Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Guest Post Page 1 of 11

Chronicling Migrant Deaths Along the US-Mexico Border

Science, especially social science, is rarely apolitical. Nonetheless, researchers are often hesitant to engage with the political implications of their work. Striving to protect their objective, scientific stance, they leave the discussing and at times the fighting to the politicians and legislators.

University of Michigan anthropologist Jason de León is not one of those researchers. Politics is not merely implicated in his work, but rather drives it. De León studies undocumented migration between Mexico and the United States.

University of Michigan anthropologist Jason De León directs the Undocumented Migration Project.

University of Michigan anthropologist Jason De León directs the Undocumented Migration Project.

As director of the Undocumented Migration Project, De León studies what happens to the bodies of migrants crossing the desert to reach the U.S. using “any genre I can steal from,” he told an audience at Duke University on April 5. Using tools from archeology, forensics, photography, and ethnography, de León and his team have been providing novel insights into one of the most urgent political challenges currently facing the nation.

De León acknowledged the political reality of his work immediately by opening his talk with a quote from President Trump about building a “great wall.” However, he was quick to clarify that the problem of missing migrants is not partisan. Rather, it has a long history that he argues started with the 1993 immigration enforcement policy, “Prevention through Deterrence.” This policy’s aim was to redirect illegal immigration to the desert rather than to stop it. Politicians hoped that in the desert, where security is weak and the terrain treacherous, the natural terrain would serve as a border wall. Inherent in this policy is the assumption that migrant life is expandable.

In the wake of this policy, the human smuggling industry in northern Mexico experienced a swift influx and the number of known migrant deaths began to rise. Since the 1990s, over 600 migrant bodies have been recovered from the Sonoran Desert of Arizona where de León conducts his research. Until his team conducted the first forensic experiments on the site, people could only speculate as to what was happening to the bodies of missing loved ones hoping to make it across the border. Now, de León can offer some helpful if heartbreaking data.


De León examines the human consequences of U.S. immigration policy in his book, “The Land of Open Graves”

De León’s archeological method, “desert taphonomy,” examines both the natural and cultural processes that determine what happens to a dead body. Anthropologists studying the body’s decomposition were initially interested only in natural factors like the climate and scavenging animals. Recently, they have realized that the decomposition process is as social as it is natural, and that the beliefs and attitudes of the agents involved affect what happens to human remains. According to this definition, a federal policy that leaves dead bodies to decompose in the Arizona desert is taphonomy, and so is the constellation of social, economic, and political factors that drive people to risk their lives crossing a treacherous, scorching desert on foot.

Guided by this new approach, de León studies social indicators to trace the roots of missing bodies, such as “migrant stations” made up of personal belongings left behind by migrant groups, which he says can at times be too big to analyze. De León and his team document these remnants with the same respect they pay to any traditional archeological trail. Items that many would dismiss as trash, such as gendered items including clothes and hygiene products, can reveal much needed information about the makeup of the migrant groups crossing the desert.

De León argues that human decomposition is a form of political violence, caused by federal policies like Prevention through Deterrence. His passion for his research is clearly not driven by mere intellectual curiosity; he is driven by the immense human tragedy of migrant deaths. He regularly conducts searches for missing migrants that families reach out to him about as a desperate last measure. Even though the missing individuals are often unlikely to be found alive, de León hopes to assuage the trauma of “ambiguous loss,” wherein the lack of verification of death freezes the grief process and makes closure impossible for loved ones.

The multifaceted nature of de León’s work has allowed him to inspire change across diverse realms. He has been impactful not only in academia but also in the policy and public worlds. His book, “The Land of Open Graves,” is accessible and poetic. He has organized multiple art exhibitions that translate his research to educate and empower the public. Through the success of these installations, he has come to realize that exhibition work is “just as valuable as a journal article.”

Backpacks left behind by undocumented immigrants in the exhibition,
“State of Exception.”

Hearing about the lives that de León has touched suggests that perhaps, all researchers should be unafraid to step outside of their labs to not only acknowledge but embrace the complex and critical political implications of their work.

Guest Post by Deniz Ariturk

‘Death is a Social Construct’

Of the few universal human experiences, death remains the least understood. Whether we avoid its mention or can’t stop thinking about it, whether we are terrified or mystified by it, none of us know what death is really like. Turns out, neither do the experts who spend every day around it.

Nobody who sees this guy reports back, so we can only guess.

This was the overarching lesson of Dr. Robert Truog’s McGovern Lecture at Trent Semans Center for Health Education, titled “Defining Death: Persistent Problems and Possible Solutions.”

Dr. Truog is this year’s recipient of the McGovern Prize, an award honoring individuals who have made outstanding contributions to the art and  science of medicine. Truog is a professor of medical ethics, anesthesiology and pediatrics and director of the center for bioethics at Harvard Medical School. He is intimately familiar with death, not only through his research and writings, but through his work as a pediatric intensive care doctor at Boston Children’s Hospital. Truog is also the author of the current national guidelines for end-of-life care in the intensive care unit.

In short, Truog knows a lot about death. Yet certain questions about the end of life remain elusive even to him. In his talk, he spoke about the biological, sociological, and ethical challenges involved in drawing the boundary between life and death. While some of these challenges have been around for as long as humans have, certain ones are novel, brought on by technological advancements in medicine that allow us to prolong the functioning of vital organs, mainly the brain and the heart.

The “irreversible cessation of function” of these organs results in brain and cardiac death, respectively. When both occur together, the patient is declared biologically dead. When they don’t, such as when all brain function except for those that support the patient’s digestive system is lost, for instance, the patient can be legally alive without any hope of recovery of consciousness.

Robert Truog teaching (Harvard photo)

According to Truog, it is in these moments of life after the loss of almost every brain function that we realize “death is a social construct.” This claim likely sounds counterintuitive, if not entirely nonsensical, as dying is the moment we have the least control over our biology. What Dr. Truog means, however, is that as technology continues to mend failures of biology that would have once been fatal, our social and philosophical understanding of dying, what he calls “person death” will increasingly separate from the end of the body’s biological function.  

Biologically, death is the moment when homeostasis, the body’s internal state of equilibrium including body temperature, pH levels and fluid balance, fails and entropy prevails.

Personhood, however, is not mere homeostasis. Dr. Truog cited Robert Veatch, ethicist at Georgetown University, in defining person death as the “irreversible loss of that which is essentially significant to the nature of man.” For those patients who are kept alive by ventilators and who have no hope of regaining consciousness, that essentially significant nature appears to have been lost.

Nonetheless, for loved ones, signs like spontaneous breathing, which can occur in patients in persistent vegetative state, intuitively feel like signs of life. This intuitive sign of life is what made Jahi McMath’s parents refuse an Oakland California hospital’s declaration that their daughter was dead. A ventilator kept the 13-year-old breathing, even though she had been declared brain-dead. After much conflict, McMath’s parents moved her to a hospital in New Jersey, one of just two states where families can reject brain death if it does not align with their religious beliefs. In the end, McMath had two death certificates that were five years apart.


Muslim cemetery at sunset in Marrakech Morocco.
(Mohamed Boualam via Wikimedia commons)

The emotional toll of such an ordeal is immense, as the media outcry around McMath made more than clear. There are more concrete, quantifiable costs to extending biological function beyond the end of personhood: the U.S. is facing an organ shortage. As people are kept on life support for longer periods, it is going to become increasingly difficult for patients who desperately need organs to find donors.

In closing, Dr. Truog reminded us that “in the spectrum between alive and dead, we set the threshold… Death is not a binary state, but a complex social choice.” People will likely continue to disagree about where we should set the threshold, especially as technology develops.

However, if we want to have a thoughtful discussion that respects the rights, wishes, and values of patients, loved ones, and everybody else who will one day face death, we need to first agree that there is a choice to be made.

Guest Post by Deniz Ariturk, Science & Society graduate student

Science Gets By With a Little Help From Its Friends

There are many things in life that are a little easier if one recruits the help of friends. As it turns out, this is also the case with scientific research.

Lilly Chiou, a senior majoring in biology, and Daniele Armaleo, a professor in the Biology Department had a problem. Lilly needed more funding before graduation to initiate a new direction for her project, but traditional funding can sometimes take a year or more.

So they turned to their friends and sought crowdfunding.

Chiou and Armaleo are interested in lichens, low-profile organisms that you may have seen but not really noticed. Often looking like crusty leaves stuck to rocks or to the bark of trees, they — like most other living beings — need water to grow. But, while a rock and its resident lichens might get wet after it rains, it’s bound to dry up.

If you’re likin’ these lichens, perhaps you’d like to support some research…

This is where the power of lichens comes in: they are able to dry to a crisp but still remain in a suspended state of living, so that when water becomes available again, they resume life as usual. Few organisms are able to accomplish such a feat, termed desiccation tolerance.

Chiou and Armaleo are trying to understand how lichens manage to survive getting dried and come out the other end with minimal scars. Knowing this could have important implications for our food crops, which cannot survive becoming completely parched. This knowledge is ever more important as climate becomes warmer and more unpredictable in the future. Some farmers may no longer be able to rely on regular seasonal rainfall.

They are using genetic tools to figure out the mechanisms behind the lichen’s desiccation tolerance[. Their first breakthrough came when they discovered that extra DNA sequences present in lichen ribosomal DNA may allow cells to survive extreme desiccation. Now they want to know how this works. They hope that by comparing RNA expression between desiccation tolerant and non-tolerant cells they can identify genes that protect against desiccation damage.  

As with most things, you need money to carry out your plans. Traditionally, scientists obtain money from federal agencies such as the National Science Foundation or the National Institutes of Health, or sometimes from large organizations such as the National Geographic Society, to fund their work. But applying for money involves a heavy layer of bureaucracy and long wait times while the grant is being reviewed (often, grants are only reviewed once a year). But Chiou is in her last semester, so they resorted to crowdfunding their experiment.

This is not the first instance of crowdfunded science in the Biology Department at Duke. In 2014, Fay-Wei Li and Kathleen Pryer crowdfunded the sequencing of the first fern genome, that of tiny Azolla. In fact, it was Pryer who suggested crowdfunding to Armaleo.

Chiou (left) and Armaleo in a video.

Chiou was skeptical that this approach would work. Why would somebody spend their hard-earned money on research entirely unrelated to them? To make their sales pitch, Chiou and Armaleo had to consider the wider impact of the project, rather than the approach taken in traditional grants where the focus is on the ways in which a narrow field is being advanced.

What they were not expecting was that fostering relationships would be important too; they were surprised to find that the biggest source of funding was their friends. Armaleo commented on how “having a long life of relationships with people” really shone through in this time of need — contributions to the fund, however small, “highlight people’s connection with you.” That network of connections paid off: with 18 days left in the allotted time, they had reached their goal.

After their experience, they would recommend crowdfunding as an option for other scientists. Having to create widely understood, engaging explanations of their work, and earning the support and encouragement of friends was a very positive experience.

“It beats writing a grant!” Armaleo said.

Guest Post by Karla Sosa, Biology graduate student


Understanding the Universe, Large and Small

From the miniscule particles underlying matter, to vast amounts of data from the far reaches of outer space, Chris Walter, a professor of physics at Duke, pursues research into the great mysteries of the universe, from the infinitesimal to the infinite.

Chris Walter is a professor of physics

As an undergraduate at the University of California at Santa Cruz, he thought he would become a theoretical physicist, but while continuing his education at the California Institute of Technology (Caltech), he found himself increasingly drawn to experimental physics, deriving knowledge of the universe by observing its phenomena.

Neutrinos — miniscule particles emitted during radioactive decay — captured his attention, and he began work with the KamiokaNDE (Kamioka Nucleon Decay Experiment, now typically written as Kamiokande) at the Kamioka Observatory in Hida, Japan. Buried deep underground
in an abandoned mine to shield the detectors from cosmic rays and submerged in water, Kamiokande offered Walter an opportunity to study a long-supposed but still unproven hypothesis: that neutrinos were massless.

Recalling one of his most striking memories from his time in the lab, he described observing and finding answers in Cherenkov light – a ‘sonic boom’ of light. Sonic booms are created by breaking the sound barrier in air.  However, the speed of light changes in different media – the speed of light in water is less than the speed of light in a vacuum — and a particle accelerator could accelerate particles beyond the speed of light in water.  Walter described it like a ring of light bursting out of the darkness.

In his time at the Kamioka Observatory, he was a part of groundbreaking neutrino research on the mass of neutrinos. Long thought to have been massless, Kamiokande discovered the property of neutron oscillation – that neutrinos could change from flavor to flavor, indicating that, contrary to popular belief, they had mass. Seventeen years later, in 2015, the leader of his team, Takaaki Kajita, would be co-awarded the Nobel Prize for Physics, citing research from their collaboration.

Chris Walter (left) and his Duke physics collaborator and partner, Kate Scholberg (right), on a lift inside the Super-Kamiokande neutrino detector.

Neutrinos originated from the cosmic rays in outer space, but soon another mystery from the cosmos captured Walter’s attention.

“If you died and were given the chance to know the answer to just one question,” he said, “for me, it would be, ‘What is dark energy?’”

Observations made in the 1990s, as Walter was concluding his time at the Kamioka Observatory, found that the expansion of the universe was accelerating. The nature of the dark energy causing this accelerating expansion remained unknown to scientists, and it offered a new course of study in the field of astrophysics.

Walter has recently joined the Large Synoptic Survey Telescope (LSST) as part of a 10-year, 3D survey of the entire sky, gathering over 20 terabytes of data nightly and detecting thousands of changes in the night sky, observing asteroids, galaxies, supernovae, and other astronomical phenomena. With new machine learning techniques and supercomputing methods to process the vast quantities of data, the LSST offers incredible new opportunities for understanding the universe. 

To Walter, this is the next big step for research into the nature of dark energy and the great questions of science.

A rendering of the Large Synoptic Survey Telescope. (Note the naked humans for scale)

Guest Post by Thomas Yang, NCSSM 2019

Pursuing Smell as a Path Into the Brain

Although the mystery of how the brain works and grows is a massive puzzle to figure out, the hope is that piece by piece, we can start to work towards a better understanding.

A person’s (or fly’s) sense of smell, or their olfactory system, is one of these pieces.

Though olfaction may not be the first part of the nervous system to cross someone’s mind when it comes to how we understand the brain, it is actually one of the most complex and diverse systems of an organism, and there’s a lot to understand within it, says Pelin Volkan, an assistant professor of biology and neurobiology and investigator in the Duke Institute for Brain Sciences.

Pelin Volkan in her lab.

Volkan and her lab have been working with fruit flies to try to unfold the many layers of the olfactory system, or the, “giant hairball,” as Volkan calls it.

Though she has been doing this work for years, she didn’t begin with an interest in neuroscience. Volkan was more interested in genetics in college and didn’t really start exploring neurobiology and development until her master’s degree at a Turkish university, when she worked with rats.

Not keen on working with rodents as model organisms but sticking with them anyway, she moved from Turkey to UNC to get her PhD, where she strayed away from neuroscience into molecular biology and development. Eventually, she realized she had a stronger passion for neuroscience, and ended up doing a postdoc at a Howard Hughes Medical Institute lab at UCLA for six years.

There, she became interested in receptors and neuronal wiring in the brain, propelling her to come to Duke and continue research on the brain’s connections and development.

One of the main reasons she loves working with the olfactory system is the many different scientific approaches that can be used to study it. Bouncing between using genetics, evolution, development, molecular biology,and other areas of study to understand the brain, her work is never static and she can take a more interdisciplinary approach to neuroscience where she is able to explore all the topics that interest her.

 Volkan says she has never had to settle on just one topic, and new questions are always arising that take her in directions she didn’t expect, which is what makes her current work particularly enjoyable for her.

“You have your stories, you close your stories, but then new questions come into play,” Volkan says. “And you have no choice but to follow those questions, so you just keep on going.”

And isn’t that what science is all about?

Guest Post by Angelina Katsanis, NCSSM 2019

An Indirect Path to Some Extreme Science

Dr. Cynthia Darnell’s path to becoming a postdoctoral researcher in the Amy Schmid Labat Duke University was, in her words, “not straightforward.”

Dr. Cynthia Darnell is a Postdoc at Duke, studying ‘extremophiles.’

At the start of her post-high school career, Darnell had no clue what she wanted to do, so she went to community college for the first two years while she decided. She had anticipated that she was going to go to college as an art major, but had always enjoyed biology.

While at community college she took a couple biology courses. She transferred to another college where she took a course in genetics and according to her, “it blew my mind.” While at the college she took a variety of different biology courses. Her genetics professor’s wife was looking for a lab technician in the microbiology lab she ran. After Darnell worked there for two years, she decided to go to graduate school and had a whole list of places/universities she could attend.

However, after going to a conference in Chicago and meeting her future graduate advisor, Darnell made the decision to go to Iowa for six years of Graduate school. She ended up in the Schmid Lab at Duke University for her “postdoc” after her boss had recommended the lab to her.

Previously, Darnell had done research on the connectedness of genetic pathways in halophilic extremophiles — bacteria that lived in extremely salty conditions. She developed projects to understand the how their genetic network sends and receives signals.

Darnell is continuing that research at Duke while also looking at the effects of different environmental factors on growth and the genetic network using mutant halophilic extremophiles.

Darnell with some plated archaebacteria in her Duke lab

There are generally three different paths Darnell’s day in the lab can take. The first path is a bench day. During a bench day, she will be doing experiments looking at growth curves, microscopes or RNA extracts. The second path is a computational day in which she will do sequencing to look at gene expression. The third option is a writing day in which she spends a majority of her time writing up grants, papers, and applications.

Dr. Darnell wishes to open up her own lab in the future and serve underprivileged students in underserved areas. She wishes to do more research in the area of archaebacteria because of how under researched and underrepresented it is in the scientific community. Dr. Darnell hopes to study more about the signaling networks in archaebacteria in her own lab someday.

She especially wishes to be able to open her lab up to underprivileged students, exposing them to the possibilities of research and graduate programs.

Guest Post by Tejaswi Siripurapu, NCSSM 2019

Finding Success in Science and the Economic Brain

How can we understand how humans make decisions? How do we measure the root of motivation?

Gregory Samanez-Larkin, an assistant professor in Psychology & Neuroscience at Duke, uses neuroeconomic and neuromarketing approaches to seek answers to these questions. He combines experimental psychology and economics with neuroimaging and statistical analysis as an interdisciplinary approach to understanding human behavior.

Gregory Samanez-Larkin 

From studying the risk tendencies in different age groups to measuring the effectiveness of informative messages in health decision-making,Samanez-Larkin’s diverse array of research reflects the many applications of neuroeconomics.

He finds that neuroeconomic and neurofinance tools can help spot vulnerabilities and characteristics within groups of people.

Though his Motivated Cognition & Aging Brain Lab at Duke, he would like to extend his work to finding interventions that would encourage healthier or optimal decision-making. Many financial organizations and firms are interested in these questions.

While Samanez-Larkin has produced some very influential research in the field, the path to his career was not a straightforward one.Raised in Flint, Michigan, he found that the majority of people around him were not very career-oriented. He found a passion for wakeboarding, visual art, and graphic design.

As an undergraduate at the University of Michigan-Flint, he was originally on a pre-business track. But after taking various psychology courses and assisting in research, Samanez-Larkin was captivated by the excitement and the advances in brain imaging at the time.

However, misconceptions about the field caused him to question whether or not going into research was the right fit, leading him to seek jobs in marketing and advertising instead. But in job interviews, he ended up questioning the methods and the ways companies explained the appeal of different ways of advertising. Realizing that he really enjoyed asking questions and evaluating how things work, he reconsidered pursuing science.

After a series of positive experiences in a research position in San Francisco, Samanez-Larkin began his graduate studies at Stanford University. The growing field of neuroeconomics — which combined his diverse set of interests in neuroscience, psychology, and economics — continued the “decade-long evolution” of Samanez-Larkin’s career.

Samanez-Larkin’s experiences in his career journey are reflected strongly in his approach to teaching.

“I feel like my primary responsibility is to help people become successful,” he says, as we sit comfortably on the sofas in his office.“Everything I do is for that.”

In his courses, Samanez-Larkin emphasizes the need to think critically and evaluate information, consistently asking questions like, “How do we know something works or not? How do I know how to evaluate if it works or not? How can I become a good consumer of scientific information?”

In his teaching, Samanez-Larkin hopes to set students up with usable, translatable skills that are applicable to any field.

Samanez-Larkin also hopes to support his students in the same way he received support from his previous mentors. “It’s cool to learn about how the brain works, but ultimately, I’m just trying to help people do something.”

Guest Post by Ariba Huda, NCSSM 2019

Tiny Bubbles of Bacterial Mischief

Margarethe (Meta) Kuehn studies vesicles — little bubbles that bud off bacterial membranes. All sorts of things may be tightly packed into these bubbles: viruses, antigens, and information a bacterium will need to make cells vulnerable to infection.

But why do bacteria produce these small membrane vesicles in the first place? Why not spread out to nearby cells themselves?

Jenny and Meta met last month on the Duke campus.

“The short answer is that we don’t know yet,” explains Kuehn, an associate professor of biochemistry at Duke. “But we speculate that it is due to their small size. These vesicles, which serve as delivery ‘bombs,’ can pass through pores that are too small for bacteria to fit through.”

Originally a chemistry major, Kuehn always had an interest in biochemistry. As an undergraduate, she worked in protein purification and then in the infectious disease division of a children’s hospital. There, she learned about pathogenic bacteria and how they secrete proteins to give themselves access to host cells.

Kuehn’s lab studies the mysterious world of bacterial vesicle production,focusing on the genetic, biochemical, and functional features of vesicles. So far, they have identified specific proteins and genes involved in the vesiculation process.

With a fine filter, they showed that vesicles can fit through holes to reach mammalian cells where a bacterium cannot.

Kuehn wonders why the bacteria don’t just use soluble proteins, which are even smaller than vesicles. They must have some reason for preferring the cell’s vesicles. Currently, they believe that vesicles can serve as nice packages — a whole bolus of information delivered together.

Basic anatomy of a vesicle, a bubble-like  membrane-bound package used by cells to move things around.

Not only will this new insight into extracellular vesicles of gram-negative bacteria aid in identifying new medicines, vesicles are also being used for vaccine delivery.

“They are really good antigen vehicles,” reveals Kuehn, “The more we know how they are made, the better we can design effective vaccines for humans.”

According to Kuehn, the amazing part about studying these pathogens is that, “You are never done. You never know it all. Every single pathogen, they each do things differently.” What keeps Kuehn going, she explains, is that the search never ends.

“There is never really a defined end point; you have to come to grips with the fact that you will never know that whole answer.”

Guest Post by Jenny Huang, NCSSM 2019

Biology by the Numbers

Michael C. Reed was trained as a pure mathematician, but from the start, he was, as he explained to me, a “closet physiologist.” He’s a professor of mathematics at Duke, but he’s always wondered how the body works.

Michael Reed in his office

Reed explains an example to me: women have elbows that are bent when their arms are straightened, but men do not. He rationalized his own explanation: women have wide hips and narrow shoulders; their bodies are designed so their arms don’t knock into their sides when they walk. (That basically ended up being the answer.)

Still, Reed never really explored his interest in physiology until he was 40 years old, when he realized that if he wanted to explore something, he should just do it. Why not? He had tenure by that point, so it didn’t really matter what his colleagues thought. He was interested in physiology, but was a mathematician. The obvious answer was mathematical biology.

Now he uses mathematics to find out how various physiological systems work.

In order to decide on a research project, he works with a biologist, Professor Fred Nijhout. They meet for two hours every day and work together. They have lots of projects, but they also just talk science sometimes. That’s how they get their ideas, mainly focusing on things in cell metabolism that have to do with important public health questions.

Reed has been investigating dopamine and serotonin metabolism in the brain, in a collaborative project with Nijhout and Dr. Janet Best, a mathematician at The Ohio State University.

Maybe better math is going to help us understand the human brain

As he explained to me, the brain isn’t like a computer; you don’t know how it works and there are a lot of systems in play. Serotonin is one of them. Low serotonin concentration is thought to be one of the causes of depression. There’s a biochemical network that synthesizes, packages, and transfers serotonin in the brain.

He told me that his work consists of making mathematical models for systems like this that consist of differential equations for concentrations of different chemicals. He then experiments with the system of differential equations to understand how the system works together. It’s not really something you can learn by having it explained to you, he told me. You have to learn through practice.

In a way, biology doesn’t seem like it would be the most compatible science, especially with math. But as Reed explained to me, “Math is easy because it’s very orderly and organized. If you work hard enough, you can understand it.” Biology, on the other hand, “is a mess.”

Everything in biology is linked to everything else in a system of connectedness that ends up all tangled together, and it can be hard to identify how something happens in the human body. But Reed applies math – an organized construct – to understand biological systems.

In the end, Reed does what he does because it’s how we — as human beings — work. He has no regrets about the choices he’s made at all.Mathematical biology seems to be his calling — he’s more interested in understanding how things work, and that’s what he does when he works.

Or rather, he doesn’t really work; because, as he told me,“try to find something to do that you really like, and are passionate about,because if you do, it won’t seem like work.” Reed doesn’t see coming into work as a struggle. He’s excited about it every single day and “it’s because you want to do it, it’s fun.”

Guest Post by Rachel Qu, NCSSM 2019

Creating a Gender Inclusive Campus: Reflecting on “Becoming Johanna”

Following Duke’s Oct. 4 screening of the 2016 documentary, “Becoming Johanna,” students, faculty, staff and community members in the audience were eager to ask questions of the panel, which included the film’s director/producer, Jonathan Skurnik, and even the film’s transgender subject, Johanna Clearwater herself.

Johanna Clearwater pictured with the film’s director/producer Jonathan Skurnik

The film showcases the heart-wrenching and empowering story of a latina transgender teenager growing up in Los Angeles. After beginning her transition at age 16, Johanna faced the rejection of her mother and intense opposition from school authorities. Soon after, she was abandoned by her family and entered the foster care system, where she was lucky to find a much more supportive family environment. After changing schools, she connected on a personal level with her school principal, Deb, who helped Johanna find a community where she felt understood and supported. This success story of self-advocacy and resilience in the face of abandonment and exclusion highlights the daily struggles of many transgender teenagers. For these individuals, becoming comfortable in their own skin is the end of a long and demanding journey, often made even more difficult by the ignorance and cruelty of society. Finding and following the path to authentic expression takes a huge amount of courage, as this route is often layered with adversity.

Before the screening, Duke clinical social worker Kristin Russel put the film in context for the audience, inviting our reflection with her words: “A well told story… is really what can help us bridge the unfortunate distance that can remain uncrossed and misunderstood if such stories are silenced.” Chief Diversity Officer for the School of Medicine Judy Seidenstein then introduced the film and facilitated the panel discussion.

After the film, the audience was invited to join the conversation. Questions came from every demographic of the crowd, and provided a nice sampling of opinions. Many audience members pointed out how important these conversations are, especially in a conservative state like North Carolina that has so recently struggled with the protection of LGBTQ rights with last year’s ‘Bathroom Bill.’ Specifically, the questions and comments from hospital staff and faculty from the School of Medicine gave a nice insight into the direction of support on campus for sexual and gender diversity.

Audience members reflect on the film with those nearby

Cheryl Brewer, the Associate Vice President of Nursing, told the room about the inclusion work that she is leading in the School of Nursing. They have developed a new core curriculum to promote acceptance and support of gender and sexual diversity through situational trainings. She noted that there have been some people that struggle with implicit biases more than others, but that the program has been a success overall.

Russell spoke briefly about her work with transgender and gender diverse youth in the clinical setting and emphasized the importance of having family support. Legally and psychologically, maintaining family involvement and support of patients is essential for treatment.

Events like this one reflect ongoing efforts to support sexual and gender diversity within and beyond Duke, by promoting conversation and increasing empathy through storytelling. Duke is well on the way to becoming a much more inclusive community, where everyone can feel a sense of belonging.

Guest post by Anne Littlewood

Page 1 of 11

Powered by WordPress & Theme by Anders Norén