Following the people and events that make up the research community at Duke

Category: Engineering Page 1 of 12

Duke First-Year Founds Cryptocurrency Security Startup, Harpie

“Crypto is scaling so quickly but security systems are still the same as they were in 2013.” Those are the words of Daniel Chong, a recent Duke student whose new startup aims to change that.

One of the largest challenges within cryptocurrency is security. The most impactful application of cryptocurrency thus far is decentralized finance (DeFi). DeFi eliminates intermediaries by allowing people and businesses to conduct financial transactions through blockchain technology as opposed to working through banks or other corporations. However, as a result, people are personally responsible for securing their assets. 

Graphic from the Harpie.io Website

When engaging with cryptocurrency people generally use a trading platform and a wallet. Cryptocurrency trading platforms like Coinbase, Binance, and Crypto.com allow people to buy and sell cryptocurrencies using USD or other cryptocurrencies. However, in order to use crypto, one must transfer some of it into a wallet.

As with conventional currency, crypto wallets are not required in order to use cryptocurrency but they allow individuals to store their tokens in one place, easily retrieve them and send it to other individuals or organizations (i.e. buying non-fungible tokens).  Some of the most popular wallets include Coinbase wallet, Metamask, and Electrum. 

Screenshot of a Metamask Wallet

These wallets are not only password-protected but provide each user with a seed phrase or a series of words generated by one’s cryptocurrency wallet. This phrase, like a password, provides access to the crypto associated with that wallet.

An example seed phrase

The catch is, if an individual gets locked out of their wallet and cannot remember or does not have access to their seed phrase, all of their money will be lost. This is a major problem in the space and people have lost millions of dollars to lost seed phrases and inaccessible wallets. In fact, 20% of all existing Bitcoin tokens have been misplaced. 

Furthermore, in the past, it was already hard enough to secure one’s crypto wallets but now people have several wallets, each with their own unique seed phrase and passcodes making it all the more difficult. In the Fall of 2020, Daniel Chong, a Duke first-year at the time, identified this wallet security problem. 

“Crypto is scaling so quickly but security systems are still the same as they were in 2013.”

Daniel Chong

Having grown up in Las Vegas, Chong was used to fast-paced environments and unique challenges. During high school, Chong started coding as a hobby. 

“I just wanted to build something,” he explained

The first project he built was a website for a research paper he had in his high school psychology class. In 2018 Chong was introduced to solidity, a programming language that’s main purpose is to develop smart contracts for the Ethereum blockchain. If you are unfamiliar with blockchain, please refer to my previous article here

Chong matriculated to Duke during a period of transition, the Fall of 2020. As a result of being sent home due to COVID-19 in the Spring and having to shift to online meetings, many on-campus clubs were struggling. Early on Chong met Manmit Singh, a Junior at the time and the President of the Duke Blockchain Lab.

Even though Chong was only a first-year, he had experience coding in solidity and ended up aiding Singh in revamping Duke Blockchain Lab so students could continue engaging with and learning about blockchain despite the pandemic. Additionally, he ran a virtual course on web3 and solidity development for other club members. 

Despite the fact that Chong was attending classes, involved in clubs, and working part-time, he began talking to his brother Noah who was a senior at Georgia Tech about once again, building something. 

After working on building a security solution for crypto wallets for about a year, Chong and his brother received venture capital funding for their startup Harpie: a simple crypto protection plan that scales with you. 

Chong explained that venture capitalists are very excited about crypto right now, especially back in November of 2021 when crypto was in a bull market and bitcoin was at a market high of 60,000. 

Harpie is a web app that allows users to connect all of their wallets to individualized protection plans. This means that if you have a Harpie protection plan and someone hacks your wallet or you get locked out, you can go to the Harpie web app and transfer your funds from the unusable wallet to a new one.

Additionally, users are able to choose the degree of security their Harpie account has. Users can regain access to their fund via email, phone, or (personal recommendation) 2-factor authentication. Ultimately, for $8.99/month you can protect as many wallets, with any sum of funds, as you want.

Why Harpie is a better backup Solution

After working for just over a year, Harpie launched on February 14th, 2022. The next weekend Chong and his brother headed to ETHDenver, the largest Ethereum conference, to promote Harpie and compete in the Hackathon. For those who are unfamiliar, hackathons are competitive, sprint-like events where computer programmers and others are involved in software development work to build something over a condensed period of time. 

Over 10,000 people participated in the ETHDenver hackathon in person and over 30,000 participated virtually for over $1 million in bounties and prizes, as well as up to $2 million in investment capital.

While the teams had 36 hours to build a project, Chong and his brother managed to build there’s in 4-5 hours. They did this by quickly creating a front-runner bot/flash bot to help people avoid getting hacked by detecting and halting transactions to unauthorized addresses.

The brothers not only successfully built the bot but also placed top 10 in the overall hackathon and had the opportunity to present their project.

While presenting, Chong also received questions from Vitalik Buterin, the founder of Ethereum. He explained this as a very “nerve-wracking experience” and added that Buterin asked very technical questions such as what the miners’ extractable value would be.

Chong and his brother (left) onstage with Vitalik Buterin (right) presenting at ETHDenver

In the future, Chong would be open to entering more hackathons but right now is more interested in growing his startup. Currently, Chong is taking time off from school to focus on Harpie and to, ultimately, revolutionize security systems as they relate to online assets.

“Rest easy knowing your crypto is safe.”

Daniel Chong

What’s Up In Space? 3 Experts Weigh In

On Friday, February 25th, 2022 the brand-new Duke Space Diplomacy Lab (SDL) had an exciting launch with its first panel event: hosting journalists Ramin Skibba, Loren Grush, and Jeff Foust for a conversation on challenges in space within the next year. Moderated by Benjamin L. Schmitt of Harvard University, the conversation was in line with the SDL’s goals to convene a multidisciplinary group of individuals for the development of research, policy proposals, and solutions to mitigate risks in space.

In conversation, three key themes arose:

  1. U.S Russia Relations

With the current Russian invasion in Ukraine and the subsequent strain on U.S-Russia relations, the geopolitics of space has been in the limelight. Control of outer space has been a contentious issue for the two countries since the Cold War, out of which an uneasy yet necessary alliance was forged. Faust remarked that he doesn’t see U.S-Russia space relations lasting beyond the end of the International Space Station (ISS) in 2030. Grush added that before then, it will be interesting to see whether U.S-Russia relations will sour in the realm of space, simply because it’s questionable whether the ISS could continue without Russian support. However, Russia and NASA have historically acted symbiotically when it comes to space, and it’s unlikely that either party can afford to break ties.

2. Space debris

Major global players, from the U.S to China to India to Russia, are all guilty of generating space debris. Tons of dead satellites and bits of spacecraft equipment litter the areas around Earth – including an estimated 34,000 pieces of space junk bigger than 10 centimeters – and if this debris hit something, it could be disastrous. Grush paints the picture well by comparing spacecrafts to a car on a road – except we just trust that the satellite will maneuver out of the way in the event of a collision, autonomously, and there are absolutely no rules of the road to regulate movement for any other vehicles.

A computer-generated graphic from NASA showing objects in Earth orbit that are currently being tracked. 95% of the objects in this illustration are orbital debris, i.e., not functional satellites.

Skibba suggests that the best thing to do might be to make sure that more stuff doesn’t enter space, since the invention of technologies to clean up existing space debris will take a while. He also points to efforts to program new spacecrafts with graveyard orbit and deorbit capabilities as a necessary step.

3. Who is in charge of space?

Faust explained that commercial space exploration is moving incredibly fast, and legal regulations are struggling to keep up. Tons of companies are planning to launch mega-constellations in the next few years, for reasons that include things like providing higher-speed Internet access – something that we can all benefit from. Yet with new players in space comes the question of: who is in charge of space? The Artemis Accords are the existing rules that govern space at an international level, but they function as an agreement, not law, and with more players in space comes a need for legally binding terms of conduct. But as Grush puts it, “there’s a tension between the nimble, rapid commercial environment and a regulatory environment that wasn’t quite prepared to respond.”

The eight signees of the Artemis Accords

Beyond who rules over space, there’s also the question of decolonizing space. Skibba brings up that amidst a growing number of mega-constellations of satellites being launched, there are key questions being asked about who has access to space, and how we can level the playing field for more countries and companies to enter space exploration.

Space is uncharted territory, and to understand it is no small feat. While science has come incredibly far in terms of technological capabilities in space, it’s clear that we don’t know what we don’t know. But with a more multilateral, global approach to exploring space, we may just be able to go even farther.

Post by Meghna Datta, Class of 2023

Hidden in Plain Sight: The Growing Role of Computation in Science

One of downtown Durham’s most memorable landmarks, the Chesterfield building looks like it was aesthetically designed to maintain the country’s morale during World War II. On the former cigarette factory’s roof rests a brilliant red sign that’s visible from miles away:

But don’t mistake the building’s quaint exterior for antiquity: the Chesterfield Building is home to one of the nation’s most powerful quantum computers. Managed by the Duke Quantum Center, the computer is part of Duke’s effort to bolster the Scalable Quantum Computing Laboratory (SQLab).

On February 2nd, the lab’s director – Christopher Monroe – joined engineering professor Michael Reiter and English professor Charlotte Sussman in a Research Week panel to discuss the growing presence of computation at Duke and in research institutions across the country. (View the panel.)

Chris Monroe

Monroe opened by detailing the significance of quantum computing in the modern world. He explained that quantum mechanics are governed by two golden rules: first, that quantum objects are waves and can be in superposition, and second, that the first rule only applies when said objects are not being measured.

The direct impact of quantum mechanics is that electrons can be in two orbits at the same time, which revolutionizes computing. Quantum computers factor numbers exponentially faster than classical computers, converge to more desirable solutions in optimization problems and have been shown to bolster research in fields like biomolecular modeling.

Still, Monroe insists that the future reach of quantum computing is beyond anyone’s current understanding. Says Monroe, “quantum computing is an entirely new way of dealing with information, so we don’t know all the application areas it will touch.” What we do know, he says, is that quantum computers are poised to take over where conventional computers and Moore’s Law leave off.

While Monroe discussed computing innovations, Michael Reiter – James B. Duke Professor of Computer Science and Electrical and Computer Engineering – demonstrated the importance of keeping computing systems safe. By pointing to the 2010 Stuxnet virus, a series of cyberattacks against Iranian nuclear centrifuges, and the 2017 Equifax Data Breach, which stole the records of 148 million people, Dr. Reiter provided evidence to show that modern data systems are vulnerable and attractive targets for cyber warfare.

Michael Reiter

To show the interdisciplinary responsibilities associated with the nation’s cybersecurity needs, Reiter posed two questions to the audience. First, what market interventions are appropriate to achieve more accountability for negligence in cybersecurity defenses? Second, what are the rules of war as it relates to cyber warfare and terrorism?

After Reiter’s presentation, Charlotte Sussman transitioned the conversation from the digital world to the maritime world. A professor of English at Duke, Sussman has always been interested in ways to both memorialize and understand the middle passage, the route slave trading ships took across the Atlantic from Africa to the Americas. Through the University’s Bass Connections and Data+ research programs, she and a group of students were able to approach this problem through the unlikely lens of data science.

Sussman explained that her Data+ team used large databases to find which areas of the Atlantic Ocean had the highest mortality rates during the slave trade, while the Bass Connections team looked at a single journey to understand one young migrant’s path to the bottom of the sea.

Professor Sussman (second from right), and the Bass Connections/Data+ Team.

Monroe, Reiter, and Sussman all showed that the applications of computing are growing without bound. Both the responsibility to improve computing infrastructures and the ability to leverage computing resources are rapidly expanding to new fields, from medicine and optimization to cybersecurity and history.

With so many exciting paths for growth, one point is clear about the future of computing: it will outperform anyone’s wildest expectations. Be prepared to find computing in academia, business, government, and other settings that require advanced information.

Many of these areas, like the Chesterfield Building, will probably see the impact of computing before you know it.

Post by Shariar Vaez-Ghaemi, Class of 2025

Ethereum: What are Transaction Fees and How are They Determined?

By now most people have heard of Bitcoin, the first form of decentralized cryptocurrency which was created in 2009 and popularized in 2011. However, these novel tokens did not just appear out of thin air, they had to be mined. But what does this mean?

Essentially, there is a finite amount of Bitcoin, 21 million to be exact. Bitcoin miners run complex computer rigs to solve intricate and complicated puzzles in order to confirm groups of bitcoin transactions called blocks. Once a block is mined, the miner is rewarded with bitcoin. 

Bitcoin mining

On 3 January 2009, the bitcoin network came into existence after the founder, Satoshi Nakamoto, mined the genesis block of bitcoin (block number 0), and received a reward of 50 bitcoins. The rewards for Bitcoin mining are reduced by half roughly every four years due to its scarcity. Currently, miners are rewarded 6.25 Bitcoins for every block. Additionally, when a transaction is approved via mining, it is added to a block which is then added to the Bitcoin blockchain. A blockchain is an immutable, decentralized, and transparent computer network that acts as a publicly available ledger. For more information please reference my previous article here.

Not all tokens are mined, however, the most popular or widely used ones, Bitcoin and Ethereum are. Today, we will be focusing on the Ethereum Blockchain using ETH tokens.

Similar to Bitcoin, ETH is also mined by solving complex puzzles in order to confirm and verify blockchain transactions. However, ETH miners are paid in ETH, not bitcoin. In addition to receiving the ETH from mining, miners are also paid through transaction fees called gas

Transaction fees are determined by a Transaction fee mechanism (TFM), a key component of blockchain protocol. However, there has yet to be an empirical study on the real-world impact of TFMs. Recently, a study out of Duke and Peking University evaluated the effect of EIP-1559, the first TFM to abandon the traditional first-price auction paradigm. 

Every transaction or smart contract executed on the Ethereum blockchain requires gas. If you are unfamiliar with smart contracts please reference my previous article here

“Gas is a unit of measurement for the amount of computational effort required to execute a specific on-network operation”

William Zhao ’23, Student researcher

However, the price of gas is constantly changing in response to how many others are trying to make transactions on the blockchain. Gas prices are typically denoted in GWEI or a billionth of an ETH ( 0.000000001 ETH). For context as of February 1st, 2022 at 1:17 ET, ETH is worth $2778.50 USD per token

When an ETH transaction is placed it is not immediately completed and resides in a memory pool or “Mempool.” These are smaller databases of unconfirmed or pending transactions. Prior to the EIP-1559 update, the Ethereum TFM centered around the first-price auction paradigm. 

Mempool

Conceptually, the first-price auction paradigm is fairly simple. Essentially every time a transaction is made there is an accompanying gas bid. Crypto wallets like Metamask or Coinbase Wallet provide suggested gas bids for users but still allow them to alter the bid. This is because transaction verification priority is determined by the miner and thus given to whoever bids the most. Once a transaction is verified it is added to the miner’s block and then to the blockchain. As a result, some users would offer unnecessarily high gas fees in order for their transaction to skip the line and be quickly processed thus creating major delays for others.

There were several problems under this previous TFM including long wait times for verification, extremely high gas and unpredictable prices, as well as inefficiencies around block size and consensus security. Recent research examined the causal effect of EIP-1559 on blockchain transaction fee dynamics, transaction waiting time, and security. They found that while the transaction mechanism became even more complex it did also become more efficient. 

EIP-1559 improves user experience by reducing users’ waiting times, improving fee estimation, and mitigating intra-block difference of gas price paid (which is more important for miners). However, EIP-1559  did not have a large impact on gas fee reduction or consensus security. In addition, they found that when ETH’s price is more volatile, the waiting time is significantly higher. 

Figure 8: Distributions of median waiting time. Users experience a much lower transaction waiting time following EIP-1559.

Ultimately, while user experience improved, scalability issues held the TFM from having a larger effect on important components like gas prices. 

“If you can only hold a certain amount of transactions that’s a hard cap on development, however, high gas prices are a scalability issue not a mechanism design issue.

William Zhao ’23, student researcher

This research paper was recognized by Vitalik Buterin, one of the co-founders of Ethereum.

By: Anna Gotskind,
Class of 2022

LowCostomy: the Low-Cost Colostomy Bag for Africa

It’s common for a Pratt engineering student like me to be surrounded by incredible individuals who work hard on their revolutionary projects. I am always in awe when I speak to my peers about their designs and processes.

So, I couldn’t help but talk to sophomore Joanna Peng about her project: LowCostomy.

Rising from the EGR101 class during her freshman year, the project is about building  a low-cost colostomy bag — a device that collects excrement outside the patient after they’ve had their colon removed in surgery. Her device is intended for use in under-resourced Sub-Saharan Africa.

“The rates in colorectal cancer are rising in Africa, making this a global health issue,” Peng says. “This is a project to promote health care equality.”

The solution? Multiple plastic bags with recycled cloth and water bottles attached, and a beeswax buffer.

“We had to meet two criteria: it had to be low cost; our max being five cents. And the second criteria was that it had to be environmentally friendly. We decided to make this bag out of recycled materials,” Peng says. 

Prototype of the LowCostomy bag

For now, the team’s device has succeeded in all of their testing phases. From using their professor’s dog feces for odor testing, to running around Duke with the device wrapped around them for stability testing, the team now look forward to improving their device and testing procedures.

“We are now looking into clinical testing with the beeswax buffer to see whether or not it truly is comfortable and doesn’t cause other health problems,” Peng explains.

Poster with details of the team’s testing and procedures

Peng’s group have worked long hours on their design, which didn’t go unnoticed by the National Institutes of Health (NIH). Out of the five prizes they give to university students to continue their research, the NIH awarded Peng and her peers a $15,000 prize for cancer device building. She is planning to use the money on clinical testing to take a step closer to their goal of bringing their device to Africa.

Peng shows an example of the beeswax port buffer (above). The design team of Amy Guan, Alanna Manfredini, Joanna Peng, and Darienne Rogers (L-R).

“All of us are still fiercely passionate about this project, so I’m excited,” Peng says. “There have been very few teams that have gotten this far, so we are in this no-man’s land where we are on our own.”

She and her team continue with their research in their EGR102 class, working diligently so that their ideas can become a reality and help those in need.

Post by Camila Cordero, Class of 2025

Decentralized Finance and the Power of Smart Contracts

When people use apps or services like Netflix, Instagram, Amazon, etc. they sign, or rather virtually accept, digital user agreements. Digital agreements have been around since the 1990s. These agreements are written and enforced by the institutions that create these services and products. However, in certain conditions, these systems fail and these digital or service-level agreements can be breached, causing people to feel robbed. 

A recent example of this is the Robinhood scandal that occurred in mid-2021. Essentially, people came together and all wanted to buy the same stock. However, Robinhood ended up restricting buying, citing issues with volatile stock and regulatory agreements. As a result, they ended up paying $70 million dollars in fines for system outages and misleading customers. And individual customers were left feeling robbed. This was partially the result of centralization and Robinhood having full control over the platform as well as enforcing the digital agreement.

Zak Ayesh Presenting on Chainlink
and Decentralized Smart Contracts

Zak Ayesh, a developer advocate at Chainlink recently came to Duke to talk about decentralized Smart Contracts that could solve many of the problems with current centralized digital agreements and traditional paper contracts as well. 

What makes smart contracts unique is that they programmatically implement a series of if-then rules without the need for a third-party human interaction. While currently these are primarily being used on blockchains, they were actually created by computer scientist Nick Szabo in 1994. Most smart contracts now run on blockchains because it allows them to remain decentralized and transparent. If unfamiliar with blockchain refer to my previous article here. 

Smart contracts are self-executing contracts with the terms of the agreement being directly written into computer code.

Zak Ayesh

There are several benefits to decentralized contracts. The first is transparency. Because every action on a blockchain is recorded and publicly available, the enforcement of smart contracts is unavoidably built-in. Next is trust minimization and guaranteed execution. With smart contracts, there is reduced counterparty risk — that’s the probability one party involved in a transaction or agreement might default on its contractual obligation because neither party has control of the agreement’s execution or enforcement. Lastly, they are more efficient due to automation. Operating on blockchains allows for cheaper and more frictionless transactions than traditional alternatives. For instance, the complexities of cross-border remittances involving multiple jurisdictions and sets of legal compliances can be simplified through coded automation in smart contracts.

Dr. Campbell Harvey, a J. Paul Sticht Professor of International Business at Fuqua, has done considerable research on smart contracts as well, culminating in the publication of a book, DeFi and the Future of Finance which was released in the fall of 2021.

In the book, Dr. Harvey explores the role smart contracts play in decentralized finance and how Ethereum and other smart contract platforms give rise to the ability for decentralized application or dApp. Additionally, smart contracts can only exist as long as the chain or platform they live on exists. However, because these platforms are decentralized, they remove the need for a third party to mediate the agreement. Harvey quickly realized how beneficial this could be in finance, specifically decentralized finance or DeFi where third-party companies, like banks, mediate agreements at a high price.  

“Because it costs no more at an organization level to provide services to a customer with $100 or $100 million in assets, DeFi proponents believe that all meaningful financial infrastructure will be replaced by smart contracts which can provide more value to a larger group of users,” Harvey explains in the book

Beyond improving efficiency, this also creates greater accessibility to financial services. Smart contracts provide a foundation for DeFi by eliminating the middleman through publicly traceable coded agreements. However, the transition will not be completely seamless and Harvey also investigates the risks associated with smart contracts and advancements that need to be made for them to be fully scalable.

Ultimately, there is a smart contract connectivity problem. Essentially, smart contracts are unable to connect with external systems, data feeds, application programming interfaces (APIs), existing payment systems, or any other off-chain resource on their own. This is something called the Oracle Problem which Chainlink is looking to solve.

Harvey explains that when a smart contract is facilitating an exchange between two tokens, it determines the price by comparing exchange rates with another similar contract on the same chain. The other smart contract is therefore acting as a price oracle, meaning it is providing external price information. However, there are many opportunities to exploit this such as purchasing large amounts on one oracle exchange in order to alter the price and then go on to purchase even more on a different exchange in the opposite direction. This allows for capitalization on price movement by manipulating the information the oracle communicates to other smart contracts or exchanges. 

That being said, smart contracts are being used heavily, and Pratt senior Manmit Singh has been developing them since his freshman year along with some of his peers in the Duke Blockchain Lab. One of his most exciting projects involved developing smart contracts for cryptocurrency-based energy trading on the Ethereum Virtual Machine allowing for a more seamless way to develop energy units.

One example of how this could be used outside of the crypto world is insurance. Currently, when people get into a car accident it takes months or even a year to evaluate the accident and release compensation. In the future, there could be sensors placed on cars connected to smart contracts that immediately evaluate the damage and payout.

Decentralization allows us to avoid using intermediaries and simply connect people to people or people to information as opposed to first connecting people to institutions that can then connect them to something else. This also allows for fault tolerance: if one blockchain goes down, the entire system does not go down with it. Additionally, because there is no central source controlling the system, it is very difficult to gain control of thus protecting against attack resistance and collusion resistance. While risks like the oracle problem need to be further explored, the world and importance of DeFi, as well as smart contracts, is only growing.

And as Ayesh put it, “This is the future.”

Post by Anna Gotskind, Class of 2022

Duke has 38 of the World’s Most Highly-Cited Scientists

Peak achievement in the sciences isn’t measured by stopwatches or goals scored, it goes by citations – the number of times other scientists have referenced your findings in their own academic papers. A high number of citations is an indication that a particular work was influential in moving the field forward.

Nobel laureate Bob Lefkowitz made the list in two categories this year.

And the peak of this peak is the annual “Highly Cited Researchers” list produced each year by the folks at Clarivate, who run the Institute for Scientific Information. The names on this list are drawn from publications that rank in the top 1% by citations for field and publication year in the Web of Science™ citation index – the most-cited of the cited.

Duke has 38 names on the highly cited list this year — including Bob Lefkowitz twice because he’s just that good — and two colleagues at the Duke NUS Medical School in Singapore. In all, the 2021 list includes 6,602 researchers from more than 70 countries.

The ISI says that US scientists are a little less than 40 percent of the highly cited list this year – and dropping. Chinese researchers are gaining, having nearly doubled their presence on the roster in the last four years.

“The headline story is one of sizeable gains for Mainland China and a decline for the United States, particularly when you look at the trends over the last four years,” said a statement from David Pendlebury, Senior Citation Analyst at the Institute for Scientific Information. “(This reflects) a transformational rebalancing of scientific and scholarly contributions at the top level through the globalization of the research enterprise.”

Without further ado, let’s see who our champions are!

Biology and Biochemistry

Charles A. Gersbach

Robert J. Lefkowitz

Clinical Medicine

Pamela S. Douglas

Christopher Bull Granger

Adrian F. Hernandez

Manesh R.Patel

Eric D. Peterson

Cross-Field

Richard Becker

Antonio Bertoletti (NUS)

Yiran Chen

Stefano Curtarolo

Derek J. Hausenloy (NUS)

Ru-Rong Ji

Jie Liu

Jason W. Locasale

David B. Mitzi

Christopher B. Newgard

Ram Oren

David R. Smith

Heather M. Stapleton

Avner Vengosh

Mark R. Wiesner

Environment and Ecology

Emily S. Bernhardt

Geosciences

Drew T. Shindell

Immunology

Edward A. Miao

Microbiology

Barton F. Haynes

Neuroscience and Behavior

Quinn T. Ostrom

Pharmacology and Toxicology

Robert J. Lefkowitz

Plant and Animal Science

Xinnian Dong

Sheng Yang He

Philip N. Benfey

Psychiatry and Psychology

Avshalom Caspi

E. Jane Costello

Honalee Harrington

Renate M. Houts

Terrie E. Moffitt

Social Sciences

Michael J. Pencina

Bryce B. Reeve

John W. Williams

Post by Karl Bates

The Duke Blockchain Lab: Disrupting and Redefining Finance

The first decentralized cryptocurrency, Bitcoin, was created in 2009 by a developer named Satoshi Nakamoto which is assumed to be a pseudonym. Over the last decade, cryptocurrency has taken the world by storm, influencing the way people think about the intersection of society and economics. Cryptocurrencies like Bitcoin or Ethereum, another popular token, operate on blockchains.

Manmit Singh, a senior studying electrical and computer engineering, was introduced to blockchain his freshman year at Duke after meeting Joey Santoro ‘19, a senior studying computer science at the time.

Singh quickly found that he was not only interested in the promise of blockchain but skilled at building blockchain applications as well. As a result, he joined the Duke blockchain lab, a club on campus that, at the time, had no more than fifteen students. Singh, who is now president of the Duke Blockchain Lab, explained that there are now over 100 members in the club working on different projects related to blockchain. 

“Blockchain is a computer network with a built-in immutable ledge.”

Manmit SIngh

Essentially, computers process information, the internet allows us to communicate information and blockchain is the next step in the evolution of the digital era. It not only allows computers to communicate value but to transfer it as well in a completely transparent way because every transaction is tracked and, a record of that transaction is added to every participant’s ledger which is visible to others.

The concept and application of blockchain is not intuitive to everybody. Not only do people have difficulty understanding it, but they do not even know where to begin asking questions. 

For Singh, a key element to the club’s success was recruiting new members. The crypto space experienced a crash in 2017 resulting in a lot of skepticism around an already novel idea, decentralized currency. As a result, it was crucial to educate others on the potential of decentralized finance (DeFi), cryptocurrency, and, of course, blockchain. When recruiting, Singh wanted to bring in both tech and business-focused students so that they could not only work on building blockchain applications but conduct research on business models and how to generate value within decentralized finance as well.

Members of the Duke Blockchain Lab at a
weekly meeting learning about Stablecoins,
one type of token in cryptocurrency

Currently, members are working on a variety of projects including looking at consensus algorithms or how the blockchain makes decisions given that it is decentralized so inherently no one is in control. However, their most ambitious venture is the development of their Crypto Fund where people can invest money.

They are also looking to develop a Duke-inspired marketplace with talented Duke artists to sell non-fungible-tokens or NFTs. If unfamiliar, Abby Shlesinger, a senior studying Art History, created a blog to educate people on what NFTs are. 

One of the first projects Singh led involved developing a “smart contract” for cryptocurrency-based energy trading on the Ethereum Virtual Machine, a computation engine that acts like a decentralized computer that can hold millions of executable projects. Smart contracts are programs stored on a blockchain that run when predetermined conditions are met.

Additionally, Singh and other members of the Duke Blockchain Lab are working on tokenomic research with Dr. Harvey, a Duke professor who recently published a book alongside Santoro titled “DeFi and the Future of Finance” which you can find here. 

“Every blockchain is a complete economy that exists on a different plane.” 

Within these blockchain economies are various different types of tokens that vary in function and value. Tokenomics explores how these economies work and can be used to generate value. When asked to compare tokenomic concepts to ones in traditional finance, Singh explained that payment tokens are like dollars, asset tokens are like bonds and security tokens are like stocks. Currently, several companies are working on creating competitive blockchains that will be both cheaper and faster allowing creating an avenue for blockchain to continue accelerating into the mainstream. 

Meanwhile, Santoro, who introduced Singh to blockchain, graduated from Duke in 2019 and went on to form The Fei Protocol, a stable coin that unlike bitcoin does not change in value. His protocol raised one billion dollars within several weeks and while it had some initial challenges, it is now set to launch V2, a second version, soon. 

Singh plans to continue working on blockchain applications after graduating this spring and hopes to combine it with his passion for entrepreneurship.

“I am enthused by the applications of artificial intelligence, blockchain, and the internet of things in disrupting the world as we know it.”

Manmit Singh
By: Anna Gotskind

Back in Action: HackDuke’s 2021 “Code for Good”

If you walked across Duke’s Engineering Quad between 9AM on Saturday, October 23rd, and 5PM on Sunday, October 24th, the scene might’ve looked like that of any other day: students gathered in small groups, working diligently.

But then you’d see the giant banner and realize something special was afoot. These students were participating in HackDuke’s “Code for Good,” one of the most eminent social good hackathons in the country.

Participants have to “build something, not just an idea,” said Anita Li, co-director of HackDuke. Working in teams, students develop software, hardware, or quantum solutions to problems in one of four tracks: inequality, health, education, and energy and environment.

Participants can win “track prizes,” where $2,400 in total donations are made in winners’ names ($300 for first, $200 for second, $100 for third) to charities doing work in that track. There are other prizes too. Sponsors, including Capital One, Accenture, and Microsoft give incentives: if participants incorporate their technology or use their database, they’re qualified to win that sponsor’s prize (gift cards, usually, or software worth hundreds of dollars).

This year, Duke’s department of Student Affairs sponsored the health track, in hopes that participants might come up with ideas that could help promote student wellness here at Duke. “It’s a great space for thinking about these issues,” Li said.

Li told me they had more than 1,000 registrations, though there’s always a little less turnout. HackDuke is open to all students and recent graduates, so that “you get to see these cool ideas from everywhere.”

Just under half of this year’s participants were from Duke, almost 10% hailed from UNC, and the rest were from other universities across the US and the world. 30 percent of participants were women — a significant increase from the last HackDuke covered by the Research Blog, in 2014. 

This year is “particularly interesting,” Li said, because of the hybrid model. Last year, everything was virtual. This year, about 300 (vaccinated) students attended in person, making HackDuke one of the few Major League Hacking events with an in-person component this year. With the hybrid model, talks, workshops, and demos are all livestreamed so that no one misses out.

Some social events also had online elements: you could zoom into the Bob Ross painting session as well as the open mic, which Li said quickly turned into karaoke night. The spicy ramen challenge was “a little harder over Zoom.”

I came across Sydney Wang and Ray Lennon, along with teammate Jean Rabideau, as they were building a web app called JamJar for the Education Track contest. In the app, students give real-time feedback to teachers about how well they’re understanding the material. There are three categories: engagement (you can rank your engagement along a scale from “mentally I’m in outer space” to “locked in), understanding (“where am I?” to “crystal clear”), and speed (“a glacial pace” to “TOO FAST!”). Student responses get compiled and graphed to show mean markers of understanding over time. 

Lennon said he’s participating because “this is the best way to learn: to be thrown in the fire and have to learn as you go.” Wang felt the same way. She’s new to coding, and feels like she’s learning a lot from Lennon.

Like Lennon and Wang, many participants see HackDuke as an opportunity to learn. There are technical workshops where participants can learn HTML and CSS. There are talks where speakers discuss working in the coding and social good sector. The CTO of change.org, Elaine Zhou, flew to Durham to speak to participants about her experience. So there’s a networking opportunity, too — participants can meet people like Zhou doing the work they want to do, and professors and company representatives who can help them on their journey to get there.

There were challenges. Staying hydrated was one: by Sunday morning, they’d gone through seven cases of water, 16 cases of soda, and three cases of red bull. “It takes a lot of liquids,” Li said. And then there’s sleep — or lack thereof. When Li was participating in her freshman year, she slept for about three hours. Many people pull all-nighters, but “nap sporadically everywhere,” Li said. “It’s like finals season, with everyone knocked out.” She saw a handful of guys sleeping on the floor in Fitzpatrick. She gave them bed pads. 

Li’s love for HackDuke is contagious. She loves to see participants focusing on social good and drawing on their awareness of what’s happening in the world. “People are thinking about things that are intense; they’re really worrying about issues facing certain communities,” Li said.

At HackDuke, people really are coding for good.

Post by Zella Hanson

How Freshman Engineers Solve Real-World Problems in EGR 101

The sound of drills whirring, the smell of heated plastic from the 3D printers, and trying to see through foggy goggles. As distracting as it may sound, this is a normal day for a first-year engineering student (including myself) in class. 

During these past few weeks, freshmen engineers have been brainstorming and building projects that have piqued their interest in their EGR101 class. Wanting to know more, I couldn’t help but approach Amanda Smith, Jaden Fisher, Myers Murphy, and Christopher Cosby, and ask about their goal to make an assistive device to help people with limited mobility take trash cans up an inclined driveway that is slippery and wet.

“Our client noticed the problem in his neighborhood in Chapel Hill with its mainly-elderly population, and asked for a solution to help them,” Fisher says. “We thought it would be cool to give back to the community.” Their solution: a spool with a motor. 

Coming from a mechanical engineering mindset, the team came up with the idea to create a spool-like object that has ropes that connect to the trash can, and with a motor, it would twist, pull up the trash can, and then slowly unroll it back down the driveway. As of now, they are currently in the prototyping phase, but they are continuing to work hard nonetheless. 

“For now, our goal is to slowly begin to scale up and hopefully be able to make it carry a full trash can. Maybe one day, our clients can implement it in real life and help the people that need it,” says Smith.

Low-fidelity prototype of the spool

All of this planning and building is part of the Engineering Design & Communication class, also known as EGR 101, which all Pratt students have to take in their first year. Students are taught about the engineering design process, and then assigned a project to implement what they learned in a real life situation by the end of the semester.

“This is a very active learning type of class, with an emphasis on the design process,” says Chip Bobbert, one of the EGR 101 professors. “We think early exposure will be something that will carry forward with student’s careers.”

Not only do the students deal with local clients, but some take on problems from  nationwide companies, like Vivek Tarapara, Will Denton, Del Cudjoe, Ken Kalin, Desmond Decker, and their client, SKANSKA, a global construction company.

“They have an issue scheduling deliveries of materials to their subcontractors, which causes many issues like getting things late, dropped in the wrong areas, etc.,” Tarapara explains. “There is a white board in these construction sites, but with people erasing things and illegible handwriting, we want to make a software-based organizational tool so that everyone involved in the construction is on the same page.”

Watching the team test their code and explain to me each part of their software, I see they have successfully developed an online form that can be accessed with a QR code at the construction site or through a website. It would input the information on a calendar so that users can see everything at any time, where anyone can access it, and a text bot to help facilitate the details.

“We are currently still working on making it look better and more fluid, and make a final solution that SKANSKA will be satisfied with,” Denton says, as he continues to type away at his code.

Vivek Tarapara (left) and Will Denton (right) working on their code and text bot

One final project, brought up by Duke oral surgeon Katharine Ciarrocca, consists of students Abigail Paris, Fernando Rodriguez, Konur Nordberg, and Camila Cordero (hey, that’s me!), and their mouth prop design project. 

After many trials and errors, my team has created a solution that we are currently in the works of printing with liquid silicone rubber. “We have made a bite block pair, connected by a horizontal prism with a gap to clip on, as well as elevated it to give space for the tongue to rest naturally,” Paris elaborates.

The motivation behind this project comes from COVID-19. With the increase of ICU patients, many receiving endotracheal intubations, doctors have come to realize that these intubations are causing other health issues such as pressure necrosis, biting on the tongue, and bruising from the lip. Dr. Ciarrocca decided to ask the EGR 101 class to come up with a device to help reduce such injuries.

Medium-fidelity prototype of mouth prop inside of mouth model with an endotracheal intubation tube

Being part of this class and having first-hand look at all the upcoming projects, it’s surprising to see freshman students already working on such real-world problems.

“One of the things I love about engineering and this course is that we’re governed by physics and power, and it all comes to bear,” says Steven McClelland, another EGR 101 professor. “So this reckoning of using the real world and beginning to take theory and take everything into consideration, it’s fascinating to see the students finally step into reality.”

Not only does it push freshmen to test their creativity, but it also creates a sense of teamwork and bonding between classmates, even in the most unordinary class setting.

“I look around the room and there’s someone wearing a pool noodle, another boiling alcohol, and another trying to measure the inside of their mouth,” says Bobberts as he scans the area quickly. “I’m excited to see people going and doing stuff together.”

Post by Camila Codero, Class of 2025

Page 1 of 12

Powered by WordPress & Theme by Anders Norén