Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Cardiology Page 2 of 3

A Link Between Stress and Aging in African-Americans

A recent study finds that lifetime stress in a population of African Americans causes chemical changes to their DNA that may be associated with an increased risk of aging related diseases.

(Image: Rhonda Baer, National Cancer Institute)

(Image: Rhonda Baer, National Cancer Institute)

Using a previously established DNA-based predictor of age known as the “epigenetic clock,” researchers found that a cohort of highly-traumatized African Americans were more likely to show aging-associated biochemical signatures in their DNA’s epigenetic clock regions at an earlier age than what would otherwise be predicted by their chronological age.

These chemical alterations to DNA’s epigenetic clock were found to be a result of hormonal changes that occur during the body’s stress response and corresponded to genetic profiles associated with aging-related diseases.

The study was performed by researchers at the Max Planck Institute of Psychiatry in Germany, including Duke University adjunct faculty and psychiatrist Dr. Anthony S. Zannas. The findings were published in a recent issue of Genome Biology.

“Our genomes have likely not evolved to tolerate the constant pressure that comes with today’s fast-paced society,” says lead author Zannas.

Though it may come as no surprise that chronic stress is detrimental to human health, these findings provide a novel biological mechanism for the negative effects of cumulative lifetime stressors, such as those that can come with being a discriminated minority.

Epigenetics is the study of how environmental factors switch our genes on or off. The epigenetic clock is comprised of over 300 sites in our DNA that are subject to a certain chemical modification known as methylation, which physically prevents those sites from being expressed (i.e., turns them off). Conversely, areas within the epigenetic clock can also be de-methylated to turn genes on. Each methylation event can be thought of as a tick of the epigenetic clock’s metaphorical second-hand, corresponding to the passing of physiological time.

During times of stress, a family of hormones known as glucocorticoids becomes elevated throughout the body. These glucocorticoids cause the chemical addition or removal of methyl groups to areas of DNA that the authors found to be located in the same regions that comprise the epigenetic clock. What’s more, the specific changes in methylation were found to correspond with gene expression profiles associated with coronary artery disease, arteriosclerosis, and leukemias.

This link between stress, glucocorticoids, and the epigenetic clock provides evidence that lifetime stress experienced by highly traumatized African Americans promotes physiological changes that affect their overall health and longevity.

The authors make an important distinction between cumulative lifetime stress and current stress. A small number of instances of acute stress may result in a correspondingly small number of methylation changes in the epigenetic clock, but it is the cumulative methylation events from chronic stress that give rise to lasting physiological detriments.

Though the authors make no direct claims regarding the physiological effects of racial inequities prevalent in today’s society, the findings perhaps shed light on the health disparities observed between disadvantaged African American populations and more privileged demographics, including increased mortality rates for cancer, heart disease, and stroke.


Glucocorticoids become elevated during the body’s stress response and lead to changes in DNA methylation that promote the expression of genes associated with aging.
Illustration by Katy Riccione

Interestingly, the epigenetic effects of lifetime stress were blunted in individuals who underwent significant childhood trauma, suggesting that early trauma may trigger mechanisms of physiological resilience to chronic stress later in life. In other words, if racial minorities are more likely to face hardships during their upbringing, perhaps they are also better prepared to cope with the chronic stress that comes with, for instance, losing a job or ending a marriage.

Though the study relies on data from an African American cohort, Dr. Zannas believes that the same conclusions are likely applicable to other highly stressed populations: chronic stress leads to lasting changes in our epigenome that may increase our likelihood of aging-related diseases, while acute stress was not found to have any long-term epigenetic effects.

So a single tough calculus exam won’t shave years off of your life, but consistent 80-hour work weeks just may.

In a world where everyday stress is unavoidable, whether it be from the hardships faced as a minority or the demands of being a full-time student, what lifestyle choices can we make to limit the detriments to our health? Dr. Zannas emphasizes that the “solution is not to avoid all stressors, but to prevent excessive stressors when possible and to learn to live with unavoidable stress constructively.”

The study underscores the importance of stress management on our general well-being. Future research may highlight the direct chemical benefits to our epigenome that are afforded by mindfulness, psychotherapy, diet/exercise, and other modes of stress relief. “Learning to better cope with stress is the best way to reduce our physiological response to it and the resultant harmful effects.”

Katy_Riccione_100Guest Post by Katy Riccione, Ph.D. Candidate in Biomedical Engineering

Measuring the Mechanical Forces of Disease

“All these complicated diseases that we don’t have a good handle on — they all have this mechanical component. Well why is that?”

Brent Hoffman is an assistant professor of biomedical engineering

Brent Hoffman is an assistant professor of biomedical engineering

This is exactly the question Brent Hoffman, Duke biomedical engineering assistant professor, is helping answer. Many of the common diseases that we fear have a mechanical component. In asthma attacks, a chemical or physical stimulus causes the air channels in the lung to shut as the muscles that control the width of the channel contract– the mechanical component.

Another example is atherosclerosis, commonly known as the hardening of the arteries, the leading killer in developed countries. Instead of air flow, blood flow is affected as the walls of the blood vessels get thicker. Factors such as smoking, being overweight, and having high cholesterol increase the chance of getting this disease. However, examining the mechanical portion, the plaques associated with atherosclerosis tend to occur at certain parts of the blood vessels, where they branch or curve. You can think of it like a hose. When you kink a hose or put your thumb over the nozzle, the fluid flows in a different way. Hoffman said there are similar stories concerning mechanical portions of major diseases, such as muscular dystrophy and breast cancer.

Hoffman's lab is building tension sensors to measure forces during collective cell migration.

Hoffman’s lab is building tension sensors to measure forces during collective cell migration.

This all sounds very biological, so why is he in the engineering department? As mechanobiology is a new field, there are few tools available for reporting a protein’s shape or its forces inside living cells. Hoffman makes the tools enabling the study of mechanobiology. During Hoffman’s postdoctoral research, he worked on recording forces across proteins in living cells, their natural environment. Now, he’s expanding that technology and using it to do basic science studies to understand mechanobiology.

Hoffman said he hadn’t planned this. From high school, he knew he wanted to be an engineer. As an undergraduate, Hoffman interned at IBM, where he worked on the production of chip carriers using copper-plating. Hoffman was able to apply knowledge, such as changing pH to get various amounts of copper, and make everything perform at optimal performance, but he wanted to know more about the processes.

So he set out to get his Ph.D in process control, which involves deciding how to set all the numbers and dials on the equipment, how large the tank should be, what pressure and temperature should be used, etc. in chemical plants. Hoffman was set on the path to become a chemical engineer. However, during the first week of graduate school, he attended a biophysics talk, in which he understood very little. Biophysics interested Hoffman, so he went from intending to do research on one of the most applied engineering projects on campus to arguably one of the least applied in a week. This was the beginning of his biophysics journey. However, as his Ph. D was much more heavily interested in the physics aspect, Hoffman chose to do his postdoc in cell biology to balance his training. Mixing everything together, he got biomedical engineering.

Hoffman reflects that his decisions were logical, but he had not planned to take the route he did. Hoffman cautions that it is better to have a plan than not because if you do not plan, you won’t know where you are going. However, he advises that since a person learns more about likes and dislikes as one proceeds on their route, students should not be afraid to incorporate what they learn into their plans.

Hoffman’s journey is characterized by finding and doing what he enjoyed. Trained in both the worlds of physics and biology, but never intending to pursue a future in either, Hoffman is uniquely suited for his current position in the revolutionary emerging field of mechanobiology. He is able to put his biology hat on and his physicist hat on for a bit, while the engineer in him is thinking, “is any of this practical?”
“If you had to pick out the key to my success, it would be doing that,” Hoffman said.

AmandaLi_100Guest Post by Amanda Li, a senior at the North Carolina School of Science and Math


E-cigarettes might help smoking cessation

Research has shown that nicotine replacement therapies such as the patch, gum lozenges and nasal spray are only 25 percent effective in smoking cessation within the first year of use.

Jed Rose, Ph.D.

Jed Rose, Ph.D.

Jed Rose, Director of the Duke Center for Smoking Cessation, thinks the use of e-cigarettes, or electronic nicotine delivery systems (ENDS) could be a better way to quit smoking.

Rose spoke Tuesday in a session sponsored by the Center on Addiction and Behavior Change.

He said nicotine replacement is delivered at a slower rate and a lower dose than in actual cigarettes, so it fails to curb craving among smokers. Replacements also don’t replicate one of the main sensory behaviors of smoking: inhalation.

Rose discussed a study in which he and his colleagues anesthetized participants’ airways to see if they could detect the smoke, while keeping the same dose of nicotine to the brain. When participants couldn’t feel the smoke as much, there were more cravings for cigarettes and less satisfaction.

An e-cigarette vaporizes nicotine with battery power, avoiding the combustion byproducts of burning tobacco. (via Wikimedia Commons)

They’ve also found that replacement treatments, when given on a temporary basis of just one year, often resulted in relapse.

So what does an e-cigarette actually do? The battery of this electronic cigarette heats an oil that vaporizes the nicotine with a substance called propylene glycol. The gas is released and condenses immediately into a cloud of smoke.

Why is the e-cigarette safer? It’s the combustion products in smoke, rather than the nicotine, that are responsible for most smoking-related disease. Rose cited the 2010 Surgeon General’s Report that backs up this claim that nicotine itself is not responsible for cardiovascular problems or cancers.


Rose thinks that e-cigarettes could be the best of both worlds, allowing smokers the same sensory effects they enjoy, while possibly avoiding other health hazards of regular cigarette smoking.

Rose also addressed concerns about formaldehyde being present in e-cigarettes. He says this is rare, and only occurs with e-cigarettes that have higher voltages which causes overheating to occur. While there is evidence from two trials that the new devices help smokers to stop smoking long-term compared with placebo, unfortunately, very few studies have looked at this issue. Rose also shares concerns that the new product could be picked up by youth who wouldn’t normally smoke cigarettes, or serve as a gateway between e-cigarettes and real ones.

In the end, however, he thinks this product has the potential to be highly effective in treating addiction, and hopes it will be evaluated further.

“The agency that has to sort through this is the FDA,” he said. “They have to prove that it will help society as a whole. It has to benefit the health of the population.”

madeline_halpert_100By Madeline Halpert

Synergizing Partnerships of the Heart

Guest post by Dharshini Subbiah

With diseases like heart disease, high blood pressure and diabetes on the rise in Asia and throughout the world, six Duke University faculty made the trip to Singapore last week to be a part of the symposium, “Synergizing Biomedical Research in Cardiovascular and Metabolic Disorders.”

The symposium featured experts presenting their research related to the clustering of metabolic syndrome, diabetes, hypertension, hyperlipidemia and cardiovascular disease — a global epidemic that is emerging as a major cause of mortality and human suffering in Asia.

A major objective of the meeting was to develop productive partnerships and collaborations to enhance research in the field. The Duke faculty were joined by colleagues from the Duke-National University of Singapore Graduate Medical School (Duke-NUS), SingHealth, A*Star, the National University of Singapore, the National University Health System, and the NTU Lee Kong Chian School of Medicine.

“I dare say it would be difficult to go anywhere in the world and find a scientific program with the breadth and quality of what we’ve heard during this Symposium. After reflecting on the various presentations and what people are doing, I believe there are many potential areas where we can work together productively,” declared Duke-NUS Dean-designate Tom Coffman.

Professor Coffman, who for many years was the Chief of Nephrology at Duke University, was both optimistic and clear about his expectations, “I think it’s on us, to take advantage of the opportunities to bring together Duke and Singapore in order to harness our resources, talents and energy to do some great things. We can have a real impact in this area and improve what happens to our patients.”

The Symposium was held on January 19-20 and was the first in a series of activities marking the tenth year of Duke-NUS.


Working in concert for the future of medicine are researchers from Duke-NUS, SingHealth, A*Star, the National University of Singapore, the National University Health System, and the NTU Lee Kong Chian School of Medicine. Shown on the extreme left is Thomas Coffman, M.D., Director of the Cardiovascular Research Center at Duke Medicine.

Working in concert for the future of medicine are researchers from Duke-NUS, SingHealth, A*Star, the National University of Singapore, the National University Health System, and the NTU Lee Kong Chian School of Medicine. Shown on the extreme left is Thomas Coffman, M.D., Director of the Cardiovascular Research Center at Duke Medicine.

Duke Researchers Cited for Their Influence


We are the champions, my friend.

We are the champions, my friend.

By Karl Leif Bates

A new compilation of the world’s most-cited scientists just released by Thomson Reuters (our friends from March Madness), shows that 32 Duke researchers are in the top one percent of their fields.

There are 3215 most-cited scientists on the list, so perhaps that makes Duke the one percent of the one percent?

Most-cited means a particular paper has been named frequently in the references by other papers in that field.

And that “is a measure of gross influence that often correlates well with community perceptions of research leaders within a field,” Thomson Reuters says. The database company admits their study methodology does favor senior authors who have had their papers out there longer, but there are quite a few younger Duke researchers in this list too.

From the Medical Center, the tops in citations in clinical medicine are cardiologists  Eric Peterson, Robert Califf, Christopher Granger, and Eric Magnus Ohman. Michael Pencina, a biostatistician at the Duke Clinical Research Institute, is also most-cited in clinical medicine.

Perhaps not surprisingly, Nobel laureate, biochemist, and father of the G-protein coupled receptor Robert Lefkowitz made the list in pharmacology and toxicology.

Barton Haynes and David Montefiori of the Duke Human Vaccine Institute are listed in the microbiology category.

Medical School basic scientist Bryan Cullen of Molecular Genetics and Microbiology was cited in microbiology.

In psychiatry/psychology, A. John Rush, the vice dean for clinical research at Duke-NUS School of Medicine in Singapore, made the list, as did Richard Keefe, Joseph McEvoy of psychiatry and Avshalom Caspi, and Terrie Moffitt of Psychology & Neuroscience in Arts & Sciences.

Also from Trinity College of Arts and Sciences, Ahmad Hariri and HonaLee Harrington of Psychology & Neuroscience also made the list in psychiatry/psychology. Benjamin Wiley was oft-cited in Chemistry, James Berger and Ingrid Daubechies in mathematics, and plant biologists Philip Benfey, Xinnian Dong and Tai-Ping Sun in the category of plant and animal science.

Sanford School of Public Policy Dean Kelly Brownell is on the list in general social sciences, along with Arts & Sciences sociologist James Moody and nutrition researcher Mary Story of community and family medicine and the Duke Global Health Institute.

Nicholas School of the Environment researchers Robert Jackson and Heather Stapleton were cited the environment/ecology category.

From the Pratt School of Engineering, David R. Smith was cited in the physics category and Jennifer West in materials science.

The economics and business category includes Dan Ariely along with his Fuqua School of Business colleagues Campbell Harvey and Arts & Sciences economist Tim Bollerslev.

The Thomson Reuters analysis is based on their Web of Science database. This is the first time it has been done since 2001, when there were 45 Duke names on the list (including five that appeared again this time), but the methodology has changed somewhat.

UPDATE – There’s now a full PDF report  from Thomson Reuters for download –


Cooking up a new approach to heart disease in rural China

By Ashley Mooney

As cardiovascular disease becomes more prevalent in China, researchers look to change cooking practices that may be putting people at higher risk.

Currently, the top two causes of death in China are cardiovascular disease and chronic obstructive pulmonary disease, meaning that cardiovascular interventions will become increasingly important in public health, Assistant McGill University professor Jill Baumgartner said in a March 21 lecture. Environmental pollution from industry, increasing vehicle pollution, tobacco smoke and biomass usage have contributed to China’s shift in disease burden.

Typical gasifiers in China. Slide created by , photo taken by Ashley Mooney.

Typical gasifiers in China. Slide created by Jill Baumgartner, photo taken by Ashley Mooney.

“There’s been massive changes in China since the 1970s, they’ve brought in economic and social reforms. You see these massive increases in [gross domestic product] per capita as well as life expectancy,” she said. “[As a result], there’s been this shift from nutritional or infectious disease-related deaths in China… to chronic diseases.”

Many across the globe use gasifier stoves to cook, which use wood or coal as fuel and emit more carbon monoxide than electric alternatives. These emissions are not only harmful to the environment, but chronic exposure can lead to an increase in systolic blood pressure—a marker for increased risk of cardiovascular disease.

“Globally, about half the world’s population is using biomass and coal as their primary energy source,” Baumgartner said. “In China it’s just under 50 percent of the population.”

Baumgartner primarily studied women who have never smoked cigarettes in Yunnan, a southern province of China. Culturally, women from this area rarely smoke, while men often do, she said. The women are also the primary cooks for the family, meaning they spend the most time near biomass-burning stoves and space heaters and are ideal study subjects for the effects of the biomass without the confounds of smoking.

By measuring particulate matter, black carbon and water-soluble organic carbon, Baumgartner determined women’s seasonal exposure to biomass and its effect on their blood pressure. Black carbon is associated with regional climate warming and is used as an indicator of combustion particulate matter and water-soluble organic carbon is an indicator of biomass particulate matter.

“When we think about climate change and other greenhouse gasses, the effects are going to be really long term,” Baumgartner said. “But black carbon is unique because if you turn off black carbon, it’s kind of like turning off the tap. So you stop black carbon from entering the atmosphere and the warming effect decreases in weeks.”

While Baumgartner’s research initially looked at only the effects of biomass burning on cardiovascular health, she is transitioning to work on interventions. Since the beginning of her work in Yunnan, engineers have built a biomass-pellet manufacturing site, which provides more efficient and less toxic fuel for locals.

Baumgartner said interventions leading to a 8mm Hg decrease in systolic blood pressure could translate to a 29 percent decrease in coronary heart disease and 38 percent decrease in the onset of strokes.

Beers with Bob — Without Beer

By Nonie Arora

My living group, Round Table, had the opportunity to meet up with Dr. Bob Lefkowitz in his office for “Beers with Bob without Beer.” Arnab Chatterjee, a Pratt sophomore and one of our members, works in his research lab and arranged the meet-up…and later dropped the beer from our plans.

We enjoyed being immersed  in Dr. Lefkowitz’s office. We saw the jersey, hanging from the “rafters”, that Coach K presented to him last year amidst cheers of “He’s so smart” from the Cameron Crazies. 

He showed us a video – three times – of the first pitch he threw out for the Durham Bulls baseball game.

Dr. Lefkowitz’s biggest piece of advice to us all was to eat a square of chocolate every day. He jokingly attributes part of his Nobel prize to the threshold effect of upping his chocolate consumption from two squares a week to one a day just two months before receiving the call from Stockholm. That’s one recipe for success that I can get behind! 

Round Table meets with Dr. Bob Lefkowitz. (Nonie’s just to the left of Bob in red top.)


5 Dukies On List of World’s Top Biomedical Scientists

A recent paper in the European Journal of Clinical Investigation identified 400 of the world’s most influential researchers in biomedicine—and five hail from Duke University. The authors used citation data spanning 15 years (1996-2011) from Scopus, a database of peer-reviewed literature, to pinpoint researchers with high degrees of productivity and impact. Get to know the Duke researchers:



Robert M. Califf is a global leader in treating cardiovascular disease and has a long history at Duke, where he completed both his undergraduate degree and his MD.  Califf serves as vice chancellor for clinical and translational research and directs the Duke Translational Medicine Institute. You can read Dr. Califf’s blog here.




Marc G. Caron is the James B. Duke Professor of Cell Biology in the School of Medicine, as well as a member of the Duke Institute for Brain Sciences. He studies how neurotransmitters, chemical messengers like dopamine and serotonin, regulate behavior and play a role in diseases like schizophrenia and depression.




Robert J. Lefkowitz was awarded the 2012 Nobel Prize in Chemistry for his work discovering and describing a large family of proteins, known as the G-protein coupled receptors, that regulate cellular responses to outside molecules. His work underlies a third to a half of all prescription drugs today. Lefkowitz is a professor of biochemistry, chemistry, medicine, and pathology at Duke.




Terrie E. Moffitt is a psychologist and the director of two longitudinal studies—one of 1000 New Zealand families and one of over 1000 British families with twins, which she uses to investigate how antisocial and criminal behaviors arise in individuals. She is the Nannerl O. Keohane university professor of psychology and neuroscience at Duke.




Eric D. Peterson is a cardiologist specializing in acute coronary systems and geriatric cardiology with nearly 700 peer-reviewed biomedical papers to his credit. He is the director of the Duke Clinical Research Institute and a professor of medicine at Duke University Medical Center.

Igniting U.S. health care's 'escape fire'

The film Escape Fire explores what's fanning the flames of the health care debate. Credit:

By Ashley Yeager

Imagine lighting a match to protect yourself from the flames of a fire.

It’s probably not the first thing you would think to do to stop from being burnt. But when there’s no other escape, the technique works. In 1949, Robert Wagner Dodge became living proof when he lived through the Mann Gulch fire by setting his surroundings on fire.

Now, his actions have become a metaphor for drastic ways government and industry should change U.S. health care before it too burns everything in its path.

Escape Fire: The Fight to Rescue American Healthcare showcases the health care system’s metaphorical blaze. The award-winning documentary, described as the “Inconvenient Truth” of the health care debate, opens nationwide in October. But members of the Duke community saw it for free on Wed., Sept. 19. They were also able to participate in a post-film panel discussion, which fleshed out a few potential escape fires for the health care industry.

“I think working with one patient at a time can help everyone become healthier,” said Annie Nedrow, a primary care physician and the associate director of Duke Integrative Medicine, which sponsored the event. But as the film points out, the current system rewards doctors for the number of patients they see, not the amount of time they spend with each person or the plans they may develop to help that patient prevent and manage disease.

Ironically, almost 75 percent of health care costs are spent on preventable diseases. The film, directed by Matthew Heineman and Susan Froemke, illustrates this statistic through anecdotes, where a band-aide, pill or even invasive surgery, such as inserting a stent to relieve heart blockages, provides immediate relief but does nothing to address the underlying causes of illnesses – typically diet and lifestyle.

Preventable diseases are 75% of our health care costs. Credit:

“There’s got to be a shift in our culture, one where we actually have access to safe parks to exercise, healthy food, and the time to eat it,” said Adam Perlman, Duke Integrative Medicine’s executive director. He also agreed with Nedrow that a new system should invest more in primary care and health promotion, rather than disease treatment.

To set an example and test the feasibility of such a system, Duke Integrative Medicine has opened a primary care practice that limits the number of patients each physician sees so the doctors can spend more time with each patient and create a more holistic approach to that person’s health.

Perlman said that health coaching could be another important aspect of correcting the healthcare system. He explained that doctor X might tell a patient to lower his blood sugar, doctor Y then tells him to lower his blood pressure, and all the patient really wants to do is dance at his daughter’s wedding. “A health coach helps the patient reach those bigger goals by connecting the dots and helps them execute the plan to get there,” he said.

The film and remarks prompted many audience members to question what it would take to change the current system. Nedrow, who said she has been inspired by books on creativity and innovation, suggested that it was dialogues like the one they were having that could ignite change to repair the broken model of health care or create a new system.

More innovation, however, may mean that more people need to step into the fire and strike a match, rather than run and try to dodge the flames.

CSI-House teams could make better medical diagnoses

By Ashley Yeager

Comparing a child's DNA to his parents' could help with identification of hard-to-diagnose genetic diseases. Credit: Henrik Jonsson/iStockphoto

Dr. Gregory House, star of House, M.D., and the lab techs on CSI never fail at their jobs. But that’s Hollywood. In real life, diagnosing illnesses and sequencing DNA isn’t so straightforward. It doesn’t always lead to a happy ending either, especially for children who are sick but can’t be diagnosed, even by gifted, real-life doctors.

That’s exactly why geneticist David Goldstein has teamed with pediatrician Vandana Shashi to combine a little House and CSI to identify apparent genetic diseases and quickly end some families’ diagnostic odysseys.

So far, the team has provided likely genetic diagnoses in six of 12 children it has worked with, said Goldstein at a Cardiovascular Research Center Seminar Series talk on June 27.

The children were referred to Shashi for a pilot study where she would record their symptoms, or phenotypic behavior, much like House. Then, Goldstein and his team at the Center for Human Genome Variation collected DNA samples from the children and both of their biological parents.

Using next-generation genetic sequencers, as well as traditional DNA scanners, Goldstein and his team looked for genetic variations between the children’s and parents’ complete genome. Like looking at DNA to identify a criminal, Goldstein and his genetics team are scouring the sequences for genetic fingerprints of the diseases disrupting the children’s lives.

Once variations were identified, the entire team looked for known diseases with similar gene mutations and symptoms. Goldstein explained that the study not only pinpointed the undiagnosed congenital diseases in some patients but also presented new genes that could also be linked to the illnesses. The study’s success has led to the creation of the Genome Sequencing Clinic.

The clinic will begin to help the families of the 50,000 children (out of the four million) born each year in the US with difficult-to-diagnose genetic diseases. These types of studies will likely be the “earliest drivers for large-scale genetic sequencing,” Goldstein said.

But, he cautioned, “there’s a whole lot of junk,” or variation, in DNA. Every genome has the narrative potential for devastating diseases, and that means that House-CSI teams, like Shashi and Goldstein’s, need to be extremely careful when making diagnoses, especially if the results will influence treatment, he said.

Citation: Clinical application of exome sequencing in undiagnosed genetic conditions. Need, A. et. al. 2012. J. Med Genet. 49:6 353-361. doi:10.1136/jmedgenet-2012-100819

Page 2 of 3

Powered by WordPress & Theme by Anders Norén