Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Behavior/Psychology Page 12 of 28

Biology by the Numbers

Michael C. Reed was trained as a pure mathematician, but from the start, he was, as he explained to me, a “closet physiologist.” He’s a professor of mathematics at Duke, but he’s always wondered how the body works.

Michael Reed in his office

Reed explains an example to me: women have elbows that are bent when their arms are straightened, but men do not. He rationalized his own explanation: women have wide hips and narrow shoulders; their bodies are designed so their arms don’t knock into their sides when they walk. (That basically ended up being the answer.)

Still, Reed never really explored his interest in physiology until he was 40 years old, when he realized that if he wanted to explore something, he should just do it. Why not? He had tenure by that point, so it didn’t really matter what his colleagues thought. He was interested in physiology, but was a mathematician. The obvious answer was mathematical biology.

Now he uses mathematics to find out how various physiological systems work.

In order to decide on a research project, he works with a biologist, Professor Fred Nijhout. They meet for two hours every day and work together. They have lots of projects, but they also just talk science sometimes. That’s how they get their ideas, mainly focusing on things in cell metabolism that have to do with important public health questions.

Reed has been investigating dopamine and serotonin metabolism in the brain, in a collaborative project with Nijhout and Dr. Janet Best, a mathematician at The Ohio State University.

Maybe better math is going to help us understand the human brain

As he explained to me, the brain isn’t like a computer; you don’t know how it works and there are a lot of systems in play. Serotonin is one of them. Low serotonin concentration is thought to be one of the causes of depression. There’s a biochemical network that synthesizes, packages, and transfers serotonin in the brain.

He told me that his work consists of making mathematical models for systems like this that consist of differential equations for concentrations of different chemicals. He then experiments with the system of differential equations to understand how the system works together. It’s not really something you can learn by having it explained to you, he told me. You have to learn through practice.

In a way, biology doesn’t seem like it would be the most compatible science, especially with math. But as Reed explained to me, “Math is easy because it’s very orderly and organized. If you work hard enough, you can understand it.” Biology, on the other hand, “is a mess.”

Everything in biology is linked to everything else in a system of connectedness that ends up all tangled together, and it can be hard to identify how something happens in the human body. But Reed applies math – an organized construct – to understand biological systems.

In the end, Reed does what he does because it’s how we — as human beings — work. He has no regrets about the choices he’s made at all.Mathematical biology seems to be his calling — he’s more interested in understanding how things work, and that’s what he does when he works.

Or rather, he doesn’t really work; because, as he told me,“try to find something to do that you really like, and are passionate about,because if you do, it won’t seem like work.” Reed doesn’t see coming into work as a struggle. He’s excited about it every single day and “it’s because you want to do it, it’s fun.”

Guest Post by Rachel Qu, NCSSM 2019

Aging and Decision-Making

Who makes riskier decisions, the young or the old? And what matters more in our decisions as we age — friends, health or money? The answers might surprise you.

Kendra Seaman works at the Center for the Study of Aging and Human Development and is interested in decision-making across the lifespan.

Duke postdoctoral fellow Kendra Seaman, Ph.D. uses mathematical models and brain imaging to understand how decision-making changes as we age. In a talk to a group of cognitive neuroscientists at Duke, Seamen explained that we have good reason to be concerned with how older people make decisions.

Statistically, older people in the U.S. have more money, and additionally more expenditures, specifically in healthcare. And by 2030, 20 percent of the US population will be over the age of 65.

One key component to decision-making is subjective value, which is a measure of the importance a reward or outcome has to a specific person at a specific point in time. Seaman used a reward of $20 as an example: it would have a much higher subjective value for a broke college student than for a wealthy retiree. Seaman discussed three factors that influence subjective value: reward, cost, and discount rate, or the determination of the value of future rewards.

Brain imaging research has found that subjective value is represented similarly in the medial prefrontal cortex (MPFC) across all ages. Despite this common network, Seaman and her colleagues have found significant differences in decision-making in older individuals.

The first difference comes in the form of reward. Older individuals are likely to be more invested in the outcome of a task if the reward is social or health-related rather than monetary. Consequently, they are more likely to want these health and social rewards  sooner and with higher certainty than younger individuals are. Understanding the salience of these rewards is crucial to designing future experiments to identify decision-making differences in older adults.

A preference for positive skew becomes more pronounced with age.

Older individuals also differ in their preferences for something called “skewed risks.” In these tasks, positive skew means a high probability of a small loss and a low probability of a large gain, such as buying a lottery ticket. Negative skew means a low probability of a large loss and a high probability of a small gain, such as undergoing a common medical procedure that has a low chance of harmful complications.

Older people tend to prefer positive skew to a greater degree than younger people, and this bias toward positive skew becomes more pronounced with age.

Understanding these tendencies could be vital in understanding why older people fall victim to fraud and decide to undergo risky medical procedures, and additionally be better equipped to motivate an aging population to remain involved in physical and mental activities.

Post by undergraduate blogger Sarah Haurin

Post by undergraduate blogger Sarah Haurin

The Complicated Balance of Predators and Prey

If you knew there was a grizzly bear sitting outside the door, you might wait a while before going to fill up your water bottle, or you might change the way you are communicating with their other people in the room based on your knowledge of the threat.

Ecologists call this “predation risk,” in which animals that could potentially fall prey to a carnivore know this risk is present, and alter their habits and actions accordingly.

A yellow slider turtle.

A yellow slider turtle.

One way in which animals do this is through habitat use, such as a pod of dolphins that changes where they spend most of their time depending on the presence or absence of predators. Animals might also change their feeding habits and diving behavior because of predation risk.

Animals do this all of the time in the wild, but when predators are removed from ecosystems by hunting or over-fishing, the effect of their absence is felt all the way down the food chain.

For example, large amounts of algae growth on coral reefs can be traced back to over-fishing of large ocean predators such as sharks, who then don’t hunt smaller marine mammals like seals. As seal numbers increase, there are more of them to hunt smaller fish that feed on vegetation, which means fewer smaller fish or plankton to keep algal growth in check, and algae begins to grow unchecked.

Meagan Dunphy-Daly

Meagan Dunphy-Daly

This is a “trophic cascade” and it has large effects on ecosystems, Duke Marine Lab instructor Meagan Dunphy-Daly  t0ld the Sustainable Oceans Alliance last Thursday. She has performed research both in labs and in the field to study the effects that removing large predators have on marine ecosystems.

Dunphy-Daly discussed one lab experiment where 10 yellow-bellied slider turtle hatchlings were kept in tanks where they couldn’t see people or anything else on the outside. In real life, blue herons and other large birds prey on these turtle hatchlings, so the researchers made a model skull of a blue heron that they painted and covered with feathers.

Turtles are air-breathing, so each hatchling was given the option to sit where they could be at the surface of their tank and breathe, but this spot was also where the turtle hatchlings thought the bird beak might shoot down at any time to try to “eat” them.

Their options were to get air and risk getting hit by the bird beak, or diving down to the bottom of the tank to get food. During this experiment, Dunphy-Daly found that turtle hatchlings actually decreased their dive time and spent more time at the surface. If the turtles are continuously diving, they are expending lots of energy swimming back and forth between the surface and the bottom, she said, which means if the predator were to actually attack, they would have less energy left to use for a rapid escape.

Even when there is food at the bottom, when a predator is present, these turtles alter their activity by taking deep dives less frequently so as to not max out their aerobic limit before they actually need to escape a predator.

This is one way in which animals alter their behavior due to predation risk.

But let’s say that predators were disappearing in their real habitats, so turtles didn’t feel the need to build up these emergency energy reserves to escape them. They might dive down and feed more frequently, which would then decrease the amount of the vegetation they eat.

This in turn could have an effect on oxygen levels in the water because there would be fewer plants photosynthesizing. Or another species that feeds on the same plant could be out-competed by turtles and run out of food for their own populations.

The absence of large or small predators can have large impacts on ocean ecosystems through these complicated trophic cascades.

Victoria PriesterPost by Victoria Priester

Smart Phones Are the New Windows to the Soul

It’s one of those things that seems so simple and elegant that you’re left asking yourself, “Geez, why didn’t I think of that?”

Say you were trying to help people lose weight, prep for a surgery or take their meds every day. They’re probably holding a smartphone in at least one of their hands — all you need to do is enlist that ever-present device they’re staring at to bug them!

So, for example, have the health app send a robo-text twice a day to check in: “Did you weigh yourself?” Set up a group chat where their friends all know what they’re trying to accomplish: “We’re running today at 5, right?”

This is a screenshot of a Pattern Health app for pre-operative patients.

It’s even possible to make them pinky-swear a promise to their phone that they will do something positive toward the goal, like walking or skipping desert that day. And if they don’t? The app has their permission to lock them out of all their apps for a period of time.

Seriously, people agree to this and it works.

Two app developers on this frontier of personalized, portable “mHealth” told a lunchtime session  sponsored by the Duke Mobile App Gateway on Thursday that patients not only willingly play along with these behavioral modification apps, their behaviors change for the better.

The idea of using phones for health behavior came to pediatric hematologist Nirmish Shah MD one day while he attempted to talk to a 16-year-old sickle cell disease patient as she snapped selfies of herself with the doctor. Her mom and toddler sister nearby both had their noses to screens as well. “I need to change how I do this,” Shah thought to himself.

Pediatric hematologist Nirmish Shah MD

Pediatric hematologist Nirmish Shah MD is director of Duke’s sickle cell transition program.

Twenty health apps later, he’s running phase II clinical trials of phone-based interventions for young sickle cell patients that encourage them to stay on their medication schedule and ask them often about their pain levels.

One tactic that seems to work pretty well is to ask his patients to send in selfie videos as they take their meds each day. The catch? The female patients send a minute or so of chatty footage a day. The teenage boys average 13 seconds, and they’re grumpy about it.

Clearly, different activities may be needed for different patient populations, Shah said.

While it’s still early days for these approaches, we do have a lot of behavioral science on what could help, said Aline Holzwarth, a principal of the Center for Advanced Hindsight and head of behavioral science for a Durham health app startup called Pattern Health.

Aline Gruneisen Holzwarth

Aline Holzwarth is a principal in the Center for Advanced Hindsight.

“It’s not enough to simply inform people to eat better,” Holzwarth said. The app has to secure a commitment from the user, make them set small goals and then ask how they did, enlist the help of social pressures, and then dole out rewards and punishments as needed.

Pattern Health’s app says “You need to do this, please pick a time when you will.” Followed by a reward or a consequence.

Thursday’s session, “Using Behavioral Science to Drive Digital Health Engagement and Outcomes, was the penultimate session of the annual Duke Digital Health Week. Except for the Hurricane Florence washout on Monday, the week  has been a tremendous success this year, said Katie McMillan, the associate director of the App Gateway.

Quantifying Sleepiness and How It Relates to Depression

Sleep disturbance is a significant issue for many individuals with depressive illnesses. While most individuals deal with an inability to sleep, or insomnia, about 20-30% of depressed patients report the opposite problem – hypersomnia, or excessive sleep duration.

David Plante’s work investigates the relationship between depressive disorders and hypersomnolence. Photo courtesy of sleepfoundation.org

Patients who experience hypersomnolence report excessive daytime sleepiness (EDS) and often seem to be sleep-deprived, making the condition difficult to identify and poorly researched.

David Plante’s research focuses on a neglected type of sleep disturbance: hypersomnolence.

David T. Plante, MD, of the University of Wisconsin School of Medicine and Public Health, studies the significance of hypersomnolence in depression. He said the condition is resistant to treatment, often persisting even after depression has been treated, and its role in increasing risk of depression in previously healthy individuals needs to be examined.

One problem in studying daytime sleepiness is quantifying it. Subjective measures include the Epworth sleepiness scale, a quick self-report of how likely you are to fall asleep in a variety of situations. Objective scales are often involved processes, such as the Multiple Sleep Latency Test (MSLT), which requires an individual to attempt to take 4-5 naps, each 2 hours apart, in a lab while EEG records brain activity.

The MSLT measures how long it takes a person to fall asleep. Individuals with hypersomnolence will fall asleep faster than other patients, but determining a cutoff for what constitutes healthy and what qualifies as hypersomnolence has made the test an inexact measure. Typical cutoffs of 5-8 minutes provide a decent measure, but further research has cast doubt on this test’s value in studying depression.

The Wisconsin Sleep Cohort Study is an ongoing project begun in 1988 that follows state employees and includes a sleep study every four years. From this study, Plante has found an interesting and seemingly paradoxical relationship: while an increase in subjective measures of sleepiness is associated with increased likelihood of depression, objective measures like the MSLT associate depression with less sleepiness. Plante argues that this paradoxical relationship does not represent an inability for individuals to report their own sleepiness, but rather reflects the limitations of the MSLT.

Plante proposed several promising candidates for quantitative measures of excessive daytime sleepiness. One candidate, which is already a tool for studying sleep deprivation, is a ‘psychomotor vigilance task,’ where lapses in reaction time correlate with daytime sleepiness. Another method involves infrared measurements of the dilation of the pupil. Pupils dilate when a person is sleepy, so this somatic reaction could be useful.

High density EEG allowed Plante to identify the role of disturbed slow wave sleep in hypersomnolence.

Another area of interest for Plante is the signs of depressive sleepiness in the brain. Using high density EEG, which covers the whole head of the subject, Plante found that individuals with hypersomnolence experience less of the sleep cycle most associated with restoration, known as slow wave sleep. He identified a potential brain circuitry associated with sleepiness, but emphasized a need for methods like transcranial magnetic stimulation to get a better picture of the relationship between this circuitry and observed sleepiness.

By Sarah Haurin

Detangling Stigma and Mental Illness

Can you imagine a world without stigma? Where a diagnosis of autism or schizophrenia didn’t inevitably stick people with permanent labels of “handicap,” “abnormal,” “disturbed,” or “dependent”?

Roy Richard Grinker can. In fact, he thinks we’re on the way to one.

It’s a subject he’s studied and lectured on extensively—stigmas surrounding mental health conditions, that is. His expertise, influence, and unique insight in the field led him to April 12, where he was the distinguished speaker of an annual lecture commemorating Autism Awareness Month. The event was co-sponsored by the Duke Center for Autism and Brain Development, the Duke Institute for Brain Sciences, and the Department of Cultural Anthropology.

Roy Richard Grinker was the invited speaker to this year’s annual Autism Awareness Month commemorative lecture. Photo credit: Duke Institute for Brain Sciences

Grinker’s credentials speak to his expertise. He is a professor of Anthropology, International Affairs, and Human Sciences at George Washington University; he has authored five books, several New York Times op-eds, and a soon-to-be-published 600-page volume on the anthropology of Africa; he studied in the Democratic Republic of the Congo as a Fulbright scholar in his early career; and, in the words of Geraldine Dawson, director of the Center for Autism and Brain Development, “he fundamentally changed the way we think about autism.”

Grinker began with an anecdote about his daughter, who is 26 years old and “uses the word ‘autism’ to describe herself—not just her identity, but her skills.”

She likes to do jigsaw puzzles, he said, but in a particular fashion: with the pieces face-down so their shape is the only feature she can use to assemble them, always inexplicably leaving one piece out at the end. He described this as one way she embraces her difference, and a metaphor for her understanding that “there’s always a piece missing for all of us.”

Grinker and Geraldine Dawson, director of the Center for Autism and Brain Development, pose outside Love Auditorium in the minutes before his talk. Source: Duke Institute for Brain Sciences

“What historical and cultural conditions made it possible for people like Isabel to celebrate forms of difference that were a mark of shame only a few decades ago?” Grinker asked.  “To embrace the idea that mental illnesses are an essential feature of what it means to be human?”

He identified three processes as drivers of what he described as the “pivotal historical moment” of the decoupling of stigma and mental illness: high-profile figures, from celebrity talk-show hosts to the Pope, speaking up about their mental illnesses instead of hiding them; a shift from boxing identities into racial, spiritual, gender, and other categories to placing them on a spectrum; and economies learning to appreciate the unique skills of people with mental illness.

This development in the de-stigmatization of mental illness is recent, but so is stigma itself. Grinker explained how the words “normal” and “abnormal” didn’t enter the English vocabulary until the mid-19th century—the idea of “mental illness” had yet to make its debut.

“There have always been people who suffer from chronic sadness or had wildly swinging moods, who stopped eating to the point of starvation, who were addicted to alcohol, or only spoke to themselves.” Grinker said. “But only recently have such behaviors defined a person entirely. Only recently did a person addicted to alcohol become an alcoholic.”

Grinker then traced the development of mental illness as an idea through modern European and American history. He touched on how American slaveowners ascribed mental illness to African Americans as justification for slavery, how hysteria evolved into a feminized disease whose diagnoses became a classist tool after World War I, and how homosexuality was gradually removed from the Diagnostic and Statistical Manual of Mental Disorders (DSM) by secretly gay psychiatrists who worked their way up the rankings of the American Psychiatric Association in the 1960s and 70s.

Source: Duke Institute for Brain Sciences

Next, Grinker described his anthropological research around the world on perceptions of mental illness, from urban South Korea to American Indian tribes to rural villages in the Kalahari Desert. His findings were wide-ranging and eye-opening: while, at the time of Grinker’s research, Koreans viewed mental illness of any kind as a disgrace to one’s heritage, members of Kalahari Desert communities showed no shame in openly discussing their afflictions. Grinker told of one man who spoke unabashedly of his monthly 24-mile walk to the main village for antipsychotic drugs, without which, as was common knowledge among the other villagers, he would hear voices in his head urging him to kill them. Yet, by Grinker’s account, they didn’t see him as ill — “a man who never hallucinates because he takes his medicine is not crazy.”

I could never do justice to Grinker’s presentation without surpassing an already-strained word limit on this post. Suffice it to say, the talk was full of interesting social commentary, colorful insights into the history of mental illness, and words of encouragement for the future of society’s place for diversity in mental health. Grinker concluded on such a note:

“Stigma decreases when a condition affects us all, when we all exist on a spectrum,” Grinker said. “We see this in the shift away from the categorical to the spectral dimension. Regardless, we might need the differences of neurodiversity to make us, humans, interesting, vital, and innovative.”

Post by Maya Iskandarani

Better Butterfly Learners Take Longer to Grow Up

Emilie Snell-Rood studies butterflies to understand the factors that influence plasticity.

The ability of animals to vary their phenotypes, or physical expression of their genes, in different environments is a key element to survival in an ever-changing world.

Emilie Snell-Rood, PhD, of the University of Minnesota, is interested in why this phenomena of plasticity varies. Some animals’ phenotypes are relatively stable despite varying environmental pressures, while others display a wide range of behaviors.

Researchers have looked into how the costs of plasticity limit its variability. While many biologists expected that energetic costs should be adequate explanations for the limits to plasticity, only about 30 percent of studies that have looked for plasticity-related costs have found them.

Butterflies’ learning has provided insight into developmental plasticity.

With her model of butterflies, Snell-Rood has worked to understand why these researchers have come up with little results.

Snell-Rood hypothesized that the life history of an animal, or the timing of major developmental events like weaning, should be of vital importance in the constraints on plasticity, specifically on the type of plasticity involved in learning. Much of learning involves trial and error, which is costly – it requires time, energy, and exposure to potential predators while exploring the environment.

Additionally, behavioral flexibility requires an investment in developing brain tissue to accommodate this learning.

Because of these costs, animals that engage in this kind of learning must forgo reproduction until later in life.

To test the costs of learning, Snell-Rood used butterflies as a subject. Butterflies require developmental plasticity to explore their environments and optimize their food finding strategies. Over time, butterflies get more efficient at landing on the best host plants, using color and other visual cues to find the best food sources.

Studying butterfly families shows that families that are better learners have increased volume in the part of the brain associated with sensory integration. Furthermore, experimentally speeding up an organism’s life history leads to a decline in learning ability.

These results support a tradeoff between an organism’s developmental plasticity and life history. While this strategy is more costly in terms of investment in neural development and energy investment, it provides greater efficacy in adaptation to environment. However, further pressures from resource availability can also influence plasticity.

Looking to the butterfly model, Snell-Rood found that quality nutrition increases egg production as well as areas of the brain associated with plasticity.

Understanding factors that influence an animal’s plasticity is becoming increasingly important. Not only does it allow us to understand the role of plasticity in evolution up to this point, but it allows us to predict how organisms will adapt to novel and changing environments, especially those that are changing because of human influence. For the purposes of conservation, these predictions are vital.

By Sarah Haurin

ECT: Shockingly Safe and Effective

Husain is interested in putting to rest misconceptions about the safety and efficacy of ECT.

Few treatments have proven as controversial and effective as electroconvulsive therapy (ECT), or ‘shock therapy’ in common parlance.

Hippocrates himself saw the therapeutic benefits of inducing seizures in patients with mental illness, observing that convulsions caused by malaria helped attenuate symptoms of mental illness. However, depictions of ECT as a form of medical abuse, as in the infamous scene from One Flew Over the Cuckoo’s Nest, have prevented ECT from becoming a first-line psychiatric treatment.

The Duke Hospital Psychiatry program recently welcomed back Duke Medical School alumnus Mustafa Husain to deliver the 2018 Ewald “Bud” Busse Memorial Lecture, which is held to commemorate a Duke doctor who pioneered the field of geriatric psychiatry.

Husain, from the University of Texas Southwestern, delivered a comprehensive lecture on neuromodulation, a term for the emerging subspecialty of psychiatric medicine that focuses on physiological treatments that are not medication.

The image most people have of ECT is probably the gruesome depiction seen in “One Flew Over the Cuckoo’s Nest.”

Husain began his lecture by stating that ECT is one of the most effective treatments for psychiatric illness. While medication and therapy are helpful for many people with depression, a considerable proportion of patients’ depression can be categorized as “treatment resistant depression” (TRD). In one of the largest controlled experiments of ECT, Husain and colleagues showed that 82 percent of TRD patients treated with ECT were remitted. While this remission rate is impressive, the rate at which remitted individuals experience a relapse into symptoms is also substantial – over 50% of remitted individuals will experience relapse.

Husain’s study continued to test whether a continuation of ECT would be a potentially successful therapy to prevent relapse in the first six months after acute ECT. He found that continuation of ECT worked as well as the current best combination of drugs used.

From this study, Husain made an interesting observation – the people who were doing best in the 6 months after ECT were elderly patients. He then set out to study the best form of treatment for these depressed elderly patients.

Typically, ECT involves stimulation of both sides of the brain (bilateral), but this treatment is associated with adverse cognitive effects like memory loss. Using right unilateral ECT effectively decreased cognitive side effects while maintaining an appreciable remission rate.

After the initial treatment, patients were again assigned to either receive continued drug treatment or continued ECT. In contrast to the previous study, however, the treatment for continued ECT was designed based on the individual patients’ ratings from a commonly used depression scaling system.

The results of this study show the potential that ECT has in becoming a more common treatment for major depressive disorder: maintenance ECT showed a lower relapse rate than drug treatment following initial ECT. If psychiatrists become more flexible in their prescription of ECT, adjusting the treatment plan to accommodate the changing needs of the patients, a disorder that is exceedingly difficult to treat could become more manageable.

In addition to discussing ECT, Husain shared his research into other methods of neuromodulation, including Magnetic Seizure Therapy (MST). MST uses magnetic fields to induce seizures in a more localized region of the brain than available via ECT.

Importantly, MST does not cause the cognitive deficits observed in patients who receive ECT. Husain’s preliminary investigation found that a treatment course relying on MST was comparable in efficacy to ECT. While further research is needed, Husain is hopeful in the possibilities that interventional psychiatry can provide for severely depressed patients.

By Sarah Haurin 

First Population Health Conference Shares Energy, Examples

Logo: Population Health at Duke‘Population Health’ is the basis of a new department in the School of Medicine, a byword for a lot of new activity across campus , and on Tuesday the subject of a half-day symposium that attempted to bring all this energy together.

For now, population health means a lot of different things to a lot of different people.

The half-day symposium drew an overflow crowd of faculty and staff. (photo – Colin Huth)

“We’re still struggling with a good definition of what population health is,” said keynote speaker Clay Johnston, MD, PhD, dean of the new Dell School of Medicine in Austin, Texas. Smoking cessation programs are something most everyone would agree is taking care of the population outside of the clinic. But improved water quality? Where does that fit?

“We have an intense focus on doctors and their tools,” Johnston said. Our healthcare system is optimized for maximum efficiency in fee-for-service care, that is, getting the most revenue out of the most transactions. “But most of health is outside the clinic,” Johnston said.

Perhaps as a result, the United States pays much more for health care, but lives less well, he said. “We are noticeably off the curve,” when compared to health care costs and outcomes in other countries.

This graphic from a handout shared at the conference shows how population health spans the entire university.

This graphic from a handout shared at the conference shows how population health spans the entire university.

As an example of what might be achieved in population health with some re-thinking and a shift in resources, the Dell School went after the issue of joint pain with input from their engineering and business schools. Rather than diagnosing people toward an orthopedic surgery – for which there was a waitlist of about 14 months – their system worked with patients on alternatives, such as weight loss, physical therapy and behavioral changes before surgery. The 14-month backlog was gone in just three months. Surgeries still happen, of course, but not if they can be comfortably delayed or avoided.

“Payment for prevention needs serious work,” Johnston said. “You need to get people to buy into it,” but in diabetes or depression for example, employers should stand to gain a lot from having healthier employees who miss fewer days, he said.

Health Affairs Chancellor Eugene Washington commented several times, calling the discussion “very interesting and very valuable.” (photo -Colin Huth)

Other examples flowed freely the rest of the afternoon. Duke is testing virtual ‘telemedicine’ appointments versus office visits. Evidence-based prenatal care is being applied to try to avoid expensive neonatal ICU care. Primary care and Emergency Department physicians are being equipped with an app that helps them steer sickle cell patients to appropriate care resources so that they might avoid expensive ED visits.

Family practitioner Eugenie Komives, MD, is part of a team using artificial intelligence and machine learning to try to predict which patients are most likely to be hospitalized in the next six months. That prediction, in turn, can guide primary care physicians and care managers to pay special attention to these patients to help them avoid the hospital. The system is constantly being evaluated, she added. “We don’t want to be doing this if it doesn’t work.”

Community health measures like walkability and grocery stores are being mapped for Durham County on a site called Durham Neighborhood Compass, said Michelle Lyn, MBA, chief of the division of community health. The aim is not only to see where improvements can be made, but to democratize population health information and put it in peoples’ hands. “(Community members) will have ideas we never could have thought of,” Lyn said. “We will be able to see change across our neighborhoods and community.”

Patient input is key to population health, agreed several speakers. “I don’t think we’ve heard them enough,” said Paula Tanabe, PhD, an associate professor of nursing and medicine who studies pain and sickle cell disease.  “We need a bigger patient voice.”

Health Affairs Chancellor and Duke Health CEO Eugene Washington, MD, has made population health one of the themes of his leadership. “We really take seriously this notion of shaping the future of population health,” he said in his introductory remarks. “When I think of the future, I think about how well-positioned we are to have impact on the lives of the community we serve.”

Lesley Curtis, PhD, chair of the newly formed Department of Population Health Sciences in the School of Medicine, said Duke is creating an environment where this kind of work can happen.

“I, as an organizer of this, didn’t know about half of these projects today!” Curtis said. “There’s so much going on at an organic level that the challenge to us is to identify what’s going on and figure out how to go forward at scale.”

Post by Karl Leif Bates

How a Museum Became a Lab

Encountering and creating art may be some of mankind’s most complex experiences. Art, not just visual but also dancing and singing, requires the brain to understand an object or performance presented to it and then to associate it with memories, facts, and emotions.

A piece in Dario Robleto’s exhibit titled “The Heart’s Knowledge Will Decay” (2014)

In an ongoing experiment, Jose “Pepe” Contreras-Vidal and his team set up in artist Dario Robleto’s exhibit “The Boundary of Life Is Quietly Crossed” at the Menil Collection near downtown Houston. They then asked visitors if they were willing to have their trips through the museum and their brain activities recorded. Robleto’s work was displayed from August 16, 2014 to January 4, 2015. By engaging museum visitors, Contreras-Vidal and Robleto gathered brain activity data while also educating the public, combining research and outreach.

“We need to collect data in a more natural way, beyond the lab” explained Contreras-Vidal, an engineering professor at the University of Houston, during a talk with Robleto sponsored by the Nasher Museum.

More than 3,000 people have participated in this experiment, and the number is growing.

To measure brain activity, the volunteers wear EEG caps which record the electrical impulses that the brain uses for communication. EEG caps are noninvasive because they are just pulled onto the head like swim caps. The caps allow the museum goers to move around freely so Contreras-Vidal can record their natural movements and interactions.

By watching individuals interact with art, Contreras-Vidal and his team can find patterns between their experiences and their brain activity. They also asked the volunteers to reflect on their visit, adding a first person perspective to the experiment. These three sources of data showed them what a young girl’s favorite painting was, how she moved and expressed her reaction to this painting, and how her brain activity reflected this opinion and reaction.

The volunteers can also watch the recordings of their brain signals, giving them an opportunity to ask questions and engage with the science community. For most participants, this is the first time they’ve seen recordings of their brain’s electrical signals. In one trip, these individuals learned about art, science, and how the two can interact. Throughout this entire process, every member of the audience forms a unique opinion and learns something about both the world and themselves as they interact with and make art.

Children with EEG caps explore art.

Contreras-Vidal is especially interested in the gestures people make when exposed to the various stimuli in a museum and hopes to apply this information to robotics. In the future, he wants someone with a robotic arm to not only be able to grab a cup but also to be able to caress it, grip it, or snatch it. For example, you probably can tell if your mom or your best friend is approaching you by their footsteps. Contreras-Vidal wants to restore this level of individuality to people who have prosthetics.

Contreras-Vidal thinks science can benefit art just as much as art can benefit science. Both he and Robleto hope that their research can reduce many artists’ distrust of science and help advance both fields through collaboration.

Post by Lydia Goff

Page 12 of 28

Powered by WordPress & Theme by Anders Norén