Duke Research Blog

Following the people and events that make up the research community at Duke.

Author: Cydney Livingston

The Anthropology of “Porkopolis”

Alex Blanchette, cultural anthropologist and lecturer in anthropology and environmental studies at Tufts University, is a scholar of pork production.

As America’s pork industry is continually pushed to ever greater production, so are the human beings who labor to breed, care for, and slaughter these animals.

Blanchette, who gave a talk hosted by the Ethnography Workshop at Duke on November 4th, said there is an intimate relationship between pig and person. The quality of the factory farm worker’s life is tied to that of the porcine species.

Alex Blanchette of Tufts University

Blanchette’s current work will be published in the 2020 ethnographic book – Porkopolis: American Animality, Standardized Life, and the “Factory” Farm. The book is focused on the consequences of human labor and identity that are bound to the pig – an animal which has become more industrialized over time due to corporations’ goal of a mass produced, standardized pig predictable in nature, uniform in existence, and easy to slaughter.

A common practice in factory farming is the ‘runting’ of litters, genetically making piglets smaller to increase the number each sow produces. But this practice has propelled a fundamental shift in the need for human workers to act as neonatal nurses, what Blanchette calls “external prosthetics,” to care for the newborns. Blanchette described one extraordinary worker responsible for taking care of piglet litters, saving the weak and deformed after birth. She has taken measures so drastic as to give a piglet mouth-to-mouth, incubate them in her pockets, and quickly form body-casts out of duct-tape for the small creatures. This worker has had the chance to study over 400,000 piglets in her seven-year career, encountering conditions of the pig body that no scientist has seen in real life.

Blanchette explained the active engagement required in any portion of the factory production. For example, people working with pregnant sows have to be extremely conscious of the way that the pigs are perceiving them to keep the sensory state of the mother pigs balanced. This means avoiding touching them unless work requires it, not wearing perfumes on the job, and taking overall care and precision in every motion throughout the workday. The danger is the risk of causing mass miscarriages and spontaneous abortions within a barn of sows because of their genetically engineered weakness and inability to handle stresses.

Piglets nursing in a device known as a farrowing crate.

Blanchette said one worker could be seen standing in the exact same place over the course of 1,000 compiled picture frames. He developed this habit to prevent large hogs in open pens from knocking him down and biting his legs while he was working. This is something that Blanchette said he couldn’t manage for more than a few minutes even though he too has worked within the pork industry before.

Workers on slaughter and “disassembly” lines are responsible for making the same exact cut or slice 9,500 times a day.

And finally, the conformation of human labor to the precisions of the factory pig often does not stop at the end of the work shift. In rural factory farming areas, corporations try to re-engineer the human communities in which their workers live to further regulate the human body outside of work because of potential impacts on the pigs. For example, workers’ socialization has been monitored by companies in some cases due to the threat of communicable disease reaching the hogs through human kinship.

No worker knows the pig from birth to death, but for the individual portion of the pig’s life for which they are responsible, they are bound intimately and intricately to the hog, Blanchette said. These people are also disproportionately people of color and immigrant workers who are underpaid for how strenuous, demanding, and encapsulating this labor is. Workers in factory farms often have little protections, and Blanchette’s work gives new life to the consequences of industrial capitalism in America as the pig has become a product of vertical integration in rural communities.

We have long been moving at the speed limits of human physiology in the pork industry,  Blanchette said. In 2011, one company’s annual effort to improve their corporation was to build a new human clinic on the jobsite to treat cuts and injuries acquired on the slaughter lines. This clinic was also responsible for assessing new hires in order to match the strongest part of their body to a place on the line where they would be most productive.

The interior of a typical confined animal feeding operation (CAFO).

Factory farms are actively searching for new money to be found in the pig and to have a closed-loop system which uses every aspect of its life and death for profit. This has caused a deep integration of the “capital swine” into everyday human life for the laborers and communities sustained by these economic ventures.

The Trump administration recently removed standards for pork slaughter line speeds and ultimately reduced overall regulations. People like Blanchette are already considering something you too might be wondering, What happens next? Where does pork and the human labor behind it go from here?

Post by Cydney Livingston

Designing Tomorrow, One Healthcare Innovation at a Time

Imagine a live, health-focused version Shark Tank open to the public: presentations from real health professionals, presenting real innovations they developed to address real health care issues. And yes, there are real money awards at stake.

It’s the 2019 Duke Health Innovation Jam.

At ten minutes ‘til show time, people gather in small groups clothed in suits, business attire, and white coats. They chat in low voices. The hum of comfortable conversation buzzes through the room. The sixth floor of the Trent Semans Center is quite the setting. Three sides of the room are encapsulated in glass and you can easily see an expansive view of both Duke’s West and Medical campuses, as well as luscious green trees comprising parts of Duke’s Forest. Naturally, there is a glorious view of the Chapel, basked in sunlight.

This light finds its way into the room to shine on various research posters at the back displayed on a few rows of mobile walls. Though a few strays meander through the stationary arrangements – stopping to look more closely at particular findings – most people make their way into the room and find a seat as the minutes dwindle away. The hum grows and there is a bit of anticipatory energy among those readying themselves to present.

At three minutes after 10, the program director of the Duke Institute for Health Innovation, Suresh Balu, takes position at the front of the room, standing before the small stage at center that is surrounded by lots of TV monitors. No seat in the room is a bad one. Balu indicates that it is time to begin and the hum immediately dissipates. He explains the general format of the event: six pitches total, five minutes to present, eight minutes to answer questions from investors, a show-of-hand interest from investors, and transition to the next pitch, followed by deliberation and presentation of awards.

After a round of thanks, introduction of the emcee – Duke’s Chief of Cardiology, Dr. Manesh Patel – the curtains opened – figuratively – on Duke’s fifth annual Innovation Jam.

Groups presented on the problems they were addressing, their proposed innovations, and how the innovations worked. There was also information about getting products into the market, varying economic analysis, next steps or detailed goals for the projection of the projects, and analysis of the investment they are currently seeking and for what purposes.

The first group pitched an idea about patient-centric blood draw and suggest a device to plug into existing peripheral draws to reduce the frequent poking and prodding that hospital patients often experience during their hospital stay when blood is needed for lab tests. Next up was a group who designed an intelligent microscope for automated pathology that has a programmable system and uses machine learning to automate pathological blood analysis that is currently highly time consuming. Third at bat was a group that made a UV light bag to clean surgical drain bags that frequently become colonized with bacteria and are quite frankly “nasty” – according to the presenter.

Batting cleanup was PILVAS – Peripherally Inserted Left Ventricular Vent Anticoagulation System – which is a device that would be accessory to VA ECMO support to reduce thromboembolism and stroke that are risks of ECMO. Fifth was the ReadyView and ReadyLift, a laparoscopic tool set that is much cheaper than current laparoscopic tools and methods, and because of its ability to be used with any USB compatible laptop, it would increase access to laparoscopic surgery in countries that have a high need for it. Last, but not least, was an innovation that is the first synthetic biometric osteochondral graft for knee cartilage repair that hopes to improve knee osteoarthritis surgical care as the first hydrogel with the same mechanical properties of cartilage.

Following a quick ten-minute break for investors to huddle around and discuss who should win the awards – $15,000 for Best Innovation and $15,000 for Best Presentation – the winners were announced. Drumroll, please.

ReadyView won Best Presentation and the synthetic osteochondral graft won Best Innovation. A pair of representatives from Microsoft were also in attendance – a first for the Innovation Jam – and awarded SalineAI, the group who designed the intelligent microscope with an independent award package.

Patel, the emcee, says we are in the midst of a fourth industrial revolution.

“What is the biggest cinema in the world?” Patel asked. “Netflix,” he says. Industries are reimagining themselves and healthcare is no exception.

What is the best healthcare system of the future going to look like? Of course, we really don’t know, but there are certainly people who are already doing more than just think about it.

Legendary Paleontologist Richard Leakey Visits Duke

Hoping to catch up with an old friend who is a professor at Duke, Richard Leakey accepted an invitation to speak at the university on Oct. 22, though he “gave up public speaking to a large extent many years ago.”

Richard E. Leakey visited Duke on Oct. 22, 2019.

Leakey, age 74, is a world-renowned pioneer in Paleoanthropology – the study of the human fossil record – and is also well-known for his involvement in Kenyan politics and lifelong efforts towards conservation and wildlife protection. Once, he famously burned twelve tons of elephant tusks that were confiscated from poachers, which gathered international attention and helped usher in a global ban on the ivory trade.

Leakey came to paleontology by heredity. He is one of an entire family of Paleo-pioneers. His mother, Mary, discovered a skull in Africa that was dated to 1.75 million years ago (MYA) in 1960. Leakey said that this “electrified interest in the origin story” – that is, the human origin story. When his father, Louis, showed that the “quite clever” ancient tools he had discovered were made around 1.75 MYA, the original idea that human origins began outside of Africa began to change.

Leakey said the British people were hoping that “if we had evolved … let it happen in England” and if not England, then Asia, but this was not to be the case. At first, Louis Leakey was ostracized because of his work and discoveries of human origins in Africa. This helped steer Richard away from academics because of the fights that he saw his father endure.

Leakey’s famous 1984 Kenyan discovery, “Turkana Boy,” a 1.5 million-year-old, nearly-complete specimen of Homo erectus. (Wikipedia)

Successfully achieving his self-described ambition to not finish high school, Richard Leakey was thrown out of school at age 16. Yet today he is accredited with many awards, has written at least eight books, and has advanced the Leakey family legacy of discovery. From 1968 to the present day, he and fellow workers have discovered enormous numbers of fossils of our ancestors along the East and West shores of Lake Turkana in Kenya, which have an age span from 4.5 MYA to our very recent ancestors, which Leakey calls “fossil us.”

Leakey described for the Duke audience in an overflowing auditorium at the Nasher Museum a scenario he facilitated with colleagues and students.

He had taken a group to a camp site to talk about evolution and asked them to perform some tasks. First, they were charged to make tools from stone. The following day, they were led to a freshly slaughtered goat. Leakey told his pupils to butcher the goat and remove the flesh from its carcass.

After several hours watching the individuals try to pull at the goat with their hands to no avail, Leakey suggested that they might use their new stone tools. So they did, but they still could not get through the animal’s tough hide, even with a blade.

He said that during human evolution, our imagination was turned on genetically and this gave early humans the “capability to think of things that weren’t.” There is lots of work to be done studying an ancient period over 3.5 million years that Leakey says lends itself to “early ancestry of speech, imagination, [and] cooperation.” He is hopeful for the knowledge and new understandings that will come from investigation of this period. 

“Why not ask someone to help you?” Leakey prompted again, and within an hour, nothing was left of the goat. The exercise demonstrated that though other monkeys and apes use stone, it is the human’s vocal communication and sense of working together that sets us apart, says Leakey.     

Leakey’s current project is a “mega-museum” to “cerebrate and celebrate the story of the African origin.” The origin story which his parents first provided crucial evidence for is hugely important to the African continent and to the people of Africa and because we have “desecrated our motherland,” he said. Leakey wants the museum to highlight stages of evolution, genetics, climate, ecology, other species, and extinctions.

An architectural rendering of Ngaren: The Museum of Humankind to be built near Nairobi. (Studio Libeskind )

Before moving into the panel and Q&A portion of his talk, which was moderated by Duke professors Steven Churchill and Anne Yoder, Leakey prompted the audience to think about climate change, asking why we do not think we need to save ourselves. If we die, then other species go with us.

“Don’t for a minute think that climate change isn’t a real crisis that we’re in together,” Leakey said, earning a round of applause.

Post by Cydney Livingston

Beyond Classroom Walls: Research as an Undergrad

“Science is slow,” says Duke undergraduate Jaan Nandwani. That’s one of the takeaways from her first experience with scientific research. For Nandwani, being part of a supportive lab makes it all worthwhile. But we’re getting ahead of ourselves. This statement needs context.

Nandwani, a prehealth sophomore, currently conducts research in the lab of neurologist Nicole Calakos, MD, PhD. The Calakos lab is focused on synaptic plasticity: changes that occur at the communication junctions between nerve cells in the brain. The lab researches how the brain responds to changes in experience. They also investigate the mechanistic mishaps that can occur with certain neurological conditions.

A neuron from a mouse brain. From Wikimedia Commons.

As a continuation of an 8-week summer research program she participated in earlier this year, Nandwani has been studying dystonia, a brain disorder that causes uncontrollable muscle contractions. She’s using western blot analysis to determine if the activity of a protein called eIF2α is dysregulated in the brain tissue of mice with dystonia-like symptoms, compared with their normal littermates. It is currently unclear if and when targeting the eIF2 signaling pathway can improve dystonia, as well as where in the brain “selective vulnerability” to the signaling occurs. If Nandwani is able to identify a specific region or time point “in which the pathway’s dysregulation is most predominant,” more effective drug therapy and pharmacological interventions can be used to treat the disorder. 

Outside of her particular project, Nandwani attends lab meetings, learning from and contributing to the greater Calakos lab community. Scientific work is highly collaborative and Nandwani’s experience is testament to that. Along with providing feedback to her own presentations in meetings and answering any questions she may have, Nandwani’s fellow labmates are always eager to discuss their projects with her, give her advice on her own work, and have helped her “develop a passion for what [she is] studying.” They’ve also helped her learn new and improved ways to conduct the western blot process that is so integral to her work. Though she admits it is tedious, Nandwani said that she enjoys being able to implement better techniques each time she conducts the procedure. She also says she is thankful to be surrounded by such a supportive lab environment.

It might seem hard to believe granted the scope and potential impacts of her work, but this is Nandwani’s first experience with research in a lab. She knew when coming to Duke that she wanted to get involved with research, but she says that her experience has surpassed any expectations she had – by far. Though she doesn’t necessarily foresee continuation of research in the form of a career and is more fascinated by clinical applications of scientific research, the experience cannot be replicated within a classroom setting. Beyond the technical skills that Nandwani has developed, she says that the important and valuable mentoring relationships she has gained simply couldn’t be obtained otherwise.

Duke undergraduate Jaan Nandwani doing research in the Calakos lab.

Nandwani hopes to continue in the Calakos lab for the remainder of her time at Duke – that’s two and a half more years. Though she will work on different projects, the quest to pose and answer scientific questions is endless – and as Nandwani said, science is slow. The scientific process of research takes dedication, curiosity, collaboration, failure, and a continued urge to grow. The scientific process of research takes time, and lots of it. Of course the results are “super exciting,” Nandwani says, but it is the experience of being part of such an amazing group of scholars and scientists that she values the most.

By Cydney Livingston

Meet Cydney Livingston: An Inquisitive Sophomore and Our Newest Blogger

My name is Cydney Livingston – Cydney with a C. I was born and raised in a rural part of North Carolina and retain my roots in the southern drawl of my voice. Though I haven’t declared yet, I am a sophomore at Duke pursuing a degree in both biology and history. And no, I am not a pre-health student. But at one point I certainly thought I might be. It was my first biomedical class in high school that truly spiked my interest in the magical (though actually very proven and not make-believe at all) world of science. I dropped my dream of going into marketing and knew then that in some capacity I would spend my life dedicated to the discipline of science.

Science endlessly answers and provokes questions of why and how. This is satisfying for someone as desperately curious about the world as I am, albeit equally frustrating at times. I was initially infatuated with how and why the human body functions as it does. I pushed myself to understand intricate details leading to the makeup, to the breakdown, to the human body as a whole. However, at some point following interests in pharmaceutical drug development and epidemiology (probably after reading Evolving Ourselves and Sapiens), I became deeply perplexed by evolution and ecology instead. I love humans, but I love other animals in their many shapes and sizes too. I also really love nature and want to be honest with myself about the things that make me the happiest. Social structures and behaviors, adaptation to environment, and conservation are a few things that really excite me right now.

I can give no specifics about my career projections – and trust me when I say many people have asked – but there is a high probability I will be performing research to quench the thirst I have for comprehending and unraveling the mysteries of the biological state of our world, its interactions, how we got to this point, and what our future may hold.

My love for science parallels that of my love for writing – which aids my frequent self-reflection, inquisitions, and creative works. In addition to writing for The Muse at Duke, I maintain a journal and extensions of my brain live in word documents tucked away in folders on my computer. Staying true to my passions, as well as to my deep desire for connecting with and learning from others, I sought out a position writing for the Duke Research Blog. Through this work I will grow as a scholar, have the chance to meet some of the most brilliant minds, and ultimately be able to give those who read my blogs a glimpse into the realm of research – a realm which alters lives, offers cognizance, and propels our societies in new directions each and every day.

By Cydney Livingston

Powered by WordPress & Theme by Anders Norén