Following the people and events that make up the research community at Duke

Author: Karl Bates Page 1 of 18

Director of Research Communications, Duke University

Duke has 38 of the World’s Most Highly-Cited Scientists

Sticky post

Peak achievement in the sciences isn’t measured by stopwatches or goals scored, it goes by citations – the number of times other scientists have referenced your findings in their own academic papers. A high number of citations is an indication that a particular work was influential in moving the field forward.

Nobel laureate Bob Lefkowitz made the list in two categories this year.

And the peak of this peak is the annual “Highly Cited Researchers” list produced each year by the folks at Clarivate, who run the Institute for Scientific Information. The names on this list are drawn from publications that rank in the top 1% by citations for field and publication year in the Web of Science™ citation index – the most-cited of the cited.

Duke has 38 names on the highly cited list this year — including Bob Lefkowitz twice because he’s just that good — and two colleagues at the Duke NUS Medical School in Singapore. In all, the 2021 list includes 6,602 researchers from more than 70 countries.

The ISI says that US scientists are a little less than 40 percent of the highly cited list this year – and dropping. Chinese researchers are gaining, having nearly doubled their presence on the roster in the last four years.

“The headline story is one of sizeable gains for Mainland China and a decline for the United States, particularly when you look at the trends over the last four years,” said a statement from David Pendlebury, Senior Citation Analyst at the Institute for Scientific Information. “(This reflects) a transformational rebalancing of scientific and scholarly contributions at the top level through the globalization of the research enterprise.”

Without further ado, let’s see who our champions are!

Biology and Biochemistry

Charles A. Gersbach

Robert J. Lefkowitz

Clinical Medicine

Pamela S. Douglas

Christopher Bull Granger

Adrian F. Hernandez

Manesh R.Patel

Eric D. Peterson

Cross-Field

Richard Becker

Antonio Bertoletti (NUS)

Yiran Chen

Stefano Curtarolo

Derek J. Hausenloy (NUS)

Ru-Rong Ji

Jie Liu

Jason W. Locasale

David B. Mitzi

Christopher B. Newgard

Ram Oren

David R. Smith

Heather M. Stapleton

Avner Vengosh

Mark R. Wiesner

Environment and Ecology

Emily S. Bernhardt

Geosciences

Drew T. Shindell

Immunology

Edward A. Miao

Microbiology

Barton F. Haynes

Neuroscience and Behavior

Quinn T. Ostrom

Pharmacology and Toxicology

Robert J. Lefkowitz

Plant and Animal Science

Xinnian Dong

Sheng Yang He

Philip N. Benfey

Psychiatry and Psychology

Avshalom Caspi

E. Jane Costello

Honalee Harrington

Renate M. Houts

Terrie E. Moffitt

Social Sciences

Michael J. Pencina

Bryce B. Reeve

John W. Williams

Post by Karl Bates

Learning Something Surprising About “SuperLearners”

The discovery of a signaling pathway in the brain that could make mice into ‘superlearners’ understandably touched off a lot of excitement a few years back.

But new work led by Duke neurologist and neuroscientist Nicole Calakos MD PhD suggests there’s more to the story of the superlearner chemical pathway than anybody realized.

A genetically-enhanced ‘smart mouse’ doing some important work. (Boston University)

In a study led by postdoctoral researchers Ashley Helseth and Ricardo Hernandez-Martinez,  the Calakos lab developed a new tool to visualize activity of this Integrated Stress Response (ISR) signaling pathway because it contributes to synaptic plasticity – the brain’s ability to rewire circuits – as well as to learning and memory.

What they didn’t expect to see is that a population of cells called cholinergic interneurons, which comprise only 1 or 2 percent of the whole basal ganglia structure, seem to have the ISR pathway working all the time. The basal ganglia, which is the focus of much of Calakos’ work, plays a role in Parkinson’s and Huntington’s diseases, Tourette’s syndrome, obsessive compulsive disorder and more.

Nicole Calakos, the Lincoln Financial Group distinguished professor of Neurobiology and Neurology. (Alex Boerner)

“This totally changes how you think about the pathway,” Calakos said. “Everybody thought this pathway used an on-demand response type of mechanism, but what if some cells needed it for their everyday activities?”

To answer this, they blocked the ISR in just those rare interneurons in mice and it actually reproduced the enhanced performance on learned tasks that the earlier studies had shown when the pathway was blocked universally throughout the brain. This finding focuses attention on this select subset of brain cells, the cholinergic interneurons that release the chemical signal acetylcholine, as being responsible for at least some of the ‘superlearner’ behavior.

Since the integrated stress response pathway and its potential to enhance learning and memory was identified, drugs for dementia and traumatic brain injury are being designed to manipulate it and help the brain recover. But there may be more to the story than anyone realized, Calakos said.

“Our results show that the ISR plays a major role in acetylcholine-releasing cells, and our current best dementia drugs boost acetylcholine,” she said.

With their new tool, SPOTlight, the team were able to highlight the presence of cholinergic interneurons (red) which are only 1 to 2 percent of the cell population in the ganglia. (Helseth et al)

Acetylcholine, the chemical that these rare cholinergic interneurons use to signal in the brain, is well known for its powerful effects on influencing brain states for attention and learning. This finding suggests that at least some of the ‘superlearner’ properties of inhibiting the ISR occur by influencing brain state, rather than acting directly in the cells that are being rewired during learning.

In addition to the full research article, Science published on April 23 an article summary by Helseth and Calakos and a perspective piece by a pair of University of Minnesota neuroscientists highlighting the finding’s importance.

More work is required to sort out what ISR is and is not doing, but it’s possible that these new findings can help to develop “more precise, more nuanced Alzheimer’s drugs,” Calakos said.

Post by Karl Leif Bates

Most Highly Cited List Includes 37 from Duke

Five of the ten Duke women included in the most highly-cited list this year. Their scholarly publications are viewed as important and influential by their peers. (Clockwise from upper left: Costello, Curtis, Dawson, Bernhardt, Moffitt)

Duke’s leading scholars are once again prominently featured on the annual list of “Most Highly Cited Researchers.”

Thirty-seven Duke faculty were named to the list this year, based on the number of highly cited papers they produced over an 11-year period from January 2009 to December 2019.  Citation rate, as tracked by Clarivate’s Web of Science, is an approximate measure of a study’s influence and importance.

Barton Haynes

Two Duke researchers appear in two categories: Human Vaccine Institute Director Barton Haynes, and Michael Pencina, vice dean of data science and information technology in the School of Medicine.

And two of the Duke names listed are new faculty, recruited as part of the Science & Technology initiative: Edward Miao in Immunology and Sheng Yang He in Biology.

Michael Pencina

This year, 6,127 researchers from 60 countries are being recognized by the listing. The United States still dominates, with 41 percent of the names on the list, but China continues to grow its influence, with 12 percent of the names.

Clinical Medicine:

Robert M. Califf, Lesley H. Curtis, Pamela S. Douglas, Christopher Bull Granger, Adrian F. Hernandez, L. Kristen Newby, Erik Magnus Ohman, Manesh R. Patel, Michael J. Pencina, Eric D. Peterson.

Environment and Ecology:

Emily S. Bernhardt, Stuart L. Pimm, Mark R. Weisner.

Geosciences:

Drew T. Shindell

Immunology:

Barton F. Haynes, Edward A. Miao

Microbiology:

Barton F. Haynes

Plant and Animal Science:

Sheng Yang He

Psychiatry and Psychology:

Avshalom Caspi, E. Jane Costello, Renate M. Houts, Terrie E. Moffitt

Social Sciences:

Michael J. Pencina

Cross-Field:

Dan Ariely, Geraldine Dawson, Xinnian Dong, Charles A. Gersbach, Ru-Rong Ji, Robert J. Lefkowitz, Sarah H. Lisanby, Jie Liu, Jason W. Locasale, David B. Mitzi, Christopher B. Newgard, Ram Oren, David R. Smith, Avner Vengosh.

Hard-Won Answer Was Worth the Wait

Most of Physics Professor Haiyan Gao’s students see their doctoral dissertations posted on her lab’s web site very soon after they have been awarded their Ph.Ds.

But Yang Zhang, Ph.D. 2018, had to wait two years, because his thesis work had a very good chance of being accepted by a major journal. And this week, it has been published in the journal Science.

What Zhang did was to create the world’s most precise value for a subatomic nuclear particle called a neutral pion. It’s a quark and an antiquark comprising a meson. The neutral pion (also known as p0) is the lightest of the mesons, but a player in the strong attractive force that holds the atom’s nucleus together.

Haiyan Gao (left) with newly-minted physics Ph.D. Yang Zhang in 2018. (Photo courtesy of Min Huang, Ph.D. ’16)

And that, in turn, makes it a part of the puzzle Gao and her students have been trying to solve for many years. The prevailing theory about the strong force is called quantum chromodynamics (QCD), and it’s been probed for years by high-energy physics. But Gao, Zhang and their collaborators are trying to study QCD under more normal energy states, a notoriously difficult problem.

Yang Zhang spent six years analyzing and writing up the data from a Primakoff  (PrimEx-II) experiment in Hall B at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, VA. His work was done on equipment supported by both the National Science Foundation and the Department of Energy.  


This is the quark structure of the positive pion – an up quark and an anti-down quark. The strong force is from gluons, represented as the wavy lines (Arpad Horvath via Wikimedia Commons)

In a Primakoff experiment, a photon beam is directed on a nuclear target, producing neutral pions. In both the PrimEx-I and PrimEx-II experiments at Jefferson Lab, the two photons from the decay of a neutral pionwere subsequently detected in an electromagnetic calorimeter. From that, Zhang extracted the pion’s ‘radiative decay width.’ That decay width is a handy thing to have, because it is directly related to the pion’s life expectancy, and QCD has a direct prediction for it.

Zhang’s hard-won answer: The neutral pion has a radiative decay width of 7.8 electron-volts, give or take. That makes it an important piece of the dauntingly huge puzzle about QCD. Gao and her colleagues will continue to ask the fundamental questions about nature, at the finest but perhaps most profound scale imaginable.

The PrimEx-I and PrimEx-II collaborations were led by Prof. Ashot Gasparian from North Carolina A&T State University. Gao and Zhang joined the collaboration in 2011.

“Precision Measurement of the Neutral Pion Lifetime,” appears in Science May 1. Dr. Yang Zhang is now a quantitative researcher at JPMorgan Chase & Co.

How Small is a Proton? Smaller Than Anyone Thought

The proton, that little positively-charged nugget inside an atom, is fractions of a quadrillionth of a meter smaller than anyone thought, according to new research appearing Nov. 7 in Nature.

Haiyan Gao of Duke Physics

In work they hope solves the contentious “proton radius puzzle” that has been roiling some corners of physics in the last decade, a team of scientists including Duke physicist Haiyan Gao have addressed the question of the proton’s radius in a new way and discovered that it is 0.831 femtometers across, which is about 4 percent smaller than the best previous measurement using electrons from accelerators. (Read the paper!)

A single femtometer is 0.000000000000039370 inches imperial, if that helps, or think of it as a millionth part of a billionth part of a meter. And the new radius is just 80 percent of that.

But this is a big — and very small — deal for physicists, because any precise calculation of energy levels in an atom will be affected by this measure of the proton’s size, said Gao, who is the Henry Newson professor of physics in Trinity College of Arts & Sciences.

Bohr model of Hydrogen. One proton, one electron, as simple as they come.

What the physicists actually measured is the radius of the proton’s charge distribution, but that’s never a smooth, spherical point, Gao explained. The proton is made of still smaller bits, called quarks, that have their own charges and those aren’t evenly distributed. Nor does anything sit still. So it’s kind of a moving target.

One way to measure a proton’s charge radius is to scatter an electron beam from the nucleus of an atom of hydrogen, which is made of just one proton and one electron. But the electron must only perturb the proton very gently to enable researchers to infer the size of the charge involved in the interaction. Another approach measures the difference between two atomic hydrogen energy levels. Past results from these two methods have generally agreed.

Artist’s conception of a very happy muon by Particle Zoo

But in 2010, an experiment at the Paul Scherrer Institute replaced the electron in a hydrogen atom with a muon, a much heavier and shorter-lived member of the electron’s particle family. The muon is still negatively charged like an electron, but it’s about 200 times heavier, so it can orbit much closer to the proton. Measuring the difference between muonic hydrogen energy levels, these physicists obtained a proton charge radius that is highly precise, but much smaller than the previously accepted value. And this started the dispute they’ve dubbed the “proton charge radius puzzle.”

To resolve the puzzle, Gao and her collaborators set out to do a completely new type of electron scattering experiment with a number of innovations. And they looked at electron scattering from both the proton and the electron of the hydrogen atom at the same time. They also managed to get the beam of electrons scattered at near zero degrees, meaning it came almost straight forward, which enabled the electron beam to “feel” the proton’s charge response more precisely.

Voila, a 4-percent-smaller proton. “But actually, it’s much more complicated,” Gao said, in a major understatement.

The work was done at the Department of Energy’s Thomas Jefferson National Accelerator Facility in Newport News, Virginia, using new equipment supported by both the National Science Foundation and the Department of Energy, and some parts that were purpose-built for this experiment. “To solve the argument, we needed a new approach,” Gao said.

Gao said she has been interested in this question for nearly 20 years, ever since she became aware of two different values for the proton’s charge radius, both from electron scattering experiments.  “Each one claimed about 1 percent uncertainty, but they disagreed by several percent,” she said.

And as always in modern physics, had the answer not worked out so neatly, it might have called into question parts of the Standard Model of particle physics. But alas, not this time.

“This is particularly important for a number of reasons,” Gao said. The proton is a fundamental building block of visible matter, and the energy level of hydrogen is a basic unit of measure that all physicists rely on.

The new measure may also help advance new insights into quantum chromodynamics (QCD), the theory of strong interaction in quarks and gluons, Gao said. “We really don’t understand how QCD works.”

“This is a very, very big deal,” she said. “The field is very excited about it. And I should add that this experiment would not have been so successful without the heroic contributions from our highly talented and hardworking graduate students and postdocs from Duke.”

This work was funded in part by the U. S. National Science Foundation (NSF MRI PHY-1229153) and by the U.S. Department of Energy (Contract No. DE-FG02-03ER41231), including contract No. DE-AC05-06OR23177 under which Jefferson Science Associates, LLC operates Thomas Jefferson National Accelerator Facility.

CITATION: “A Small Proton Charge Radius from An Electron-Proton Scattering Experiment,”  W. Xiong, A. Gasparian, H. Gao, et al. Nature, Nov. 7, 2019. DOI: 10.1038/s41586-019-1721-2 (ONLINE)

Researchers Urge a Broader Look at Alzheimer’s Causes

Just about every day, there’s a new headline about this or that factor possibly contributing to Alzheimer’s Disease. Is it genetics, lifestyle, diet, chemical exposures, something else?

The sophisticated answer is that it’s probably ALL of those things working together in a very complicated formula, says Alexander Kulminski, an associate research professor in the Social Science Research Institute. And it’s time to study it that way, he and his colleague, Caleb Finch at the Andrus Gerontology Center at the University of Southern California, argue in a recent paper that appears in the journal Alzheimer’s and Dementia, published by the Alzheimer’s Association.

Positron Emission Tomography scan of a brain affected by cognitive declines . (NIH)

“Life is not simple,” Kulminski says. “We need to combine different factors.”

“We propose the ‘AD Exposome’ to address major gaps in understanding environmental contributions to the genetic and non-genetic risk of AD and related dementias,” they write in their paper. “A systems approach is needed to understand the multiple brain-body interactions during neurodegenerative aging.”

The analysis would focus on three domains, Kulminski says: macro-level external factors like rural v. urban, pollutant exposures, socio-economcs; individual external factors like diet and infections; and internal factors like individual microbiomes, fat deposits, and hormones.

That’s a lot of data, often in disparate, broadly scattered studies. But Kulminski, who came to Duke as a physicist and mathematician, is confident modern statistics and computers could start to pull it together to make a more coherent picture. “Twenty years ago, we couldn’t share. Now the way forward is consortia,” Kulminski said.

The vision they outline in their paper would bring together longitudinal population data with genome-wide association studies, environment-wide association studies and anything else that would help the Alzheimer’s research community flesh out this picture. And then, ideally, the insights of such research would lead to ways to “prevent, rather than cure” the cognitive declines of the disease, Kulminsky says.  Which just happens to be the NIH’s goal for 2025.

Big SMILES All Around for Polymer Chemists at Duke, MIT and Northwestern

Science is increasingly asking artificial intelligence machines to help us search and interpret huge collections of data, and it’s making a difference.

But unfortunately, polymer chemistry — the study of large, complex molecules — has been hampered in this effort because it lacks a crisp, coherent language to describe molecules that are not tidy and orderly.

Think nylon. Teflon. Silicone. Polyester. These and other polymers are what the chemists call “stochastic,” they’re assembled from predictable building blocks and follow a finite set of attachment rules, but can be very different in the details from one strand to the next, even within the same polymer formulation.

Plastics, love ’em or hate ’em, they’re here to stay.
Foto: Mathias Cramer/temporealfoto.com

Chemistry’s old stick and ball models and shorthand chemical notations aren’t adequate for a long molecule that can best be described as a series of probabilities that one kind of piece might be in a given spot, or not.

Polymer chemists searching for new materials for medical treatments or plastics that won’t become an environmental burden have been somewhat hampered by using a written language that looks like long strings of consonants, equal signs, brackets, carets and parentheses. It’s also somewhat equivocal, so the polymer Nylon-6-6 ends up written like this: 

{<C(=O)CCCCC(=O)<,>NCCCCCCN>}

Or this,

{<C(=O)CCCCC(=O)NCCCCCCN>}

And when we get to something called ‘concatenation syntax,’ matters only get worse.  

Stephen Craig, the William T. Miller Professor of Chemistry, has been a polymer chemist for almost two decades and he says the notation language above has some utility for polymers. But Craig, who now heads the National Science Foundation’s Center for the Chemistry of Molecularly Optimized Networks (MONET), and his MONET colleagues thought they could do better.

Stephen Craig

“Once you have that insight about how a polymer is grown, you need to define some symbols that say there’s a probability of this kind of structure occurring here, or some other structure occurring at that spot,” Craig says. “And then it’s reducing that to practice and sort of defining a set of symbols.”

Now he and his MONET colleagues at MIT and Northwestern University have done just that, resulting in a new language – BigSMILES – that’s an adaptation of the existing language called SMILES (simplified molecular-input line-entry system). They they think it can reduce this hugely combinatorial problem of describing polymers down to something even a dumb computer can understand.

And that, Craig says, should enable computers to do all the stuff they’re good at – searching huge datasets for patterns and finding needles in haystacks.

The initial heavy lifting was done by MONET members Prof. Brad Olsen and his co-worker Tzyy-Shyang Lin at MIT who conceived of the idea and developed the set of symbols and the syntax together. Now polymers and their constituent building blocks and variety of linkages might be described like this:

Examples of bigSMILES symbols from the recent paper

It’s certainly not the best reading material for us and it would be terribly difficult to read aloud, but it becomes child’s play for a computer.

Members of MONET spent a couple of weeks trying to stump the new language with the weirdest polymers they could imagine, which turned up the need for a few more parts to the ‘alphabet.’ But by and large, it holds up, Craig says. They also threw a huge database of polymers at it and it translated them with ease.

“One of the things I’m excited about is how the data entry might eventually be tied directly to the synthetic methods used to make a particular polymer,” Craig says. “There’s an opportunity to actually capture and process more information about the molecules than is typically available from standard characterizations. If that can be done, it will enable all sorts of discoveries.”

BigSMILES was introduced to the polymer community by an article in ACS Central Science last week, and the MONET team is eager to see the response.

“Can other people use it and does it work for everything?” Craig asks. “Because polymer structure space is effectively infinite.” Which is just the kind of thing you need Big Data and machine learning to address. “This is an area where the intersection of chemistry and data science can have a huge impact,” Craig says.

Nature Shows a U-Turn Path to Better Solar Cells

The technical-sounding category of “light-driven charge-transfer reactions,” becomes more familiar to non-physicists when you just call it photosynthesis or solar electricity.

When a molecule (in a leaf or solar cell) is hit by an energetic photon of light, it first absorbs the little meteor’s energy, generating what chemists call an excited state. This excited state then almost immediately (like trillionths of a second) shuttles an electron away to a charge acceptor to lower its energy. That transference of charge is what drives plant life and photovoltaic current.

A 20 Megawatt solar farm ( Aerial Innovations via wikimedia commons)

The energy of the excited state plays an important role in determining solar energy conversion efficiency. That is, the more of that photon’s energy that can be retained in the charge-separated state, the better. For most solar-electric devices, the excited state rapidly loses energy, resulting in less efficient devices.

But what if there were a way to create even more energetic excited states from that incoming photon?

Using a very efficient photosynthesizing bacterium as their inspiration, a team of Duke chemists that included graduate students Nick Polizzi and Ting Jiang, and faculty members David Beratan and Michael Therien, synthesized a “supermolecule” to help address this question.

“Nick and Ting discovered a really cool trick about electron transfer that we might be able to adapt to improving solar cells,” said Michael Therien, the William R. Kenan, Jr. Professor of Chemistry. “Biology figured this out eons ago,” he said.

“When molecules absorb light, they have more energy,” Therien said. “One of the things that these molecular excited states do is that they move charge. Generally speaking, most solar energy conversion structures that chemists design feature molecules that push electron density in the direction they want charge to move when a photon is absorbed. The solar-fueled microbe, Rhodobacter sphaeroides, however, does the opposite. What Nick and Ting demonstrated is that this could also be a winning strategy for solar cells.”

Ting Jiang
Nick Polizzi

The chemists devised a clever synthetic molecule that shows the advantages of an excited state that pushes electron density in the direction opposite to where charge flows. In effect, this allows more of the energy harvested from a photon to be used in a solar cell. 

“Nick and Ting’s work shows that there are huge advantages to pushing electron density in the exact opposite direction where you want charge to flow,” Therien said in his top-floor office of the French Family Science Center. “The biggest advantage of an excited state that pushes charge the wrong way is it stops a really critical pathway for excited state relaxation.”

“So, in many ways it’s a Rube Goldberg Like conception,” Therien said. “It is a design strategy that’s been maybe staring us in the face for several years, but no one’s connected the dots like Nick and Ting have here.”

In a July 2 commentary for the Proceedings of the National Academy of Sciences, Bowling Green State University chemist and photoscientist Malcom D.E. Forbes calls this work “a great leap forward,” and says it “should be regarded as one of the most beautiful experiments in physical chemistry in the 21st century.”

Here’s a schematic from the paper.
(Image by Nick Polizzi)

CITATION: “Engineering Opposite Electronic Polarization of Singlet and Triplet States Increases the Yield of High-Energy Photoproducts,” Nicholas Polizzi, Ting Jiang, David Beratan, Michael Therien. Proceedings of the National Academy of Sciences, June 10, 2019. DOI: 10.1073/pnas.1901752116 Online: https://www.pnas.org/content/early/2019/07/01/1908872116

Smart Phones Are the New Windows to the Soul

It’s one of those things that seems so simple and elegant that you’re left asking yourself, “Geez, why didn’t I think of that?”

Say you were trying to help people lose weight, prep for a surgery or take their meds every day. They’re probably holding a smartphone in at least one of their hands — all you need to do is enlist that ever-present device they’re staring at to bug them!

So, for example, have the health app send a robo-text twice a day to check in: “Did you weigh yourself?” Set up a group chat where their friends all know what they’re trying to accomplish: “We’re running today at 5, right?”

This is a screenshot of a Pattern Health app for pre-operative patients.

It’s even possible to make them pinky-swear a promise to their phone that they will do something positive toward the goal, like walking or skipping desert that day. And if they don’t? The app has their permission to lock them out of all their apps for a period of time.

Seriously, people agree to this and it works.

Two app developers on this frontier of personalized, portable “mHealth” told a lunchtime session  sponsored by the Duke Mobile App Gateway on Thursday that patients not only willingly play along with these behavioral modification apps, their behaviors change for the better.

The idea of using phones for health behavior came to pediatric hematologist Nirmish Shah MD one day while he attempted to talk to a 16-year-old sickle cell disease patient as she snapped selfies of herself with the doctor. Her mom and toddler sister nearby both had their noses to screens as well. “I need to change how I do this,” Shah thought to himself.

Pediatric hematologist Nirmish Shah MD

Pediatric hematologist Nirmish Shah MD is director of Duke’s sickle cell transition program.

Twenty health apps later, he’s running phase II clinical trials of phone-based interventions for young sickle cell patients that encourage them to stay on their medication schedule and ask them often about their pain levels.

One tactic that seems to work pretty well is to ask his patients to send in selfie videos as they take their meds each day. The catch? The female patients send a minute or so of chatty footage a day. The teenage boys average 13 seconds, and they’re grumpy about it.

Clearly, different activities may be needed for different patient populations, Shah said.

While it’s still early days for these approaches, we do have a lot of behavioral science on what could help, said Aline Holzwarth, a principal of the Center for Advanced Hindsight and head of behavioral science for a Durham health app startup called Pattern Health.

Aline Gruneisen Holzwarth

Aline Holzwarth is a principal in the Center for Advanced Hindsight.

“It’s not enough to simply inform people to eat better,” Holzwarth said. The app has to secure a commitment from the user, make them set small goals and then ask how they did, enlist the help of social pressures, and then dole out rewards and punishments as needed.

Pattern Health’s app says “You need to do this, please pick a time when you will.” Followed by a reward or a consequence.

Thursday’s session, “Using Behavioral Science to Drive Digital Health Engagement and Outcomes, was the penultimate session of the annual Duke Digital Health Week. Except for the Hurricane Florence washout on Monday, the week  has been a tremendous success this year, said Katie McMillan, the associate director of the App Gateway.

First Population Health Conference Shares Energy, Examples

Logo: Population Health at Duke‘Population Health’ is the basis of a new department in the School of Medicine, a byword for a lot of new activity across campus , and on Tuesday the subject of a half-day symposium that attempted to bring all this energy together.

For now, population health means a lot of different things to a lot of different people.

The half-day symposium drew an overflow crowd of faculty and staff. (photo – Colin Huth)

“We’re still struggling with a good definition of what population health is,” said keynote speaker Clay Johnston, MD, PhD, dean of the new Dell School of Medicine in Austin, Texas. Smoking cessation programs are something most everyone would agree is taking care of the population outside of the clinic. But improved water quality? Where does that fit?

“We have an intense focus on doctors and their tools,” Johnston said. Our healthcare system is optimized for maximum efficiency in fee-for-service care, that is, getting the most revenue out of the most transactions. “But most of health is outside the clinic,” Johnston said.

Perhaps as a result, the United States pays much more for health care, but lives less well, he said. “We are noticeably off the curve,” when compared to health care costs and outcomes in other countries.

This graphic from a handout shared at the conference shows how population health spans the entire university.

This graphic from a handout shared at the conference shows how population health spans the entire university.

As an example of what might be achieved in population health with some re-thinking and a shift in resources, the Dell School went after the issue of joint pain with input from their engineering and business schools. Rather than diagnosing people toward an orthopedic surgery – for which there was a waitlist of about 14 months – their system worked with patients on alternatives, such as weight loss, physical therapy and behavioral changes before surgery. The 14-month backlog was gone in just three months. Surgeries still happen, of course, but not if they can be comfortably delayed or avoided.

“Payment for prevention needs serious work,” Johnston said. “You need to get people to buy into it,” but in diabetes or depression for example, employers should stand to gain a lot from having healthier employees who miss fewer days, he said.

Health Affairs Chancellor Eugene Washington commented several times, calling the discussion “very interesting and very valuable.” (photo -Colin Huth)

Other examples flowed freely the rest of the afternoon. Duke is testing virtual ‘telemedicine’ appointments versus office visits. Evidence-based prenatal care is being applied to try to avoid expensive neonatal ICU care. Primary care and Emergency Department physicians are being equipped with an app that helps them steer sickle cell patients to appropriate care resources so that they might avoid expensive ED visits.

Family practitioner Eugenie Komives, MD, is part of a team using artificial intelligence and machine learning to try to predict which patients are most likely to be hospitalized in the next six months. That prediction, in turn, can guide primary care physicians and care managers to pay special attention to these patients to help them avoid the hospital. The system is constantly being evaluated, she added. “We don’t want to be doing this if it doesn’t work.”

Community health measures like walkability and grocery stores are being mapped for Durham County on a site called Durham Neighborhood Compass, said Michelle Lyn, MBA, chief of the division of community health. The aim is not only to see where improvements can be made, but to democratize population health information and put it in peoples’ hands. “(Community members) will have ideas we never could have thought of,” Lyn said. “We will be able to see change across our neighborhoods and community.”

Patient input is key to population health, agreed several speakers. “I don’t think we’ve heard them enough,” said Paula Tanabe, PhD, an associate professor of nursing and medicine who studies pain and sickle cell disease.  “We need a bigger patient voice.”

Health Affairs Chancellor and Duke Health CEO Eugene Washington, MD, has made population health one of the themes of his leadership. “We really take seriously this notion of shaping the future of population health,” he said in his introductory remarks. “When I think of the future, I think about how well-positioned we are to have impact on the lives of the community we serve.”

Lesley Curtis, PhD, chair of the newly formed Department of Population Health Sciences in the School of Medicine, said Duke is creating an environment where this kind of work can happen.

“I, as an organizer of this, didn’t know about half of these projects today!” Curtis said. “There’s so much going on at an organic level that the challenge to us is to identify what’s going on and figure out how to go forward at scale.”

Post by Karl Leif Bates

Page 1 of 18

Powered by WordPress & Theme by Anders Norén