Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Environment/Sustainability Page 2 of 15

Is The World In Crisis?

According to a recent NPR/Ipsos poll, nearly 70% of Americans believe that U.S. democracy is “in crisis and at risk of failing.” Two out of every three respondents also agree that U.S. democracy is “more at risk” now than it was a year ago. 

These fears are not unfounded. For the past three years, the United Nations Human Development Report has issued increasingly grave warnings for the state of the world. The warnings focus specifically on the Anthropocene, rising inequality, and growing polarization, conveying themes of both uncertainty and hope.

Pictured above: The 2022 Human Development Report.

On March 22nd, the director of the United Nations Human Development Report Office, Dr. Pedro Conceição, discussed his perspective at Duke University. The fireside chat was hosted by the Duke Center for International Development and the South-North Scholars, and was moderated by Dr. Anirudh Krishna.

“People should be able to live their lives at their full potential,” Dr. Conceição began. “When you look at the world and see how people are living their lives compared to how they should be living their lives, you get the need for human development.”

First introduced in 1990, the Human Development Report focuses on improving the quality of human life, rather than just the economy in which human beings live. The report emphasizes three pillars: people, opportunity, and choice. “Living life to your full potential is essentially about human freedom,” Dr. Conceição said. It is these freedoms that are at risk as the conditions in the Human Development Report worsen.

Credit: 2021/22 United Nations Human Development Report.

“We need to dig more deeply into why we aren’t taking action,” Conceição maintains. He explains that current efforts to spark change are too factual. Governments and corporations are focused too heavily on raising awareness and should pivot to trying to take tangible steps.

Political division is also a major source of stagnation, as those who lie on either side of the spectrum tend to be more insecure in their views of the future. Because of these obstacles, it requires a “more complex and unusual way of trying to understand these problems.”

The report has citizens from around the world concerned about potential declines in the quality of well-being. But Dr. Conceição asserts that the reports are meant to communicate hope.

“It’s precisely because we are having this level of uncertainty that this becomes even more relevant,” he said. In fact, it is this uncertainty that the report will build off of for future publications. The literature will dig deeper into novel areas of uncertainty, to figure out the best way forward.

An analysis of the current global uncertainties. Credit: 2021/22 United Nations Human Development Report.

Dr. Conceição urges students to invest in the United Nations and its initiatives, as it is crucial in creating a better outlook on the future. As Abraham Lincoln once expressed, “The most reliable way to predict the future is to create it.”

Want to get involved with the United Nations? Click here!

Written by: Skylar Hughes, Class of 2025

Warning: Birding Can Change You. Let It.

The Wild Ones, a student organization focused on enjoying and learning about nature, recently went to Flat River Waterfowl Compound to look for birds and my personal nemesis.

I have a nemesis (a bird that defies my searching). Actually, I have several, but I have been preoccupied with this particular nemesis for months.

I have seen an evening grosbeak exactly once, in a zoo, which emphatically does not count. For years, I have been fixated on-and-off (mostly on) with the possibility of seeing one in the wild.

Photo of a male evening grosbeak.
Evening Grosbeak” by sedge23 is licensed under CC BY 2.0.

They have thick, conical beaks. The males are sunset-colored. (But good luck finding one at sunset, even though the first recorded sighting supposedly happened at twilight, hence their name.) I daydream about flocks of them descending on my bird feeders at home or wandering onto Duke’s campus. That hasn’t happened yet (unless it has happened while I have not been watching, an excruciating possibility I will simply have to live with).

Evening grosbeaks usually live in Canada and the northern U.S., but they are known to irrupt into areas farther south. Irruptions often occur in response to lower supplies of seeds and cones in a bird’s typical range, making it possible to predict bird irruptions, at least if you’re the famous finch forecaster. (Fun fact: “irrupt” literally means “break into,” whereas “erupt” means “break out.”)

Breaking news: The grosbeaks are in Durham, and they have been since December. I will wait while you perform any necessary reactions, including screaming, jumping up and down in delight, charging outside because you simply have to go find them right now, or telling me I must be mistaken.

I am not mistaken. There is a flock of evening grosbeaks overwintering at Flat River Impoundment, 11.8 miles from Duke University. I know this because I get hourly rare bird alerts by email, and I have been receiving emails about evening grosbeaks nearly every day for almost three months. Put another way, evening grosbeaks have been actively and no doubt intentionally taunting me for weeks on end.

Adam Kosinski, Wild Ones co-president, with binoculars.

Wild Ones, a student organization I’m involved with, had been thinking of organizing a birding trip. For reasons I will not even attempt to deny, I suggested Flat River Waterfowl Impoundment. Last Sunday, seven undergraduates drove there, armed with field guides and binoculars and visions of evening grosbeaks bursting into sight (okay, maybe that was just me).

Flat River Waterfowl Impoundment.
Photo by Adam Kosinski.

The morning was chilly but sunny. Flat River is a gorgeous, swampy place full of small ponds and stretches of long grass edged with trees. As soon as we got there, we were serenaded with birdsong: the high, musical trill of pine warblers, the haunting coo of mourning doves, lilting Carolina wren songs, and squeaky-dog-toy brown-headed nuthatch calls.

Photo by Adam Kosinski.

It wasn’t long before people got to experience the frustrating side of birding. We were admiring a sparrow in a ditch, trying to guess its identity. Someone pulled out a field guide and flipped through the sparrow section only to turn back to the bird and find it gone. Birds can fly. But fortunately, we’d collectively noticed enough field marks to feel reasonably confident identifying it as a swamp sparrow.

A white-throated sparrow, one of several that was feeding on the buds of this tree. Note the white throat and yellow lores.
Photo by Lydia Cox, Wild Ones member. (We are not related, if you’re wondering.)

We found two other sparrow species later: song sparrows and white-throated sparrows. Sparrows tend to be small, brownish, and streaky, but certain features can help distinguish some of the common species around here. I’m personally not very familiar with the swamp sparrow, but it has a rusty cap and gray face. The song sparrow has brown stripes on its head, extensive streaking on its underside, and a dark spot on its breast. The white-throated sparrow has striking black-and-white stripes on the top of its head, yellow lores on its face (the spot in front of the eye), and yes, a white throat. (Just don’t rely too much on bird names for identification. Red-bellied woodpeckers definitely have red heads but usually only have red bellies if you’re rather imaginative, but beware—they’re still red-bellied, not red-headed woodpeckers. Meanwhile, there are dozens of warblers with yellow on them, but only one of them is a yellow warbler. Nashville warblers only pass through Nashville during migration, and American robins aren’t robins at all.)

A Cooper’s hawk with prey between its talons. Note the gray wings, the red barring on the bird’s underside, the dark bands on its tail, and the red eye.
Photo by Lydia Cox.

We saw Carolina chickadees flitting through trees, an Eastern phoebe doing its characteristic tail-wagging, and a Cooper’s hawk feeding on prey. Then, thrillingly, we spotted a bald eagle soaring through the sky. The bald eagle, America’s national bird since 1782, was in danger of extinction for years, largely due to the insecticide DDT, which made their eggs so thin that even being incubated by their parents could make them crack. However, the bald eagle was removed from the endangered species list in 2007, and populations have continued to increase.

A bald eagle in flight.
Photo by Lydia Cox.

Not long after the eagle sighting, we saw another flying raptor: an osprey. In fact, it must have been a good day for raptors because by the end of our trip we had recorded one osprey, two Cooper’s hawks, three bald eagles, and two red-tailed hawks.

We also saw a lot of birders—perhaps two dozen others, maybe more, not counting our own group. Each time we passed a group going in the opposite direction, I asked them if they’d found the grosbeaks.

A bald eagle nest.
Photo taken with my phone through my binoculars, a technique that is slowly teaching me a modicum of patience.

I think everyone I asked had seen them, and they were all eager to point us in the right direction. Birders like to use landmarks like “by the eagles’ nest” and “the fifth pine on the right” and  “past the crossbills.” We found the eagles’ nest, with help from some of the local birders. We think we found the fifth pine on the right, but there were a lot of pines there, so we’re not sure.

We did not find the red crossbills, another irruptive bird species overwintering here this year. (Crossbills are aptly named. The tips of their mandibles really do cross, which helps them access seeds inside cones.)

Red crossbills, another irruptive bird species, have also been overwintering at Flat River Waterfowl Impoundment, but Wild Ones did not see them.
Red Crossbills (Male)” by Elaine R. Wilson, www.naturespicsonline.com is licensed under CC BY-SA 3.0.

We found the spot where the evening grosbeaks had most recently been seen — just twenty minutes before we got there, according to the people we were talking to. We waited. We scrutinized the pine trees. We watched red-tailed hawks and bald eagles circle high above us. We admired the eagles’ nest, a huge collection of sticks high in a pine tree.

Adam Kosinski and Abby Saks, making sure there were no birds hiding underwater. (They were actually looking at interesting water creatures like crayfish and tadpoles.)

Would you like to guess what we did not find? My nemesis. Because the evening grosbeaks have devious minds and clearly flew all the way to Durham with the sole intent of hiding from me, dodging me, flying away as soon as I approached, and flying back again as soon as I was gone. (No, really. Other people reported them at Flat River that same day, both before and after our trip there.)

From left: Ethan Rehder, Barron Brothers, Sophie Cox, Gurnoor Majhail (Wild Ones co-president), and Lydia Cox.
Photo by Adam Kosinski.

Birding can be intensely frustrating. It can plant images in your mind that will haunt you and taunt you for the rest of your life. Like, for instance, the tiny blue bird I caught a brief glimpse of in the trees one early morning in Yellowstone. For years, I wondered if it could have been a cerulean warbler, but cerulean warblers don’t live in the western U.S. Or let’s talk about the green bird—yes, I swear it was green; no, I can’t prove it—that came to my bird feeders several years ago and never came back. Not while I was watching, anyway. The only thing I can think of for that one is a female painted bunting, but painted buntings aren’t usually in upstate South Carolina. (If my local volunteer eBird reviewer in South Carolina ever happens to read this, I promise I won’t report either of those mystery sightings to eBird.) Or, of course, the evening grosbeaks that flew away twenty minutes before we arrived.

Birding can also be thrilling, meditative, and by all accounts wonderful. Yes, that little blue bird in Yellowstone and the maybe-green one in my backyard are branded in my memory, as are countless more moments of maybe and almost and what if? I will never know what they were. I will probably never get over it.

But there are other moments that stick in my mind just as clearly. The bald eagle soaring above us on this Wild Ones trip. The black-capped chickadee that landed on my finger years ago while my brother and I rested our hands on a bird feeder and waited to see what would happen. My first glimpse of a black-throated blue warbler (I am so proud of whoever named that bird species), chasing an equally tiny Carolina chickadee in my backyard.

Warbler illustrations by James Ellsworth De Kay, a zoologist who described hundreds of animal species in the 19th century. From top to bottom: black-throated blue warbler, Cape May warbler, and Nashville warbler.
131. The Black-throated Blue Warbler (Sylvicola canadensis) 132. He Cape-May Warbler (Sylvicola maritima) 133. The Nashville Warbler (Syvicola ruficapilla) illustration from Zoology of New york (1842 – 1844) by James Ellsworth De Kay (1792-1851).” by Free Public Domain Illustrations by rawpixel is licensed under CC BY 2.0.

The Cape May warbler I saw with a close friend in a small field covered in purple wildflowers. The first time I heard the loud, ringing Teacher-teacher-teacher! song of the ovenbird. A blackpoll warbler, the first I’d ever seen, in a grove of trees in a swampy field that only birders seem to find reason to visit.

The moment two Carolina wrens took food from my hand for the first time. Prothonotary warblers (another nemesis bird) practically dripping from the trees on a rainy, buggy hike along a boardwalk. The downy woodpecker that landed on my gloved hand, apparently too impatient to wait for me to finish what I was doing with the suet feeder, and pecked at the suet with that sharp beak, her black tongue flicking in and out, her talons clinging to me with a trust that brought tears to my eyes.

Birding can change you. It can make your world come alive in a whole new way. It can make traveling somewhere new feel all the more magical — a new soundscape, new flashes of colors and patterns, a new set of beings that make a place what it is. In the same way, birding can make home feel all the more like home. Even when I can’t name all the birds that are making noise in my yard, there is a familiarity to their collective symphony, a comforting sense of “You are here.” I encourage you to watch and listen to birds, too, to join the quasi-cult that birding can be, to trek through somewhere wet and dark when the sky is just beginning to lighten—or to simply step outside, wherever you are, and listen and watch and wait right here and right now. You don’t even need to know their names (though once you start, good luck stopping). And you certainly don’t need a nemesis bird. In fact, your birding experience will be calmer without one. But that might not be up to you, in the end. Nemesis birds have minds of their own.

Post by Sophie Cox, Class of 2025

Why There Has Never Been Infrastructure ‘Justice for All’

Since coming to Duke nine years ago, I gained the realization that all rural communities are virtually the same… the infrastructure neglect is still the same.”

Catherine Coleman Flowers

Catherine Coleman Flowers is no stranger to action. Since the start of her career, she’s accomplished everything from working as the Vice Chair of the White House Environmental Justice Advisory Council to founding the Center for Rural Enterprise and Environmental Justice. An internationally recognized advocate for public health, Flowers has worked tirelessly to improve water and sanitation conditions across rural America.

Pictured above: Catherine Coleman Flowers
Credit: Credit: John D. and Catherine T. MacArthur Foundation

On February 9th, Duke University students got to hear from Flowers in a powerful seminar sponsored by Trinity College. A Practitioner in Residence at the Nicholas School of the Environment, Flowers discussed her incredible activism journey.

“I became an activist very, very young,” she said. Her family heritage nurtured her love for the environment early on, as well as her home state of Alabama. In high school, she began to read about the sanitation crisis happening in rural Alabama, Lowndes County in particular.

“I learned that poor people (there) were being targeted for arrest because they couldn’t afford sanitation systems,” Flowers said. The poverty rate in this historically Black county is double the national average, and sewage treatment is not provided for many residents. For those who can afford sanitation systems, they are often far from adequate, such as poorly maintained septic tanks. Issues like exposure to tropical parasites and improper installations are rampant throughout the county.

A man in Lowndes County assessing his septic tank. Credit: The Associated Press

“It builds upon the structural inequalities that make sure these areas remain poor,” Flowers said. Across the US, millions of rural areas face the same complications. From places like ‘Cancer Alley’ in New Orleans to the city of Mount Vernon in New York, sanitation systems are failing miserably.

“We saw families that couldn’t live in their houses half the time because of the sewage that was running into their home,” Flowers explained. Unsurprisingly, almost all of the areas facing these issues are home to minority communities. “The narrative used to be, ‘they don’t know how to maintain it,’ but that isn’t true. The technology isn’t working at all.

In November of 2021, Flowers filed the first-ever civil rights complaint against sanitation in Lowndes County. Thanks to her, as well as other prominent community activists, the issue garnered nationwide attention. In less than a year, the county received a $2.1 million grant from the USDA to begin solving the sewage crisis. Similar funding efforts have also been seen in Mount Vernon. “That is an example of what a solution can look like,” Flowers said.

“That’s the kind of power that you have as a Duke student,” Flowers said in closing. With almost one million dollars available for student funding annually and access to one of the greatest networks in the world, Duke students are in a remarkable position to make a change, she said. In North Carolina, counties like Duplin and Halifax are in need of outside help. “Growing up in the computer age, you can bring those skills needed to assist those applying for funds.”

Duke’s Environmental Justice Network

So, what can you do? Above all, Flowers emphasizes the importance of leading from behind. ” Don’t go in the community and try to lead from the front… People from the community need to be involved from the design to the implementation.”

As students, our assistance is needed in the form of support. From assisting with grant applications, to utilizing our network access to spread the word, there are so many ways to get involved. True equity is found not when we speak for the community, but rather when we strengthen the community’s ability to speak for itself.

Click here to get in contact with Ms.Catherine Coleman Flowers, and click here for more information about work you can do in the local community!

Post By Skylar Hughes, Class of 2025

Recovery, Resilience, and Coexistence: Nature-based Solutions on the Coast

When it comes to balancing the needs of humans and the needs of nature, “Historically it was ‘develop or conserve’ or ‘develop or restore,’” says Carter Smith, Ph.D., a Lecturing Fellow in the Division of Marine Science & Conservation who researches coastal restoration.

However, according to Brian Silliman, Ph.D., Rachel Carson Distinguished Professor of Marine Conservation Biology, “We are having a new paradigm shift where it’s not just… ‘nature over here’ and ‘humans over here.’”

Instead, conservation initiatives are increasingly focusing on coexistence with nature and ecological resilience, according to this panel discussion of marine science experts during Duke Research and Innovation Week 2023.

Nature-based solutions — protecting and restoring natural shoreline habitats — have a proven role in protecting and restoring coastal ecosystems. According to the International Union for Conservation of Nature (IUCN), “Nature-based solutions… address societal challenges effectively and adaptively, simultaneously benefiting people and nature.”

The panel, moderated by Andrew J. Read, Ph.D., Stephen A. Toth Distinguished Professor of Marine Biology and Professor of Marine Conservation Biology, also included Brian Silliman, Carter Smith, and Stephanie Valdez, a Ph.D. Student in Marine Science & Conservation.

Living shorelines can help protect coastal ecosystems from storms while also offering benefits for climate and conservation. Photos by Carter Smith.

According to Smith, nature-based solutions can “leverage nature and the power of healthy ecosystems to protect people” while also preserving biodiversity and mitigating climate change. She spoke about living shorelines as an effective and ecologically responsible way to protect coastal ecosystems.

“The traditional paradigm in coastal protection is that you build some kind of hard, fixed structure” like a seawall, Smith said, but conventional seawalls can have negative effects on biodiversity, habitats, nutrient cycling, and the environment at large. “In this case, coastal protection and biodiversity really are at odds.”

After multiple hurricanes, living shorelines had significantly less visible damage or erosion than sites with conventional hardscape protection, like seawalls.

Nicholas Lecturing Fellow Carter Smith

That’s where living shorelines come in. Living shorelines incorporate plants and natural materials like sand and rock to stabilize coastal areas and protect them from storms while also creating more natural habitats and minimizing environmental destruction. But “if these structures are actually going to replace conventional infrastructure,” Smith says, it’s important to show that they’re effective.

Smith and colleagues have studied how living shorelines fared during multiple hurricanes and have found that living shorelines had significantly less “visible damage or erosion” compared to sites with conventional storm protection infrastructure.

After Hurricane Matthew in 2016, for instance, both natural marshes and conventional infrastructure (like seawalls) lost elevation due to the storm. Living shorelines, on the other hand, experienced almost no change in elevation.

Smith is also investigating how living shorelines may support “community and psychosocial resilience” along with their benefits to biodiversity and climate. She envisions future community fishing days or birdwatching trips to bring people together, encourage environmental education, and foster a sense of place.

PhD student Stephanie Valdez then spoke about the importance of coastal ecosystems.

Blue carbon ecosystems,” which include sea grasses, marshes, and mangroves, provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon, she said. These ecosystems can bury carbon much faster than terrestrial ecosystems, which has important implications when it comes to climate change.

In the atmosphere, carbon dioxide and other greenhouse gasses contribute to global warming, but plants pull carbon dioxide out of the air during photosynthesis and convert it to carbohydrates, releasing oxygen as a byproduct. Therefore, ecosystems rich in fast-growing plants can serve as carbon sinks, reducing the amount of atmospheric carbon, Valdez explained.

Unfortunately, blue carbon ecosystems have suffered significant loss from human activities and development. We’ve replaced these wild areas with farms and buildings, polluted them with toxins and waste, and decimated habitats that so many other creatures rely on. But given the chance, these places can sometimes grow back. Valdez discussed a 2013 study which found that seagrass restoration led to a significantly higher carbon burial rate within just a few years.

Sea grasses, marshes, and mangroves provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon.

PhD Student Stephanie Valde

Valdez also talked about the importance of recognizing and encouraging natural ecological partnerships within and between species. Humans have taken advantage of such partnerships before, she says. Consider the “Three Sisters:” beans, corn, and squash, which Native Americans planted close proximity so the three crops would benefit each other. Large squash leaves could provide shade to young seedlings, beans added nitrogen to the soil, and cornstalks served as a natural beanpole.

Recognizing that mutualistic relationships exist in natural ecosystems can help us preserve habitats like salt marshes. Valdez points to studies showing that the presence of oysters and clams can positively impact seagrasses and marshes. In restoration, it’s important “that we’re not focusing on one species alone but looking at the ecosystem as a whole”—from top predators to “foundation species.”

“There is hope for successful restoration of these vital ecosystems and their potential to aid in climate change mitigation,” Valdez said.

Finally, Prof. Brian Silliman discussed the role of predators in wider ecosystem restoration projects. Prioritizing the protection, restoration, and sometimes reintroduction of top predators isn’t always popular, but Silliman says predators play important roles in ecosystems around the world.

“One of the best examples we have of top predators facilitating ecosystems and climate change mitigation are tiger sharks in Australia,” he says. When the sharks are around, sea turtles eat fewer aquatic plants. “Not because [the sharks] eat a lot of sea turtles but because they scare them toward the shoreline,” reducing herbivory.

However, Silliman said it’s unclear sometimes whether the existence of a predator is actually responsible for a given benefit. Other times, though, experiments provide evidence that predators really are making a difference. Silliman referenced a study showing that sea otters can help protect plants, like seagrasses, in their habitats.

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

And crucially, “Predators increase stress resistance.” When physical stressors reach a certain point in a given ecosystem, wildlife can rapidly decline. But wildlife that’s used to coexisting with a top predator may have a higher stress threshold. In our ever-changing world, the ability to adapt is as important as ever.

“I think there is great optimism and opportunity here,” Silliman says. The other speakers agree. “Right now,” Valdez says, “as far as restoration and protection goes, we are at the very beginnings. We’re just at the forefront of figuring out how to restore feasibly and at a level of success that makes it worth our time.”

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

Brian Silliman

Smith emphasized the important role that nature-based solutions can play. Even in areas where we aren’t achieving the “full benefit of conserving or restoring a habitat,” we can still get “some benefit in areas where if we don’t use nature-based solutions,” conservation and restoration might not take place at all.

According to Valdez, “Previously we would see restoration or… conservation really at odds with academia itself as well as the community as a whole.” But we’re reaching a point where “People know what restoration is. People know what these habitats are. And I feel like twenty or thirty years ago that was not the case.” She sees “a lot of hope in what we are doing, a lot of hope in what is coming.”

“There’s so much that we can learn from nature… and these processes and functions that have evolved over millions and millions of years,” Smith adds. “The more we can learn to coexist and to integrate our society with thriving ecosystems, the better it will be for everyone.”

Post by Sophie Cox, Class of 2025

A Peek Inside the Climate Situation (V)room

As part of this year’s Energy Week at Duke, graduate and undergraduates were able to participate in a competitive “situation room” style event in which participants were split into five teams and given seventy-five minutes to create a plan for expanding EV (electric vehicle) access in Durham. 

For just over an hour in a Fuqua School of Business classroom, my fellow participants and I mulled over the complexities of an issue facing municipalities across the country and produced a variety of solutions, representative of the range of specialties within each group. One more CS-minded group proposed an app to both help residents locate charging stations and help the city collect data on the use of new EV infrastructure, while another group explored the technological and price saving perks of utility pole-mounted charging stations.

The resulting ideas were reviewed by a panel of judges who covered multiple areas of EV expertise: Jennifer Weiss, Senior Advisor for Climate Change Policy at the North Carolina Department of Transportation; Matt Abele, Director of Marketing and Communications at North Carolina Sustainable Energy Association; Sean Ackley, E-Mobility Segment Lead at Hitachi Americas, Ltd.; and Evian Patterson, Assistant Transportation Director in the Durham Department of Transportation.

The goal of Duke’s EnergyWeek is to “promote collaboration, knowledge-sharing, and professional networking” for students interested in the energy sector.  The situation room event was not strictly research oriented – our team rooms had windows and we were given free supper and lemonade – but it promoted the fundamentals of research: idea generation, collaboration, and outside-of-the-box thinking. 

The victors of the 2023 EnergyWeek Situation Room (photo: Michael Wood III)

The teams were tasked with crafting a strategy that combined technical, business, marketing, and policy considerations to increase EV penetration in Durham.  The teams operated under a hypothetical $10 million budget and strategies were to align with the Justice40 initiative, the federal plan to ensure that forty percent of the benefits of new clean transit jobs flow to “disadvantaged communities that are marginalized, underserved, and overburdened by pollution.”

Participants were encouraged to consider “potential barriers to EV adoption, the existing distribution of EV charging stations, and opportunities for community and business involvement” and to be creative.

My team was comprised of students from a range of scholarly backgrounds, from a freshman beginning a mechanical engineering track to a grad student at the Nicholas School with prior work and research in school bus electrification policy.  For our plan, we spent little time discussing electric cars and instead focused on expanding access to electric micro-mobility and electrified public transportation.  

Our team consulted this map from the Durham Bike+Walk Implementation plan in determining that electric cars are not a silver bullet
(map: durhamnc.gov)

We had many reasons for doing so.  Many Durham residents don’t own cars, so the likelihood of increasing the adoption of electric cars in a timely and affordable manner seems low.  Countries around the world are instead focusing on expanding e-bike access, citing, in addition to climate and affordability concerns, the desire to move away from the safety issues and traffic burden of car-centric urban design. 

We saw Durham, which is expected to double in population in just twenty-five years, as a city perfectly positioned to develop around micro-mobility and robust public transportation before it’s too late and set an example for growing urban centers across the country.  We used our $10 million to add bike lanes, fund electric buses, and subsidize electric bikes across income levels.

Our team placed second (no big deal!) and walked away with a full stomach and a rekindled spark to break the Duke bubble and get involved in the exciting development of the Bull City.

My winnings!
By Addie Geitner, Class of 2025

Working with Humans and Animals to Save What’s Left

“Krithi  Karanth is…” begins a long sentence if not pruned, so I will settle on the following: Dr. Karanth is the Chief Conservation Scientist and Director at the Centre for Wildlife Studies in India, an adjunct professor in the Nicholas School at Duke, and a Vogue Woman of the Year

On Oct. 13, she visited her alma mater to catch us up on her work.

Karanth grew up in close contact with an abundance of wildlife as the daughter of tiger biologist Dr. Ullas K. Karanth in India. Her first experience in the jungle was at the ripe age of one, and she credits this “sheer joy of watching nonhumans uninterrupted” as the basis for her deep concern and care for wildlife.  

Krithi Karanth, Ph.D. (2008)

She received her Ph.D from the Nicholas School after scouring historic hunting journals and interviewing Indian wildlife scientists to build a database that documents the havoc wreaked on wildlife populations in India, beginning in the mid-nineteenth century. The results are gut-wrenching, among them: an estimated 96% plunge in the lion population, 67% drop in tigers, and a 62% decline in wolves.

After thirteen years studying and researching in the U.S., Karanth returned home to India, where she felt her impact could be greater.  

Today, large British hunting parties are no longer the main cause of species decline in India. Instead, man and beast find themselves stepping on each other’s toes and tails more and more as towns expand and animals like elephants and leopards lose their habitats.

At the Centre for Wildlife Studies, Karanth’s work focuses on mitigating the most prevalent problems in human-wildlife interaction: crop and property damage, livestock predation, and human injury and death.

Her tactics for doing so are expansive. At CWS, she leads several initiatives targeting different sides of the problem.

WildSeve deploys timely assistance to people, most often farmers, dealing with destructive wildlife encounters. Farmers can call a toll free number, and a member of the team will ride out to their farm to help document the incident and file a claim for government compensation, allowing farmers to complete what would otherwise be an arduous and expensive legal process. In “peak season,” between October and November when many farmers are growing a cover crop known to attract elephants, WildSeve deploys as many as thirty conflict responders per day.

Dr. Karanth presenting at the Nicholas School

The goal of these interactions is not simply response, but mitigation. WildSeve helps farmers understand what factors increase the likelihood of human-wildlife conflict (HWC) and how to avoid these encounters in the future. 

Another project in the works, WildCarbon, will assist farmers in transitioning their land from agriculture to carbon-sequestering agro-forests in places where the benefits can outweigh the costs.

Karanth says that trust is key to ensuring that the advice from the team is well-received. It is often difficult to convince a farmer to change their practices. Farming technique is both a careful science and the basis of a farmer’s livelihood. The project is in its seventh year, and Karanth says it has taken time for farmers to see that their assistance works. One factor that helps build this trust is that many members of the WildSeve team are locals in the communities.  

Another program, WildShaale, is designed to foster understanding and appreciation for local wildlife in schoolchildren. Karanth pointed out that many school-age children easily recognize a kangaroo despite their lack of proximity to or interaction with the Australian marsupial, but could not identify the Indian wolf native to their backyard.

For children living in communities that come in close contact with wildlife, their perception of the animals is often one of fear. Karanth said the curiosity and empathy that WildShaale nurtures is critical to creating communities that have a net positive relationship with their animal neighbors. By fostering this empathy, violence becomes a last resort when dealing with wildlife conflicts.

After Karanth’s talk, I grabbed a chai latte from Beyu Cafe and sat down in Penn Pavilion for New York Times columnist Bret Stephens’ chat on cross-partisan conversation. At the time, I didn’t see much connection between the two events, but in retrospect, it is there. Both talks touched on that attempt at harmony, respect, and civil discourse I so often find myself craving: for Karanth, it’s between animals and people; for Stephens, people and people.

As I got ready to write this article, I turned on my GE digital clock radio to keep me company. I debated switching to a podcast, but then the host mentioned elephants and — given their relevance to task — I leaned in a little closer. 

The radio still works!

WUNC was playing this week’s segment of the TED Radio Hour, which centered on finding resolutions in situations of conflict. The woman being interviewed was discussing her own solution to elephant-human conflict in Kenya: beehives.

I will leave it to the reader to find out how, but the remainder of the segment drove home my key takeaway from hearing Karanth speak: Seeking out simple, yet innovative answers to human-wildlife conflict, a life or death issue, can teach us a lot about the importance of finding solutions to interpersonal conflict.  

Post by Addie Geitner, Class of 2025

Do Snakes Have Tails? and Other Slithery Questions

Dhruv Rungta, a member of the Wild Ones club, with a ring-necked snake during a herpetology walk with Dr. Nicki Cagle in the Duke Forest.
Upper left: Dr. Nicki Cagle holding a ring-necked snake. Photo by Montana Lee, another Wild Ones member.

On a sunny Friday in September, Dr. Nicki Cagle led a herpetology walk in the Duke Forest with the Wild Ones. The Wild Ones is an undergraduate club focused on increasing appreciation for the natural world through professor-led outings. Herpetology is the study of reptiles and amphibians.

Dr. Cagle is a senior lecturer in the Nicholas School of the Environment at Duke and the Associate Dean of Diversity, Equity, and Inclusion. Along with teaching courses on environmental education and natural history, she is also the science advisor for a citizen science project focused on reptiles and amphibians, or herpetofauna, in the Duke Forest. Volunteers monitor predetermined sites in the Duke Forest and collect data on the reptiles and amphibians they find.

“We get a sense of abundance, seasonality… and how the landscape is affecting what we’re seeing,” Dr. Cagle says. There is evidence that herp populations in the Duke Forest and elsewhere are decreasing.

Dr. Nicki Cagle flipping over a cover board with members of the Wild Ones. The cover boards are used to monitor reptiles and amphibians for a citizen science project in the Duke Forest.

The project relies on transects, “a sampling design… where you have a sampling spot at various intervals” along a line of a predetermined length. In this case, the sampling spots are “traps” meant to attract reptiles and amphibians without harming them. Each site has a large board lying on the ground. “Different herps are more likely to be found under different objects,” Dr. Cagle explains, so the project uses both wooden and metal cover boards.

But why would snakes and other herps want to hide under cover boards, anyway? Reptiles and amphibians are “cold-blooded” animals, or ectotherms. They can’t regulate their own body temperature, so they have to rely on their environment for thermoregulation. Snakes might sun themselves on a rock on cold days, for instance, or hide under a conveniently placed wooden board to escape the heat.

Salamanders that use the cover boards might be attracted to the moist environment, while “snakes will tend to go under cover boards either to hide — like if they’re about to molt and they’re more vulnerable — to look for prey, or just to maintain the proper temperature,” Dr. Cagle says.

Citizen scientists typically check the boards once a week and not more than twice a week. Volunteers have to avoid checking the traps too often because of a phenomenon called “trap shyness,” where animals might start avoiding the traps because they’ve learned to associate them with pesky humans flipping the boards over and exposing their otherwise cozy resting places. By checking the traps less frequently, scientists can reduce the likelihood of that and minimize disturbance to the animals they’re studying.

The first snake we saw was a redbelly snake (Storeria occipitomaculata), dark above with a pink stomach.

Dr. Cagle gave the Wild Ones a behind-the-scenes tour of some of the cover boards. Using a special, hooked tool conveniently stashed in a PVC pipe next to the first cover board, we flipped each board over and looked carefully underneath it for slithery movements. We didn’t find any under the first several cover boards.

But then, under a large sheet of metal, we saw a tiny snake squirming around in the leaf litter. There was a collective intake of breath and exclamations of “snake!”

Dr. Cagle captured it and held it carefully in her hands. Snakes, especially snakes as young as this one, can be all too easily crushed. We gathered around to look more closely at the baby snake, a species with the adorable name “worm snake.” It was dark above with a strikingly pink underside. The pink belly is a key field mark of worm snakes. Earth snakes are also found around here and look similar, but they tend to have tan bellies.

After a minute or two, the worm snake made a successful bid for freedom and wriggled back under the board, disappearing from sight almost immediately.

Crossing over a dry “intermittent stream,” which Dr. Cagle describes as “the running-water equivalent of a vernal pool.” A vernal pool is a temporary wetland that is dry for much of the year.

Some of the cover boards revealed other animals as well. We found a caterpillar chrysalis attached to one and several holes — probably made by small mammals — under another.

Whatever made the holes, we can safely assume it wasn’t a snake. According to Dr. Cagle, the term “snakehole” is misleading. Most snakes don’t make their own holes, though some of them do use existing holes made by other animals. One exception is the bull snake, which is known for digging.

We found a young five-lined skink sunning itself on top of one of the metal cover boards. (Thermoregulation!) Juvenile five-lined skinks are colloquially known as blue-tailed skinks, but the name is somewhat misleading — the adults don’t have blue tails at all.

The snakes we were looking for, meanwhile, were often elusive. Some vanished under the leaf litter before we could catch them. Sometimes it was hard to tell whether we were even looking at a snake at all.

“What are you?” Dr. Cagle muttered at one point, crouching down to get a better look at what was either a stick-esque snake or a snake-esque stick. “Are you an animal? Or are you just a wet something?” (Just a wet something, it turned out.)

The Duke Forest is a valuable community resource with a complicated history. “We know that slavery was practiced on at least four properties” in the Duke Forest, Dr. Cagle says, and the forest is located on the traditional hunting grounds of several indigenous peoples. Today, the Duke Forest is used for research, recreation, timber management, and wildlife management and conservation.

Later on, we found at least three young ring-necked snakes (Diadophis punctatus) under different cover boards. One of them was particularly cooperative, so we passed it around the group. (“All snakes can bite,” Dr. Cagle reminded us, but “some have the tendency to bite less,” and this species “has the tendency not to bite.”) Its small, lithe body was surprisingly strong. The little snake wrapped tightly around one of my fingers and seemed content to chill there. A living, breathing, reptilian ring. That was definitely a highlight of my day.

The faint, dark line on this ring-necked snake’s underside (on the bottom of the loop) is the anal vent. Everything below that point (farther from the head) is considered the official tail of a snake.

If you’ve ever wondered if snakes have tails, the answer is yes. The official cut-off point, Dr. Cagle says, is the anal vent. Everything below that is tail. In between flipping over cover boards and admiring young snakes, we learned about other herps. Near the beginning of our walk, someone asked what the difference is between a newt and a salamander.

“A newt is a type of salamander,” Dr. Cagle says, “but newts have an unusual life cycle where they spend part of their life cycle on land… and that is called their eft phase.” As adults, they return to the water to breed.

We learned that copperheads “tend to be fatter-bodied for their length” and that spotted salamanders cross forest roads in large numbers on warm, rainy nights in early spring when they return to wetlands to breed.

Students holding a ring-necked snake. Above: Kelsey Goldwein holding a ring-necked snake. Below: Emily Courson (left) and Barron Brothers.

Perhaps the most interesting herp fact of the day came near the end of our walk when one of the students asked how you can tell the sex of a snake. Apparently there are two ways. You can measure a snake’s tail (males usually have longer tails), or you can insert a metal probe, blunted at the end, into a snake’s anal vent. Scientists can determine the sex of the snake by how deep the probe goes. It goes farther into the anal vent if the snake is a male. Why is that? Because male snakes have hemipenes — not two penises, exactly, but “an analogous structure that allows the probe to slide between the two and go farther” than it would in a female snake. The more you know…

Looking for snakes on a herpetology outing with Dr. Cagle and the Wild Ones. Photograph by Wild Ones exec.

Disclaimer: Handling wild snakes may result in snake bites. It can also be stressful to the snakes. Furthermore, some snakes in this area are venomous, and it’s probably best to familiarize yourself with those before getting close to snakes rather than afterward. Snakes are amazing, but please observe wildlife safely and responsibly.

Bonus snake! I saw this adorable fellow on the Duke Campus and thought it was an earthworm at first. Dr. Cagle thinks it might be a rough earth snake. I did not check to see if it had a tan belly.
Post by Sophie Cox, Class of 2025

Meet New Blogger Kyla: Humans Grow up. Ideas Do, Too.

If you asked my eight-year-old self what I wanted to be when I grew up, the answer would have been, resoundingly, “an inventor!” It was around this time that I also decided, with surprising assuredness for a shy second grader, that I would one day build a saltwater-powered car.

I must have heard the idea somewhere, although to this day I don’t quite recall where. Perhaps it was a story on the radio. NPR was a constant background noise in the basement where I spent countless hours playing and tinkering alongside my father in his hobby shop. Or maybe it was buried somewhere in a book or science magazine. They were often stacked in neat piles, filling bookcases in many corners of our house. It also could have floated across the dinner table in conversations between my parents and older siblings. Everyday talk of high school biology and current events seemed light years out of the grasp of my eight-year-old brain.

Kyla Hunter, Duke Engineering 2023.

Regardless of where it came from, the idea stuck. Before I knew what it meant to conduct research or study engineering, I found myself charmed by novel ideas and drawn to the possibility of discovery. For some reason, this “car that runs on salt water” took shelter in my mind and secured itself as the perfect idea: an ingenious invention that was good for the planet. At the time, of course, I never thought about how this whimsical, far-fetched idea was fundamentally tied to my core interests and values. Now, however, as a 21-year-old senior studying mechanical engineering, passionate about renewable energy technology and protecting the planet, it all makes perfect sense.

My interest in engineering is, at its core, a love for creativity, combined with a desire to solve problems. A fondness for physics certainly helps too, but that came much later. As a child, the desire to practice creativity manifested primarily as a love for art. Some of my earliest childhood memories are toiling away at my little table in the corner of the living room, carefully sorting the crayons in my tin Crayola box. Today, I practice creativity in my critical thinking, brainstorming, and implementation of the iterative design process.

At an elementary school science fair, I presented my model V8 engine and explained how it worked. I was drawn to many different interests before I settled on engineering, but it’s clear that the passion was always there.

The other facet that drew me towards engineering, the desire to solve problems, evolved from an early love for nature and a passion for environmentalism. I remember seeing my grandparents’ devastated home in the aftermath of Hurricane Sandy, and the noticeable decline in pollinators to my mother’s garden. In high school, when I heard the term “environmental engineering,” it was the first time I realized such a field existed. I immediately felt the various pieces of my interests and values click together. There are many ways to be creative and to solve problems, but for me, the combination led down a path towards pursuing engineering.

An entry from my second-grade journal, declaring my dearly held beliefs. In many ways, nothing has changed (including my ability to spell). 

Despite the way I’ve laid it out, this is not to say there was a linear path between latching onto an eccentric notion as an eight-year-old, and deciding to pursue my current career as a soon-to-be graduate. Looking back now, I can see the symbolism in this cornerstone of an idea. With hindsight, I recognize why it appealed to different facets of my just-blossoming identity, and the ways in which I returned to it over the next several years. However, this is what is bound to happen when you expose yourself to as many new ideas as possible: one (at least) will catch your attention. The point is not to latch onto the first idea you stumble upon and pursue it relentlessly. The point is to keep an open mind to all ideas – and pay careful attention to the ones that light up inside your brain. The ones that stick in the back of your mind, and continuously pop up at unsuspecting times. 

One of my favorite serendipitous moments in life is when, soon after learning something new, that newfound idea pops up somewhere else. It’s like receiving an unexpected gift in the form of previously inaccessible appreciation. Imagine turning over a stone and happening to uncover an insect that you just spent all night studying. It feels purely by chance, but it’s not quite.

The more you expose yourself to new ideas, the more they will appear. You never know when a story you stumble across by accident will move you to action, or lead to something bigger. A magazine I stumbled across by chance led to a research topic of an entire semester. A book I read in high school came up in an interview I had last week. An idea I heard at eight years old about an eco-friendly car perhaps started a life-long captivation with science that led me to become an engineer. Our life is made up of decisions that are based on millions of data points, determined by our history, background, and the types of ideas we surround ourselves with daily.

As a blogger for the Duke Research Blog, my goal is to make it easier for more people to have more exposure to more ideas. Each new idea has the potential to build bridges, whether expanding to new fields, or building upon an existing network of knowledge. Expanding our realm of understanding allows for challenging perspectives and broadening understandings. These are not ideas for the sake of ideas, but for the larger goal of enabling meaningful connections with others.

When more people have access to more ideas, everyone benefits. However, there’s no denying that much of the research going on at Duke is very high-level, usually going unread by much of the student body. Other fascinating content goes unnoticed simply due to the busy lives of Duke students, and the sheer volume of exciting events. (If only we could all be multiple places at once.)  My goal is to take ideas – whether overly intimidating or underappreciated—and present them in a way that is more accessible for anyone who is interested.

When I first heard of the idea of salt-water running cars, the idea was just that: an idea. The frenzy began in 2007 when John Kanzius, an American engineer, accidentally discovered how to “burn” salt water while attempting to research a cure for cancer. Today, the QUANT e-Sport Limousine is an all-electric sports car concept that uses an electrolyte flow cell, powered by salt water. It actually works, and was authorized for on-road testing in Germany a few years ago soon after its debut. It is many years from authorization, and it will likely be an even longer time before it is a viable option from an economic standpoint, but the progress is apparent.

Fifteen years since my infatuation with this idea, I can’t help but feel slightly emotionally connected to it. Humans grow up. Ideas do, too. I did not invent the first car that runs on salt water, but I am eternally grateful for every new idea that fuels my curiosity, shapes my values, and expands my current perspectives.

Post by Kyla Hunter, Class of 2023

What Are Lichens, and Why Does Duke Have 160,000 of Them?

Saxicolous lichens (lichens that grow on stones) from the Namib Desert, and finger lichen, Dactylina arctica (bottom left insert), common in the Arctic, on display in Dr. Jolanta Miadlikowska’s office. The orange color on some of the lichen comes from metabolites, or secondary chemicals produced by different lichen species. The finger lichen is hollow.

Lichens are everywhere—grayish-green patches on tree bark on the Duke campus, rough orange crusts on desert rocks, even in the Antarctic tundra. They are “pioneer species,” often the first living things to return to barren, desolate places after an extreme disturbance like a lava flow. They can withstand extreme conditions and survive where nearly nothing else can. But what exactly are lichens, and why does Duke have 160,000 of them in little envelopes? I reached out to Dr. Jolanta Miadlikowska and Dr. Scott LaGreca, two lichen researchers at Duke, to learn more.

Dr. Jolanta Miadlikowska looking at lichen specimens under a dissecting microscope. The pale, stringy lichen on the brown bag is whiteworm lichen (Thamnolia vermicularis), used to make “snow tea” in parts of China.

According to Miadlikowska, a senior researcher, lab manager, and lichenologist in the Lutzoni Lab (and one of the Instructors B for the Bio201 Gateway course) at Duke, lichens are “obligate symbiotic associations,” meaning they are composed of two or more organisms that need each other. All lichens represent a symbiotic relationship between a fungus (the “mycobiont”) and either an alga or a cyanobacterium or both (the “photobiont”). They aren’t just cohabiting; they rely on each other for survival. The mycobiont builds the thallus, which gives lichen its structure. The photobiont, on the other hand, isn’t visible—but it is important: it provides “food” for the lichen and can sometimes affect the lichen’s color. The name of a lichen species refers to its fungal partner, whereas the photobiont has its own name.

Lichen viewed through a dissecting microscope. The black speckles visible on some of the orange lichen lobes are a “lichenicolous” fungus that can grow on top of lichen. There are also “endolichenic fungi… very complex fungal communities that live inside lichen,” Miadlikowska says. “We don’t see them, but they are there. And they are very interesting.”

Unlike plants, fungi can’t perform photosynthesis, so they have to find other ways to feed themselves. Many fungi, like mushrooms and bread mold, are saprotrophs, meaning they get nutrients from organic matter in their environment. (The word “saprotroph” comes from Greek and literally means “rotten nourishment.”) But the fungi in lichens, Miadlikowska says, “found another way of getting the sugar—because it’s all about the sugar—by associating with an organism that can do photosynthesis.” More often than not, that organism is a type of green algae, but it can also be a photosynthetic bacterium (cyanobacteria, also called blue-green algae). It is still unclear how the mycobiont finds the matching photobiont if both partners are not dispersed together. Maybe the fungal spores (very small fungal reproductive unit) “will just sit and wait” until the right photobiont partner comes along. (How romantic.) Some mycobionts are specialists that “can only associate with a few or a single partner—a ‘species’ of Nostoc [a cyanobacterium; we still don’t know how many species of symbiotic and free-living Nostoc are out there and how to recognize them], for example,” but many are generalists with more flexible preferences. 

Two species of foliose (leaf-like) lichens from the genus Peltigera. In the species on the left (P. canina), the only photobiont is a cyanobacterium from the genus Nostoc, making it an example of bi-membered symbiosis. In the species on the right (P. aphthosa), on the other hand, the primary photobiont is a green alga (which is why the thallus is so green when wet). In this case, Nostoc is a secondary photobiont contained only in the cephalodia—the dark, wart-like structures on the surface. With two photobionts plus the mycobiont, this is an example of tri-membered symbiosis.

Lichens are classified based on their overall thallus shape. They can be foliose (leaf-like), fruticose (shrubby), or crustose (forming a crust on rocks or other surfaces). Lichens that grow on trees are epiphytic, while those that live on rocks are saxicolous; lichens that live on top of mosses are muscicolous, and ground-dwelling lichens are terricolous. Much of Miadlikowska’s research is on a group of cyanolichens (lichens with cyanobacteria partners) from the genus Peltigera. She works on the systematics and evolution of this group using morphology-, anatomy-, and chemistry-based methods and molecular phylogenetic tools. She is also part of a team exploring biodiversity, ecological rules, and biogeographical patterns in cryptic fungal communities associated with lichens and plants (endolichenic and endophytic fungi). She has been involved in multiple ongoing NSF-funded projects and also helping graduate students Ian, Carlos, Shannon, and Diego in their dissertation research. She spent last summer collecting lichens with Carlos and Shannon and collaborators in Alberta, Canada and Alaska. If you walk in the sub basement of the Bio Sciences building where Bio201 and Bio202 labs are located, check out the amazing photos of lichens (taken by Thomas Barlow, former Duke undergraduate) displayed along the walls! Notice Peltigera species, including some new to science, described by the Duke lichen team.

Lichens have value beyond the realm of research, too. “In traditional medicine, lichens have a lot of use,” Miadlikowska says. Aside from medicinal uses, they have also been used to dye fabric and kill wolves. Some are edible. Miadlikowska herself has eaten them several times. She had salad in China that was made with leafy lichens (the taste, she says, came mostly from soy sauce and rice vinegar, but “the texture was coming from the lichen.”). In Quebec, she drank tea made with native plants and lichens, and in Scandinavia, she tried candied Cetraria islandica lichen (she mostly tasted the sugar and a bit of bitterness, but once again, the lichen’s texture was apparent).

In today’s changing world, lichens have another use as well, as “bioindicators to monitor the quality of the air.” Most lichens can’t tolerate air pollution, which is why “in big cities… when you look at the trees, there are almost no lichens. The bark is just naked.” Lichen-covered trees, then, can be a very good sign, though the type of lichen matters, too. “The most sensitive lichens are the shrubby ones… like Usnea,” Miadlikowska says. Some lichens, on the other hand, “are able to survive in anthropogenic places, and they just take over.” Even on “artificial substrates like concrete, you often see lichens.” Along with being very sensitive to poor air quality, lichens also accumulate pollutants, which makes them useful for monitoring deposition of metals and radioactive materials in the environment.

Dr. Scott LaGreca with some of the 160,000 lichen specimens in Duke’s herbarium.

LaGreca, like Miadlikoska, is a lichenologist. His research primarily concerns systematics, evolution and chemistry of the genus Ramalina. He’s particularly interested in “species-level relationships.” While he specializes in lichens now, LaGreca was a botany major in college. He’d always been interested in plants, in part because they’re so different from animals—a whole different “way of being,” as he puts it. He used to take himself on botany walks in high school, and he never lost his passion for learning the names of different species. “Everything has a name,” he says. “Everything out there has a name.” Those names aren’t always well-known. “Some people are plant-blind, as they call it…. They don’t know maples from oaks.” In college he also became interested in other organisms traditionally studied by botanists—like fungi. When he took a class on fungi, he became intrigued by lichens he saw on field trips. His professor was more interested in mushrooms, but LaGreca wanted to learn more, so he specialized in lichens during grad school at Duke, and now lichens are central to his job. He researches them, offers help with identification to other scientists, and is the collections manager for the lichens in the W.L. and C.F. Culberson Lichen Herbarium—all 160,000 of them.

The Duke Herbarium was founded in 1921 by Dr. Hugo Blomquist. It contains more than 825,000 specimens of vascular and nonvascular plants, algae, fungi, and, of course, lichens. Some of those specimens are “type” specimens, meaning they represent species new to science. A type specimen essentially becomes the prototype for its species and “the ultimate arbiter of whether something is species X or not.” But how are lichens identified, anyway?

Lichenologists can consider morphology, habitat, and other traits, but thanks to Dr. Chicita Culberson, who was a chemist and adjunct professor at Duke before her retirement, they have another crucial tool available as well. Culbertson created a game-changing technique to identify lichens using their chemicals, or metabolites, which are often species-specific and thus diagnostic for identification purposes. That technique, still used over fifty years later, is a form of thin-layer chromatography. The process, as LaGreca explains, involves putting extracts from lichen specimens—both the specimens you’re trying to identify and “controls,” or known samples of probable species matches—on silica-backed glass plates. The plates are then immersed in solvents, and the chemicals in the lichens travel up the paper. After the plates have dried, you can look at them under UV light to see if any spots are fluorescing. Then you spray the plates with acid and “bake it for a couple hours.” By the end of the process, the spots of lichen chemicals should be visible even without UV light. If a lichen sample has traveled the same distance up the paper as the control specimen, and if it has a similar color, it’s a match. If not, you can repeat the process with other possible matches until you establish your specimen’s chemistry and, from there, its identity. Culberson’s method helped standardize lichen identification. Her husband also worked with lichens and was a director of the Duke Gardens.

Thin-layer chromatography plates in Dr. LaGreca’s office. The technique, created by Dr. Chicita Culberson, helps scientists identify lichens by comparing their chemical composition to samples of known identity. Each plate was spotted with extracts from different lichen specimens, and then each was immersed in a different solvent, after which the chemicals in the extracts travel up the plate . Each lichen chemical travels a characteristic distance (called the “Rf value”) in each solvent. Here, the sample in column 1 on the rightmost panel matches the control sample in column 2 in terms of distance traveled up the page, indicating that they’re the same species. The sample in column 4, on the other hand, didn’t travel as far as the one in column 5 and has a different color. Therefore, those chemicals (and species) do not match.

LaGreca shows me a workroom devoted to organisms that are cryptogamic, a word meaning “hidden gametes, or hidden sex.” It’s a catch-all term for non-flowering organisms that “zoologists didn’t want to study,” like non-flowering plants, algae, and fungi. It’s here that new lichen samples are processed. The walls of the workroom are adorned with brightly colored lichen posters, plus an ominous sign warning that “Unattended children will be given an espresso and a free puppy.” Tucked away on a shelf, hiding between binders of official-looking documents, is a thin science fiction novel called “Trouble with Lichen” by John Wyndham.

The Culberson Lichen Herbarium itself is a large room lined with rows of cabinets filled with stacks upon stacks of folders and boxes of meticulously organized lichen samples. A few shelves are devoted to lichen-themed books with titles like Lichens De France and Natural History of the Danish Lichens.

Each lichen specimen is stored in an archival (acid-free) paper packet, with a label that says who collected it, where, and on what date. (“They’re very forgiving,” says LaGreca. “You can put them in a paper bag in the field, and then prepare the specimen and its label years later.”) Each voucher is “a record of a particular species growing in a particular place at a particular time.” Information about each specimen is also uploaded to an online database, which makes Duke’s collection widely accessible. Sometimes, scientists from other institutions find themselves in need of physical specimens. They’re in luck, because Duke’s lichen collection is “like a library.” The herbarium fields loan requests and trades samples with herbaria at museums and universities across the globe. (“It’s kind of like exchanging Christmas presents,” says LaGreca. “The herbarium community is a very generous community.”)

Duke’s lichen collection functions like a library in some ways, loaning specimens to other scientists and trading specimens with institutions around the world.

Meticulous records of species, whether in databases of lichens or birds or “pickled fish,” are invaluable. They’re useful for investigating trends over time, like tracking the spread of invasive species or changes in species’ geographic distributions due to climate change. For example, some lichen species that were historically recorded on high peaks in North Carolina and elsewhere are “no longer there” thanks to global warming—mountain summits aren’t as cold as they used to be. Similarly, Henry David Thoreau collected flowering plants at Walden Pond more than 150 years ago, and his samples are still providing valuable information. By comparing them to present-day plants in the same location, scientists can see that flowering times have shifted earlier due to global warming. So why does Duke have tens of thousands of dried lichen samples? “It comes down to the reproducibility of science,” LaGreca says. “A big part of the scientific method is being able to reproduce another researcher’s results by following their methodology. By depositing voucher specimens generated from research projects in herbaria like ours, future workers can verify the results” of such research projects. For example, scientists at other institutions will sometimes borrow Duke’s herbarium specimens to verify that “the species identification is what the label says it is.” Online databases and physical species collections like the herbarium at Duke aren’t just useful for scientists today. They’re preserving data that will still be valuable hundreds of years from now.

Symposium Explores How People and Nature are Inextricably Entwined

The massive Keeler Oak, a white oak (Quercus alba) in New Jersey.

An April symposium at Grainger Hall, People and Nature, brought a diverse set of speakers, both from Duke and other U.S. institutions, to examine the relationship between human culture and land and to discuss pressing issues such as environmental justice. The session was organized by PhD students Nicholas School of the Environment and the biology department.

Paul Manos of Duke Biology

Professor Paul Manos of Duke Biology told us  how oaks, ubiquitous tree species in temperate regions, can make people think about nature. A walk in the woods looking at the different oaks can result in a fascinating journey of natural history. For those who are curious enough, an inquiry into the lives of oaks will take them deep into topics such as evolutionary history, leaky species boundaries, plant-animal interactions, among others, Manos said. Keeping true to the theme of the symposium, Manos explored some hypotheses about the first time that humans had contact with oaks, and how this relationship unfolded ever since.

Orue Gaoue of Tennessee-Knoxville

Associate Professor Orou G. Gaoue of the University of Tennessee, Knoxville,  took us through a detailed case study of human and plant interactions with long-term data from the country of Benin, in Africa. He showed how the harvest of the African mahogany (Khaya senegalensis) affects human demography and even the marriage dynamics of the Fulani people, with many other insights into the intertwined relationship of the locals and their harvest.

Andrew Curley of Arizona

Central to the morning sessions were the rights of nature and the granting of personhood to non-humans, which is common in the cosmology of many indigenous cultures. For instance, Andrew Curley, assistant professor at the University of Arizona, mentioned in his talk that the O’odham people in the Sonoran Desert confer the Saguaro cactus personhood status. His talk exposed how colonial dynamics have created climate catastrophes and drought around the Colorado River, how indigenous peoples have to navigate these foreign systems, and how they understand their relationship with the land and water.

Michelle Carter, a first-year Masters of Environmental Management (MEM) student at Duke, examined the feasibility of the rights of nature in the US legal system. These rights allow certain natural features (e.g. rivers) to stand as a sole party in litigation and recover damages on their behalf. However, effective application and the enforcement of policy have been lacking.

The second part of the symposium focused on environmental justice. Duke Ph.D. student Maggie Swift presented a land acknowledgement which was divided into three parts: recognition of the violent history of the past; an understanding of the present with a celebration of the lives and achievements of current indigenous peoples; and a call to action so that participants were encouraged to financially support native-led organizations.  Links for donations and more information can be found on the symposium website. The land acknowledgement was followed by a brief presentation on the project Unearthing Duke Forest  that explores the human history surrounding Duke Forest.

Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?

People & NAture
Christine Folch of Duke Cultural Anthropology

Assistant professor Christine Folch, from Duke’s Department of Cultural Anthropology provided an analysis of the discourse around climate change. At the center was the question “do you believe in climate change?” which has ingrained the element of doubt and the ability of the speaker to say “no, I don’t.”  

Associate professor Louie Rivers III, from NC State University,  gave a talk on perceived environmental risks and their influence on social justice. He pointed out that these questions  could be dismissed by certain groups such as black farmers, who are concerned and disproportionally affected by environmental issues but might not relate to how the question is addressed.

Sherri White-Williamson, Environmental Justice Policy director at NC Conservation Network, explained the concept of environmental justice and provided concrete examples of how certain policies (e.g. federal housing/lending policies or interstate highway systems) can create inequalities that leave communities of color to bear the exposure of environmental degradation. She also made us aware that this year is the 40th anniversary of the birth of the US environmental justice movement that started when an African-American community  in Warren County, North Carolina organized to fight a hazardous waste landfill.

No exploration of people and nature would be complete without including the seas. A team of three students at the Duke University Marine Lab, undergrad Maddie Paris, second-year MEM Claire Huang, and Ph.D. student Rebecca Horan, presented two case studies of social and ecological outcomes linked to education and outreach interventions conducted in tropical marine environments.

Their first case study was on turtle education in Grenada, West Indies. Here a 10-week summer program for local children ages 9-12 created an improved understanding of marine turtle biology and its connection to the health of the ocean and their communities. The second case study was a 4-week training course for fisher people and fisheries officers in Mtwara, Tanzania. These participants increased their skills in monitoring the local reefs and were better equipped to educate their communities on marine environmental issues.

The symposium ended with two open questions for the audience, which should be considerations for anyone doing environmental research:  Why is it important to jointly consider people and nature in your work? What insights do you gain in your work by taking this approach?

Guest post by Rubén Darío Palacio, Ph.D. 2022 in Conservation Biology from the Nicholas School of the Environment, and science director of conservation non-profit Fundacion Ecotonos in Colombia.

Page 2 of 15

Powered by WordPress & Theme by Anders Norén