Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Immunology Page 1 of 2

From Immune Responses to Private Equity, New Series Offers “Research On Tap”

Sticky post

On every third Thursday of the month, Devil’s Krafthouse is host to Research on Tap: a series that gives Duke researchers, from undergraduates to postdoctoral fellows, the opportunity to present their work in a casual setting. It may seem odd for the procedures of academia to make their way into a space for socialization and entertainment, but this situation allows individuals to practice speaking publicly to a general audience under a short time limit–good conditions for developing their “research elevator pitch.” These were the pitches on October 17:

As it’s name suggests, Cv is a bacterium violet in color. Photo courtesy of Dr. Edward Miao and Dr. Carissa Harvest.

Jacqueline Trujillo, a Ph.D. student in the Department of Molecular Genetics and Microbiology, who is part of Dr. Edward Miao’s lab, presented her research on immune cell response to the bacterium Chromobacterium violaceum (Cv). Being an environmental pathogen, Cv usually resides in the soil of tropical and subtropical areas. While disease in humans is rare, the mortality rate is high in immunocompromised individuals.   

“The Miao Lab was initially studying pyroptosis, a form of cell death that occurs during infection, when they discovered Cv-induced granulomas,” Trujillo said. Granulomas are specialized structures that are formed to contain and eradicate pathogens, but they can range in the arrangement and type of cells they consist of; one induced by tuberculosis infection, for example, would include adaptive immune cells like T and B cells. However, when the pathogen inducing them is Cv, only innate immune cells are present: neutrophils in the inner cluster and inflammatory macrophages in the outer cluster. When Cv is detected, neutrophils are the first to flock to the site of infection in a “toxic swarm.”  The neutrophils themselves are typically able to effectively kill microbes even before granuloma formation. “These are one of the most toxic defending cell types in the immune system,” Trujillo said.  

Despite this, the lab observed something unusual: these neutrophils failed to kill off the Cv bacteria, which continued to replicate despite the swarm. The lab ultimately saw Cv eliminated by the innate granulomas within about 21 days, but the ability to survive the neutrophils is what Trujillo now aims to understand. Such a feat from an environmental bacterium comes as a surprise, being “something more characteristic of the causative agent [Yersinia] of the bubonic plague,” Trujillo said. A comparison between the proteins CopH and YopH, virulence effectors in Cv and Yersinia respectively, reveals lots of similarities between the two. Trujillo hypothesizes that CopH is part of the secret to how Cv disarms the immune system’s defenses.

The role of virulence effectors is generally “aid[ing] in survival, invasion, and suppressing immune responses.” Through needle-like structures, bacteria inject these proteins into a host cell. A cell responds to this in two main ways. It dies–initiating pyroptosis to prevent the pathogen from replicating inside the cell.  Second, it signals for help by making chemical messengers called inflammatory cytokines.  Investigating the first response is what led the Miao Lab to Cv-induced granulomas.

Now, the lab is interested in understanding the regulatory signals that form the granuloma–and the role that inflammatory cytokines might play, if any. In addition to testing her hypothesis on CopH, Trujillo intends to determine if neutrophils respond to Cv’s initial survival by producing the cytokine IL-18, thus recruiting immune cells to the infection site. This would help the Miao Lab confirm their idea that the neutrophils’ failure to clear Cv is what prompts the process of granuloma formation.  

With much still unknown in the area of granuloma biology, Cv provides an “excellent model for studying immune cell biology and characterizing bacterial virulence effectors,” Trujillo said.  

Though it happens that many Research On Tap speakers are in the sciences, the program isn’t discipline-specific. Our second researcher of the evening, Sungil Kim, studies a far different field from Jacqueline.  

Photo courtesy of Hong Chung.

As a Ph.D. student in Finance at the Fuqua School of Business, Kim is looking at the effects of a growing trend in recent years: private equity (PE) firms acquiring healthcare companies. His focus is on what’s known as the “buy-and-build”, as this business strategy is often used by such firms entering the healthcare sector. The scenario typically looks like this: a private equity firm first acquires a large existing company, called the platform company or “first deal.” They’ll then acquire several smaller companies, or “add-on deals,” in order to expand the platform company’s operations.  

Since private equity firms buy businesses with the eventual goal of selling them at a profit, their primary focus is increasing efficiency to reduce costs. On one hand, these buyouts might be seen as beneficial for languishing businesses in need of operation enhancements. But within the healthcare sector, many worry the resultant cost-cutting will lead to declining standards of care for patients.   

Kim set out to investigate if operational improvements are sustainable across multiple acquisitions within the buy-and-build framework. The simple answer? No. 

Kim confirmed that, on average, private equity firms improve the operational performance of hospitals without hurting quality, “a finding that agrees with some of the previous literature.” Yet, one only needs to take a closer look into the sequence of deals to uncover a different, more complicated story.  

To arrive at his answer, Kim considered three main factors–operational efficiency, profitability and quality–in both the platform company and add-on companies. Platforms, or first acquisitions, did see success in performance, but this came with what appears to be a trade-off, as the first two factors increased while quality went down. As in, quality of healthcare. From one of Kim’s graphs, it was apparent that occurrences of four of the six health outcomes measured, including mortality and remission of heart failure, increased in such first deal situations.  

Meanwhile, results for the add-ons changed little before and after the buyout, meaning that the initial success from the platform didn’t carry over to later acquisitions, even as reduced costs did. A potential reason for this inability to replicate success, Kim explained, is that these cost savings may come from reducing the number of patients and services, instead of truly improving the efficiency of operations. 

In contrast to academic journals that display research that’s been in the works for years, Research on Tap brings us closer to working papers in their ongoing, exploratory stages. While it’s difficult to draw wider conclusions from Kim’s findings just yet, and important to remember the specific first deal context of this study, research like his helps us further understand the issues facing improvement of our healthcare system and where private equity plays a role.

If you’re interested in learning something new and free Krafthouse bites, swing by and attend a session–the next one occurs on November 21, 2024 at 5 p.m. The program welcomes prospective speakers to place themselves on the waitlist for a spot.

By Crystal Han, Class of 2028

40 Years in Global Health – an Interview With Dr. John Bartlett

Sticky post
Dr. John Bartlett, Professor of Medicine and Global Health Researcher

In your retirement, would you ever hold four Zoom calls every week with colleagues?  

To be fair, Dr. John Bartlett is not technically retired. He is employed by Duke at the 20% level and continues to serve as a Professor of Medicine. However, his busy schedule, which also includes 2-3 months in Tanzania every year and writing grants to support research education efforts, in no way resembles the glorified picture of retirement many of us imagine! 

Fellow freshmen, we may be in for the long haul. 

Before I dive into my interview with Dr. Bartlett, I must acknowledge the incredible enthusiasm he showed in response to my invitation to an interview. Even as cable lines are down in western North Carolina, where he resides, due to the impact of Hurricane Helene, he still offered to keep our original interview time and made himself fully accessible to my questions. I extend my sincere gratitude to Dr. Bartlett for his time, and it is only just for me to relay his thoughts to our readers at large. 

For students unfamiliar with Dr. Bartlett’s background or professional experiences, he has been a Duke faculty member since the 1980s, serving as both a physician in infectious diseases and internal medicine and a professor. His lengthy career traversed continents, having become deeply involved in international HIV/AIDS research and treatment since the 2000 World AIDS conference held in Durban, South Africa. 

“As I traveled to South Africa, I witnessed the profound disparities between clinical outcomes for patients in the U.S., who were thriving, and [those in] the continent most severely impacted by HIV, where no treatment was available,” said Dr. Bartlett, recalling his transition to international work. “We reckoned that [the] concept of research with service could be applicable with an African partner,” he added, which led him to spend two-thirds of the next decade in Tanzania, focusing on this new partnership.  

Picture of the Kilimanjaro Christian Medical Centre, where Dr. Bartlett conducted most of his research and education efforts in Tanzania

Captivated by Dr. Bartlett’s unique experiences, I inquired why he became involved in Tanzania, a country halfway across the globe. To my surprise, it turned out that in the early 2000s, faculty and students at Duke held a strong inclination towards advancing global health research. At the same time, researchers also sought to expand the scope of their activities overseas. Dr. Bartlett shared what was perhaps the most important reason last: “I have to credit my wife, a social worker, who was also quite committed to international work.”  

I learned much about global health throughout the interview. When Dr. Bartlett shared statistics showing 100% effectiveness of certain HIV/AIDS treatments currently offered in lower-income countries, I was stunned. From no access to treatment a few decades ago to successful management of the disease today, there has been remarkable and swift progress that is saving millions of lives. Of course, there are still barriers to treatment including cultural norms, “ubiquitous” stigma, lack of testing resources, and cost. However, the global health field is advancing every day, with newfound knowledge regarding protective factors against HIV transmission helping to further lower mortality rates.  

Discussing Duke’s global health efforts at large, Dr. Barlett was quick to point out the diversity of current projects around the world. “I would refer you to the website for the latest list of countries because I can’t keep up with the continuing growth!” Upon a quick search, this sentiment makes sense: Duke works in more than 40 countries and there are more than 100 active projects. “I am especially proud to see that [the institute’s work] is not limited to a single geographic region or a single topic”, Dr. Bartlett added, reflecting how projects “run the gammit from infectious diseases to non-communicable diseases to cancer to mental health to health systems strengthening.”  

By this point in the article, maybe some engineer readers are yearning for a message pertaining to their academic interests. Don’t worry, Dr. Bartlett talked about your importance in global health work during the conversation too! “There are quite a few BME professors who work with students to develop practical, low-cost solutions to common global health problems,” he said. From rapid diagnostic tests to laparoscopes, the BME department has played a crucial role in the Global Health Institute’s efforts. And these engineering projects are still active: for students desiring to involve themselves in this work, Dr. Bartlett recommends reaching out to Dr. Ann Saterbak, a Biomedical Engineering professor who coordinates many opportunities.  

Before I conclude, I would like to share a quote from Dr. Kathy Andolsek, professor of family medicine, discussing the character, expertise, and work of Dr. Bartlett: 

“He was a dedicated researcher and clinician and an early pioneer in HIV/AIDS. [As a] primary doc, I [worked] with him to get my patients into his clinical trials… so we ‘shared’ many patients. He was inspirational to students and a great listener.” 

Thank you, Dr. Bartlett, for your tireless work on HIV/AIDS treatment around the world. As an educator, researcher, and clinician, you have contributed much to the betterment of health outcomes for patients. Your commitment towards this noble cause and desire to help Tanzanian counterparts become independent in their research encourage all of us, medical students and non-medical students alike, to persistently pursue goals we believe in.  

Stone Yan, class of 2028

Duke’s Most-Cited — The Scholars Other Scientists Look To

It’s not enough to just publish a great scientific paper.

Somebody else has to think it’s great too and include the work in the references at the end of their paper, the citations. The more citations a paper gets, presumably the more important and influential it is. That’s how science works — you know, the whole standing-on-the-shoulders-of-giants thing.

So it always comes as a chest swelling affirmation for Dukies when we read all those Duke names on the annual list of Most Cited Scientists, compiled by the folks at Clarivate.

This year is another great haul for our thought-leaders. Duke has 30 scientists among the nearly 7,000 authors on the global list, meaning their work is among the top 1 percent of citations by scientific field and year, according to Clarivate’s Web of Science citation index.

As befits Duke’s culture of mixing and matching the sciences in bold new ways, most of the highly cited are from “cross-field” work.

Duke’s Most Cited Are:

Biology and Biochemistry

Charles A. Gersbach       

Robert J. Lefkowitz         

Clinical Medicine

Scott Antonia

Christopher Bull Granger             

Pamela S. Douglas           

Adrian F. Hernandez      

Manesh R. Patel               

Eric D. Peterson

Cross-Field

Chris Beyrer

Stefano Curtarolo

Renate Houts 

Tony Jun Huang  

Ru-Rong Ji

Jie Liu

Jason Locasale  

Edward A. Miao

David B. Mitzi    

Christopher B. Newgard

John F. Rawls   

Drew T. Shindell

Pratiksha I. Thakore       

Mark R. Wiesner              

Microbiology

Barton F. Haynes             

Neuroscience and Behavior

Quinn T. Ostrom              

Pharmacology and Toxicology

Evan D. Kharasch

Plant and Animal Science

Xinnian Dong    

Sheng Yang He                 

Psychiatry and Psychology

Avshalom Caspi

William E. Copeland

E. Jane  Costello               

Terrie E. Moffitt

Social Sciences

Michael J. Pencina          

John W. Williams              

Congratulations, one and all! You’ve done us proud again.

Meet New Blogger Jakaiyah, an infectious disease enthusiast

Hello, my name is Jakaiyah Franklin, and I am a sophomore here at Duke University. In terms of my major, I am undecided, but I do know my passion lies in biology, science communication, and environmental science.

Outside of classes, I am the treasurer for the Duke Chapter of the NAACP and LLC leader for the Stem Pathways for Inclusion, Readiness, and Excellence (SPIRE) program. Last year I was the stage manager for two Hoof n Horn productions.

This is the Rocky Horror Picture Show company after finishing our last show.

This year, I will start a research position along with this research blogging position.

In a more personal sense, I am the youngest of three and a proud aunt. Right now, I say I am from Texas, even though I have lived in Georgia, South Carolina, Germany, and presently North Carolina. If someone ever asked me, I would say that Germany holds my most memorable memories; however, I have grown into a better version of myself in each place I have lived. Other than school, I like to read and watch House of the Dragon and the earlier seasons of The Game of Thrones. I prefer to study outside or in a place where natural light is abundant. I also love learning new things pertaining to science, specifically infectious diseases.

My view of Muhuru Bay, Kenya, where I spent the summer after my first year at Duke. That’s Lake Victoria in the distance.

I find diseases fascinating, and I believe they are our natural predators. I want to be able to not only understand them, but also, I want to help prevent them. If one were to have a favorite type of disease to study, mine would be zoonotic diseases. They are interesting because the act of a virus being able to jump from a host like a rat to a human is captivating to me.

After graduating from Duke, I want to earn a master’s in public health or a Ph.D. in epidemiology, virology, or infectious disease to feed my curiosity about diseases. However, before I can even decide what Ph.D. or master’s I want to earn, my current goal is to decide on my major.

Jakaiyah Franklin

I do like to think ahead, so, for my very distant career, I know I want to be able to see infectious diseases in both the lab and in the places where they are infecting populations. I want my research to be digestible for the general population because, as seen with both COVID and Monkeypox, science can be easily misinterpreted if not delivered appropriately. I want to prevent this occurrence from happening to me by learning more about science communication and actively improving my communication skills.

I hope this blogging position will expose me to infectious disease research or general public health research. With this new understanding of the research, I hope this position will also educate me on how to inform others so that they can enjoy and understand the science.

Post by Jakaiyah Franklin, Class of 2025

Quorum Sensing: The Social Network of Bacteria

Dr. Bonnie L. Bassler, the Chair of Molecular Biology at Princeton University, is an advocate for diversity in science.

Bonnie Bassler of Princeton University

Throughout her presentation of the Ingrid Daubechies Lecture on Jan. 31 during Research Week, she emphasized that the diversity of her scientific team allowed every lab member to contribute to different steps of the process of studying quorum sensing, a form of microbial communication. (Watch her talk.)

Bacteria are everywhere. They’re sitting at the tables you sit at, burrowing in the clothes you wear and unfortunately, also crawling around on your skin. For a long time, they’ve had a pretty bad reputation, and for good reason! They have caused plagues that have wiped out masses across the globe, driven up breath mint sales by thriving in your mouth and mutated into every biologist’s Boogeyman when you try to kill them with antibiotics – super bugs!

However, the bacterial redemption arc is also quite compelling. “Good guy” bacteria in the gut help us break down food, produce essential vitamins and also sometimes fight off their evil siblings.

So, good or bad, the impact of bacteria in our daily lives is undeniable. But how does a microscopic little being have the capacity to influence the macroscopic world so greatly?

It doesn’t. At least, not by itself.

Lactococcus lactis is one of the starter bacteria in a cheese culture!

A bacterium never works alone because its strength lies in its numbers! Groupwork and communication (as any Pratt star going through recruiting season will swear to their interviewers) are what make bacteria so powerful. A bacterium by its lonesome will act differently than a bacterium surrounded by its daughters, sisters and cousins (bacterial family tree dynamics can get a little unusual).

Knowing that bacteria optimize their behaviors to work efficiently in a group answers the question of how they are so powerful, but it raises another.

How do bacteria know when they have company?

In a world where social media helps us stay connected, it is easy to take rapid status updates for granted. But for tech-deprived microbial colony, how does one member gauge the population of their surroundings? This question is one that Bassler’s lab answered: with a special chemical compound called autoinducers.

Autoinducers are little chemical signaling molecules that each bacterium sends out into its immediate environment. These molecules allow for quorum sensing, or cell-to-cell communication, to take place among bacteria.

Basic quorum sensing: How bacteria know who’s around them. (Nidhi Srivaths)

Every bacterium senses changes in the concentration of these autoinducers in their surroundings. Sensing a sudden increase in autoinducer concentration will change a bacterium’s gene expression, protein synthesis, and consequently, behavior. It will adapt to group behavior, while a bacterium that senses a drop in autoinducers will adapt to individual behavior.

Bacteria not only sense how many others are around them but also who their neighbors are. Autoinducers are universal to both Gram positive and negative bacteria and are unique to the type of bacteria that produce them.

This provides the bacterium with qualitative information on the population of its surroundings. Are they friends or foes?

Quorum sensing also includes nametags so bacteria can tell friend from foe. (Nidhi Srivaths)

In marine vibrio (a genus of Gram-negative bacteria), Bassler’s lab found that quorum sensing could perform intra-species, intra-genus and inter-species identification. This additional information helps the microbes adjust their behavior – from being friendly and supportive towards their relatives to being aggressive and competitive with their enemies.

Bassler provided a real-world perspective on quorum sensing. One species of the vibrio genus, Vibrio cholerae, is responsible for causing Cholera a deadly food and water-borne disease that has plagued low- and middle-income countries for centuries.

When the cholera bacteria enter the host, they are highly virulent and create a sticky biofilm around themselves that helps them clump into aggregates. Their cell density increases with bacterial division until the bacteria sense a certain concentration of autoinducers. Then their gene expression is modified to reduce virulence and biofilm production and the bacterial gene expression patterns shift to escape mechanisms. The bacteria soon break out in large numbers in search of a new host. (Their human host has voluminous, watery diarrhea in response and that becomes the vector for infecting new hosts.)

While the sequence of events that occurred in a cholera infection was known, the discovery of quorum sensing in V. cholerae opens doors for possible treatments, Bassler said. As bacterial communication sets the cycle of infection and division in motion, interfering with the autoinducers produced or disrupting bacteria’s ability to sense them sets the stage for innovative therapies for several infectious diseases.

Quorum sensing is another step towards understanding the world of the tiny microorganisms that influence our world and Bassler and her team are another example of the incredible research that can come from diverse teams in science.

Post by Nidhi Srivaths, Class of 2024

Medicine Under a Microscope

Duke Research Week 2022 featured a range of speakers from across all disciplines. The Lefkowitz Distinguished Lecture on January 31st highlighted some of our favorite things here at Duke Research Blog: ingenuity and perspective. 

Dr. Huda Yahya Zoghbi’s career spans decades; her Wikipedia page sports an “Awards and Honors” section that takes up my entire computer screen. She is a geneticist, neuroscientist, pediatric neurologist, pharmaceutical executive, and literature lover. Her presentation kicked off 2022 Research Week with a discussion of her work on Rett Syndrome. (View the session)

Rett Syndrome is a rare genetic disorder. The gene that researchers identified as the driver of the syndrome is MeCP2, which is especially active in brain cells. Certain mutations of this one gene can be responsible for a loss of speech, development issues, and persistent fidgeting. 

This image has an empty alt attribute; its file name is _Sk5Y-Q39YYuBd_Ntz_77pXwX8uwtEhTnl4yokbul2AdWHu0xpP_mTKi8mQQHlG7GjmP32Nc4xb1oq-InXReJVfbBai5DF8Enf6LvkuPNZlPou9rc5RCjjjc6B_fRj1oCaVMGWCS
The MeCP2 protein. Image: Wikipedia Commons

Children with Rett Syndrome faced chronic misdiagnosis, and even with proper care were limited by a lack of research.

Duke’s Dr. Robert Lefkowitz introduced Zoghbi at the beginning of the seminar and explained how she came to become the leading expert on this relatively unknown disorder. After completing medical school in Beirut in the midst of the ravaging Lebanese Civil War, she came to Texas Children’s Hospital, where she was able to observe and diagnose her first case of the syndrome, a process spurred by a simple interest in a newly-published journal article.

Holistic knowledge of Rett Syndrome is completely dependent on genetic research. A mutation on the MeCP2 gene causes errors in transcription, the reading out of DNA in your cells which leads to the production of proteins.

The mutated gene’s MeCP2 protein is then lacking the ability to do its job, which is helping other genes be expressed, or actively transcribed.

It’s a vicious cycle; like when you go to sleep late one night, so you sleep in the next day, then go to sleep late the next night, then sleep in the next day, and so forth.

In order to simulate and measure the effect of different kind of mutations on the MeCP2 gene, Zoghbi and her team studied genetically modified mice. While Rett Syndrome is caused by a lack of MeCP2 function, an overactive MeCP2 gene causes MeCP2 duplication syndrome. Varying degrees of gene efficiency then produce varying degrees of severity in the syndrome’s traits, with fatality at either end of the curve.  

Varying degrees of phenotype severity.

Zoghbi’s talk focused mainly on the mechanics of the disorder on a genetic level, familiar territory to both Nobel Laureate Lefkowitz and Duke Medicine Dean Mary Klotman, who shared some discussion with Zoghbi.

This medicine on a microscale is applicable to treating genetic disorders, not just identifying them. Zoghbi has been able to experimentally correct MeCP2 duplication disorder in mice by modifying receptors in a way that reverses the effects of the disorder.

The symptoms of Rett Syndrome are physical; they present themselves as distinct phenotypes of a subtle difference in genotype that’s too small to see. The field of genetics in medicine is responsible for making that connection.

Post by Olivia Ares, Class 2025

This image has an empty alt attribute; its file name is ARES_Olivia.jpg

Duke has 38 of the World’s Most Highly-Cited Scientists

Peak achievement in the sciences isn’t measured by stopwatches or goals scored, it goes by citations – the number of times other scientists have referenced your findings in their own academic papers. A high number of citations is an indication that a particular work was influential in moving the field forward.

Nobel laureate Bob Lefkowitz made the list in two categories this year.

And the peak of this peak is the annual “Highly Cited Researchers” list produced each year by the folks at Clarivate, who run the Institute for Scientific Information. The names on this list are drawn from publications that rank in the top 1% by citations for field and publication year in the Web of Science™ citation index – the most-cited of the cited.

Duke has 38 names on the highly cited list this year — including Bob Lefkowitz twice because he’s just that good — and two colleagues at the Duke NUS Medical School in Singapore. In all, the 2021 list includes 6,602 researchers from more than 70 countries.

The ISI says that US scientists are a little less than 40 percent of the highly cited list this year – and dropping. Chinese researchers are gaining, having nearly doubled their presence on the roster in the last four years.

“The headline story is one of sizeable gains for Mainland China and a decline for the United States, particularly when you look at the trends over the last four years,” said a statement from David Pendlebury, Senior Citation Analyst at the Institute for Scientific Information. “(This reflects) a transformational rebalancing of scientific and scholarly contributions at the top level through the globalization of the research enterprise.”

Without further ado, let’s see who our champions are!

Biology and Biochemistry

Charles A. Gersbach

Robert J. Lefkowitz

Clinical Medicine

Pamela S. Douglas

Christopher Bull Granger

Adrian F. Hernandez

Manesh R.Patel

Eric D. Peterson

Cross-Field

Richard Becker

Antonio Bertoletti (NUS)

Yiran Chen

Stefano Curtarolo

Derek J. Hausenloy (NUS)

Ru-Rong Ji

Jie Liu

Jason W. Locasale

David B. Mitzi

Christopher B. Newgard

Ram Oren

David R. Smith

Heather M. Stapleton

Avner Vengosh

Mark R. Wiesner

Environment and Ecology

Emily S. Bernhardt

Geosciences

Drew T. Shindell

Immunology

Edward A. Miao

Microbiology

Barton F. Haynes

Neuroscience and Behavior

Quinn T. Ostrom

Pharmacology and Toxicology

Robert J. Lefkowitz

Plant and Animal Science

Xinnian Dong

Sheng Yang He

Philip N. Benfey

Psychiatry and Psychology

Avshalom Caspi

E. Jane Costello

Honalee Harrington

Renate M. Houts

Terrie E. Moffitt

Social Sciences

Michael J. Pencina

Bryce B. Reeve

John W. Williams

Post by Karl Bates

Most Highly Cited List Includes 37 from Duke

Five of the ten Duke women included in the most highly-cited list this year. Their scholarly publications are viewed as important and influential by their peers. (Clockwise from upper left: Costello, Curtis, Dawson, Bernhardt, Moffitt)

Duke’s leading scholars are once again prominently featured on the annual list of “Most Highly Cited Researchers.”

Thirty-seven Duke faculty were named to the list this year, based on the number of highly cited papers they produced over an 11-year period from January 2009 to December 2019.  Citation rate, as tracked by Clarivate’s Web of Science, is an approximate measure of a study’s influence and importance.

Barton Haynes

Two Duke researchers appear in two categories: Human Vaccine Institute Director Barton Haynes, and Michael Pencina, vice dean of data science and information technology in the School of Medicine.

And two of the Duke names listed are new faculty, recruited as part of the Science & Technology initiative: Edward Miao in Immunology and Sheng Yang He in Biology.

Michael Pencina

This year, 6,127 researchers from 60 countries are being recognized by the listing. The United States still dominates, with 41 percent of the names on the list, but China continues to grow its influence, with 12 percent of the names.

Clinical Medicine:

Robert M. Califf, Lesley H. Curtis, Pamela S. Douglas, Christopher Bull Granger, Adrian F. Hernandez, L. Kristen Newby, Erik Magnus Ohman, Manesh R. Patel, Michael J. Pencina, Eric D. Peterson.

Environment and Ecology:

Emily S. Bernhardt, Stuart L. Pimm, Mark R. Weisner.

Geosciences:

Drew T. Shindell

Immunology:

Barton F. Haynes, Edward A. Miao

Microbiology:

Barton F. Haynes

Plant and Animal Science:

Sheng Yang He

Psychiatry and Psychology:

Avshalom Caspi, E. Jane Costello, Renate M. Houts, Terrie E. Moffitt

Social Sciences:

Michael J. Pencina

Cross-Field:

Dan Ariely, Geraldine Dawson, Xinnian Dong, Charles A. Gersbach, Ru-Rong Ji, Robert J. Lefkowitz, Sarah H. Lisanby, Jie Liu, Jason W. Locasale, David B. Mitzi, Christopher B. Newgard, Ram Oren, David R. Smith, Avner Vengosh.

Phase 3 Trials: What We Know About a Covid Vaccine

As multiple drug companies in the United States speed towards Phase 3 trials for Covid-19 vaccinations, there remain many unanswered questions about these vaccines. 

Moderated by Professor of Law and Philosophy, Nita Farahany (J.D., Ph.D), principal investigators Cynthia Gay (M.D., M.P.H) and Emmanuel (Chip) Walter (M.D.) explored these lingering anxieties in a Science and Society hosted Coronavirus Conversation Thursday, November 6th. Dr. Gay is an Associate Professor of Medicine at the University of North Carolia Chapel Hill (UNC) and Medical Director of the UNC HIV Cure Center. Dr. Walter is a professor of Pediatrics with Duke’s Global Health Institute, as well as a member in the Duke Clinical Research Institute and Duke Human Vaccine Institute. Both Gay and Walter are currently overseeing trials for SARS-COV-2 vaccines. 

Farahany began the conversation by pointing out that though the previous ideal of a vaccine by the US presidential election did not come to fruition, Phizer and Moderna just reached full enrollment for their Phase 3 trials. “[The timeline question] is a million-dollar question,” said Dr. Gay, who is overseeing the Moderna trials at UNC. She said that soon statisticians who have no conflicts of interest with the trials will have a look at the unblinded trial data to see if there are any differences between those who received placebo injections and those who received vaccines. Gay believes this first “peek” may be too early to see a significant signal indicating success of the vaccines. Dr. Walter weighed in, saying that though he hopes “we’ll see something,” he concurs that Dr. Gay’s estimate that no significant signal will be present until January is an accurate one. 

As Gay and Walter explained, probed for clarification from Farahany, drug companies undertaking vaccine development enrolled portions of the population at higher risk for contracting Covid — typically on the basis of their form of employment. For example, someone working in healthcare statistically has a higher likelihood of contracting Covid because of increased exposure to environments where Covid-infected persons may be. Vaccine trial groups were either assigned to a placebo or to a vaccine. The drug companies will be able to test the success of the vaccines by evaluating whether those who received the vaccine contract Covid at some statistically significant lower amount than those who received the placebo. 

But as Farahany pointed out, a drug company could receive an Emergency Use Authorization (EUA) for their vaccine before trials are complete, prompting the question: Will Phase 3 trial placebo participants receive the vaccine if their company receives an EUA? Dr. Walter offered that this could be problematic because there would be a lack of long-term data on vaccines and Dr. Gay suggested that because blinding is the best sort of study design, there is tension around this question. However, Walter and Gay both agreed that study participants should be honored for the role they stepped into for these trials. Thus, the timing for the EUA may be the biggest determinant on whether or not placebo-receiving Phase 3 participants will receive the vaccines as soon as they are available or not.

Other concerns focus on the overall safety of the vaccines. All of the current Covid vaccines in development are mRNA vaccines, which have never before been approved for use in humans. Dr. Walter offered that before Covid, some companies were actually poised to start an mRNA vaccine in children for other respiratory pathogens and that mRNA vaccines are “pretty well studied.” Dr. Gay reinforced these notions by stating that she doesn’t have concerns about the vaccine safety, but rather whether or not the vaccines will actually work for the particular strand of virus and “produce enough effective antibodies to have an impact.” If Covid vaccines are successful, they may actually change the direction of vaccinology in a promising way.

Walter and Gay also addressed the concerns of side effects and generally conceded that most of the side effects seen, such as low-grade fevers and injection-site tenderness, are merely side effects seen with any sort of vaccine. As Farahany pointed out, these sorts of symptoms are actually often just a signal that the immune system is working and responding to the vaccine. Dr. Gay said that a lot of the concerns over vaccine side-effects can be thought about as cost-benefit analysis. She says we make these sorts of analyses all day, every day — whether we realize it or not. For Gay, one day of muscle soreness and a slight fever is highly preferential to weeks of potential immobilization from contracting Coronavirus. 

The concluding question: How do we ensure trials are met with public trust? “We have to remember we’re in the middle of a pandemic where things really have to move quickly,” Dr. Walter said. He also offered that though this has been the fastest vaccine development he’s ever seen – aside from H1N1 – all of the safety mechanisms in place have provided safety comparable to that we would normally see. 

“This is a global tragedy we’re dealing with,” Dr. Gay said. “There is a time to step back and think, ‘Isn’t it amazing that all these [amazing, talented, expert] people are working day and night’ …They’re making it happen to try to get us an answer and some effective vaccines.” 

Post by Cydney Livingston

Emergency Use Authorization for Covid Vaccine: One Hurdle of Many

Who will be the first company to secure an Emergency Use Authorization for a Covid-19 vaccine, and when? This question has circulated in the popular press for a few months and is at the forefront of many Americans’ minds with the upcoming presidential election on November 3rd.

Arti K. Rai (J.D.) moderated a dialogue between former FDA Commissioner and distinguished Professor of Cardiology, Robert Califf (M.D., M.A.C.C.), and Founder and Director of Scripps Research Translational Institute, Eric Topol (M.D.), in which the pair discussed emergency use authorization, public trust, and vaccines. The discussion was part of the Science & Society Initiative’s ongoing series of “Coronavirus Conversations.”

Emergency Use Authorizations (EUAs) strengthen American public health protections by speeding the availability and use of medical countermeasures during public health emergencies. Dr. Califf explained that in addition to events like nuclear catastrophes that EUAs were designed to provide protections for, pandemics were also thought about in conceiving the emergency measure. “[The pandemic] is not a surprise,” Califf said, “We knew it was going to happen at some point.”

The panelists examined the possible use of EUAs for a Covid vaccine and monoclonal antibody treatments given the EUAs issued earlier this year for hydroxycholoroquine and convalescent plasma, the former of which was revoked due to proven risks. Both of these experimental treatments lacked sufficient evidence at the time the EUAs were approved.

Dr. Topol said that the EUA case for the antibodies treatment is a good one with growing evidence that suggests their effectiveness as a viable treatment measure. Dr. Califf concurred, saying that with 1,000 people predicted to die every day in the U.S. through the end of December, there’s a strong case for the FDA to exert its judgment. One issue with antibodies, however, is that they cannot be made in large quantities and are very expensive, meaning they would be inaccessible for many.

The question of EUA use for vaccines is less straightforward. Dr. Topol argued that though the protocols released by four drug companies, including Moderna and Pfizer, are pretty far along, “there is a very questionable ethical story here.” He continued, “How can we say it’s good enough to give to essential workers, healthcare works, high-risk individuals, but they won’t even give it to trial participants? They received placebo vaccines.” Across the board, the trials currently underway only include about 150 individuals.

These initial trials are only the first hurdles to the production of a vaccine, according to both Califf and Topol. Dr. Califf pointed out that there will be issues of manufacturing and distributing, lots of concerns with post-market assessments, and how to determine which vaccines will be the best. Dr. Topol reinforced these ideas, suggesting that because no single company will be able to fill the vaccine demands, we need multiple vaccines to be successful. Further, Dr. Topol admitted his concern about the major extrapolations of data we will face, going from trials of 150 individuals to potential distribution numbers of vaccines reaching the hundreds of millions, if not billions of people.

And even once an initial round of vaccines is developed, Dr. Califf inserted the question, “What happens after people get vaccinated?” The simple truth is, the vaccination will probably not completely eradicate the virus, there could be late post-vaccination reactions, and the vaccine could potentially end up creating asymptomatic carriers. Both doctors agreed, masks and social distancing will be needed for at least the next year.

The potential of a Covid-19 vaccination has been popular in the media over the last few months.

Public opinion and politics are also key players in vaccine debates and development. “The point of public trust is essential because if something happens with the first vaccine that gets out,” Dr. Topol said, “it’s going to be a real damaging blow to vaccine rollout.” Like mask-wearing, Topol suggested that vaccines are part of a larger social contract in which these sorts of preventative measures not only help oneself but those around them.

Rai pointed out that as tensions between the FDA and the U.S. department of Health and Human Services grow, as well as between the FDA and the Trump administration, we could face “doomsday” scenarios where the FDA is coerced into certain actions and their powers become limited. However, new FDA guidelines for vaccine development have extended the potential timeline for a Covid vaccine, meaning that the chances of a EUA being issued before the election and being utilized as a political tool for Trump’s reelection are quite unlikely at this point.

Dr. Califf closed by emphasizing the need for solidarity among the biomedical community as influential to the success or failure of potential vaccines and public trust. Dr. Topol offered that we “need education, government that supports science, and need to get [support from] people of all diverse backgrounds to get [the public] to buy in.”

While Dr. Topol maintained a more skeptical and sometimes grim tone, Dr. Califf said that though he’s worried about “everything,” he’s “preparing for the worst but hoping for the best.”

It seems that as many people grow both accustomed to and tired of our new normal, most of us are caught somewhere in the middle of these outlooks.

Post by Cydney Livingston

Page 1 of 2

Powered by WordPress & Theme by Anders Norén