and poster session. The team that took the blue ribbon this time was Mindfulness in Human Development. The objective of this team is to improve the lives of middle school students in Durham with a yoga and mindfulness intervention during the school day. The team has found that taking a break for yoga in the middle of the day has had positive effects on empathy, emotional regulation, and body image on the young students. Did someone say namaste?

The winner of the poster contest was the Mindfulness in Human Development Team

Honestly, I didn’t vote — I couldn’t pick a favorite! From designing a new and inclusive curriculum for elementary schools and helping kids learn computer science to investigating educational policy in Brazil and promoting awareness of female philosophers throughout history, each presentation was so impressive. It was easy to see that all of these teams have all been hard at work to affect positive change in society. If they can do this much in under a year, who knows what these talented undergraduates will accomplish in a lifetime!

Post by Anne Littlewood, Trinity ’21

Building a Mangrove Map

“Gap maps” are the latest technology when it comes to organizing data. Although they aren’t like traditional maps, they can help people navigate through dense resources of information and show scientists the unexplored areas of research.

A ‘gap map’ comparing conservation interventions and outcomes in tropical mangrove habitats around the world turns out to be a beautiful thing.

At Duke’s 2019 Master’s Projects Spring Symposium, Willa Brooks, Amy Manz, and Colyer Woolston presented the results of their year-long Masters Project to create this map.

You’d never know by looking at the simple, polished grid of information that it took 29 Ph.D. students, master’s students and undergraduates nearly a full year to create it. As a member of the Bass Connections team that has been helping to support this research, I can testify that gap maps take a lot of time and effort — but they’re worth it.

Amy Manz, Willa Brooks, and Colyer Woolston present their evidence map (or gap map) at the 2019 Master’s Projects Spring Symposium

When designing a research question, it’s important to recognize what is already known, so that you can clearly visualize and target the gaps in the knowledge.

But sifting through thousands of papers on tropical mangroves to find the one study you are looking for can be incredible overwhelming and time-intensive. This is purpose of a gap map: to neatly organize existing research into a comprehensive grid, effectively shining a light on the areas where research is lacking, and highlighting patterns in areas where the research exists.

In partnership with World Wildlife Fund, Willa, Amy, and Colyer’s team has been working under the direction of Nicholas School of the Environment professors Lisa Campbell and Brian Silliman to screen the abstracts of over 10,000 articles, 779 of which ended up being singled out for a second round of full-text screening. In the first round, we were looking for very specific inclusion criteria, and in the second, we were extracting data from each study to identify the outcomes of conservation interventions in tropical mangrove, seagrass, and coral reef habitats around the world.

Coastal Mangroves (Photo from WikiCommons: US National Oceanic and Atmospheric Administration)

While the overall project looked at all three habitats, Willa, Amy, and Colyer’s Master’s Project focused specifically on mangroves, which are salt-tolerant shrubs that grow along the coast in tropical and subtropical regions. These shrubs provide a rich nursery habitat to a diverse group of birds and aquatic species, and promote the stability of coastlines by trapping sediment runoff in their roots. However, mangrove forests are in dramatic decline.

According to World Wildlife Fund, 35 percent of mangrove ecosystems in the world are already gone. Those that remain are facing intense pressure from threats like forest clearing, overharvesting, overfishing, pollution, climate change, and human destruction of coral reefs. Now more than ever, it is so important to study the conservation of these habitats, and implement solutions that will save these coastal forests and all the life they support. The hope is that our gap map will help point future researchers towards these solutions, and aid in the fight to save the mangroves.

This year’s team built a gap map that successfully mapped linkages between interventions and outcomes, indicating which areas are lacking in research. However, the gap map is limited because it does not show the strength or nature of these relationships. Next year, another Bass Connections team will tackle this challenge of analyzing the results, and further explore the realm of tropical conservation research.

Post by Anne Littlewood, Trinity ’21

Science Gets By With a Little Help From Its Friends

There are many things in life that are a little easier if one recruits the help of friends. As it turns out, this is also the case with scientific research.

Lilly Chiou, a senior majoring in biology, and Daniele Armaleo, a professor in the Biology Department had a problem. Lilly needed more funding before graduation to initiate a new direction for her project, but traditional funding can sometimes take a year or more.

So they turned to their friends and sought crowdfunding.

Chiou and Armaleo are interested in lichens, low-profile organisms that you may have seen but not really noticed. Often looking like crusty leaves stuck to rocks or to the bark of trees, they — like most other living beings — need water to grow. But, while a rock and its resident lichens might get wet after it rains, it’s bound to dry up.

If you’re likin’ these lichens, perhaps you’d like to support some research…

This is where the power of lichens comes in: they are able to dry to a crisp but still remain in a suspended state of living, so that when water becomes available again, they resume life as usual. Few organisms are able to accomplish such a feat, termed desiccation tolerance.

Chiou and Armaleo are trying to understand how lichens manage to survive getting dried and come out the other end with minimal scars. Knowing this could have important implications for our food crops, which cannot survive becoming completely parched. This knowledge is ever more important as climate becomes warmer and more unpredictable in the future. Some farmers may no longer be able to rely on regular seasonal rainfall.

They are using genetic tools to figure out the mechanisms behind the lichen’s desiccation tolerance[. Their first breakthrough came when they discovered that extra DNA sequences present in lichen ribosomal DNA may allow cells to survive extreme desiccation. Now they want to know how this works. They hope that by comparing RNA expression between desiccation tolerant and non-tolerant cells they can identify genes that protect against desiccation damage.  

As with most things, you need money to carry out your plans. Traditionally, scientists obtain money from federal agencies such as the National Science Foundation or the National Institutes of Health, or sometimes from large organizations such as the National Geographic Society, to fund their work. But applying for money involves a heavy layer of bureaucracy and long wait times while the grant is being reviewed (often, grants are only reviewed once a year). But Chiou is in her last semester, so they resorted to crowdfunding their experiment.

This is not the first instance of crowdfunded science in the Biology Department at Duke. In 2014, Fay-Wei Li and Kathleen Pryer crowdfunded the sequencing of the first fern genome, that of tiny Azolla. In fact, it was Pryer who suggested crowdfunding to Armaleo.

Chiou (left) and Armaleo in a video.

Chiou was skeptical that this approach would work. Why would somebody spend their hard-earned money on research entirely unrelated to them? To make their sales pitch, Chiou and Armaleo had to consider the wider impact of the project, rather than the approach taken in traditional grants where the focus is on the ways in which a narrow field is being advanced.

What they were not expecting was that fostering relationships would be important too; they were surprised to find that the biggest source of funding was their friends. Armaleo commented on how “having a long life of relationships with people” really shone through in this time of need — contributions to the fund, however small, “highlight people’s connection with you.” That network of connections paid off: with 18 days left in the allotted time, they had reached their goal.

After their experience, they would recommend crowdfunding as an option for other scientists. Having to create widely understood, engaging explanations of their work, and earning the support and encouragement of friends was a very positive experience.

“It beats writing a grant!” Armaleo said.

Guest Post by Karla Sosa, Biology graduate student


Meet New Blogger Anna Gotskind: Science and Gilmore Girls

Hello! My name is Anna Gotskind. I’m a first year originally from Chicago. I plan to double major in biochemistry and environmental science and policy with a certificate in innovation and entrepreneurship (I know it’s a mouthful).

I fell in love with science in seventh grade, inspired by a great teacher named Mark A. Klein. He wore a different tie every day of the year, had tarantulas as pets and frequently refused to say anything but “9” until 9:00 am. He also taught me to appreciate research and discovery, guiding me as I conducted my first independent experiment on the caffeine content in tea which helped me win my middle school science fair.

One of my other role models is Rory Gilmore from the T.V. show Gilmore Girls (yes, I am aware that she is a fictional character). Inspired by watching her write for the Yale Daily News I decided to join the Duke Chronicle when I got to campus. I quickly learned that I loved writing for a publication but more specifically that I loved writing about science. It was incredibly exciting for me to read a study, interview the researchers who conducted it and then translate the information into a story that was understandable to the public. Beyond this, it was also incredible to be exposed to groundbreaking research that had real-world impacts. Essentially, it made me feel like a “Big Girl” and when you’re only 5’0” tall, sometimes that’s necessary.

Rory Gilmore

My love for science does not end in the classroom. My greatest passion is travel and I’ve been fortunate enough to travel around the world with my family exploring some of nature’s greatest wonders. We’ve hiked Bryce Canyon in Utah, Ali San in Taiwan and Masada in Israel. In December 2018 we ventured to the Galapagos, which as an aspiring environmentalist was an incredible experience. We go to see tortoises, iguanas, penguins, sharks and sea lions mere feet away. Right now I’m working with Duke Professor Stuart Pimm on a Big Cats Conservation Initiative sponsored by SavingSpecies, analyzing camera trap data of species in Sumatra, Brazil, and Ecuador. So who knows, I may be off there next. For more pictures check out my Instagram page @annagotskind (shameless plug).

A Parrot my little brother Avi photographed in the Amazon Rainforest in Ecuador

I’m very excited to continue exploring and writing about the research being done on Duke’s campus!

By Anna Gotskind

Page 1 of 17

Powered by WordPress & Theme by Anders Norén