Since coming to Duke nine years ago, I gained the realization that all rural communities are virtually the same… the infrastructure neglect is still the same.”
Catherine Coleman Flowers
Catherine Coleman Flowers is no stranger to action. Since the start of her career, she’s accomplished everything from working as the Vice Chair of the White House Environmental Justice Advisory Council to founding the Center for Rural Enterprise and Environmental Justice. An internationally recognized advocate for public health, Flowers has worked tirelessly to improve water and sanitation conditions across rural America.
On February 9th, Duke University students got to hear from Flowers in a powerful seminar sponsored by Trinity College. A Practitioner in Residence at the Nicholas School of the Environment, Flowers discussed her incredible activism journey.
“I became an activist very, very young,” she said. Her family heritage nurtured her love for the environment early on, as well as her home state of Alabama. In high school, she began to read about the sanitation crisis happening in rural Alabama, Lowndes County in particular.
“I learned that poor people (there) were being targeted for arrest because they couldn’t afford sanitation systems,” Flowers said. The poverty rate in this historically Black county is double the national average, and sewage treatment is not provided for many residents. For those who can afford sanitation systems, they are often far from adequate, such as poorly maintained septic tanks. Issues like exposure to tropical parasites and improper installations are rampant throughout the county.
“It builds upon the structural inequalities that make sure these areas remain poor,” Flowers said. Across the US, millions of rural areas face the same complications. From places like ‘Cancer Alley’ in New Orleans to the city of Mount Vernon in New York, sanitation systems are failing miserably.
“We saw families that couldn’t live in their houses half the time because of the sewage that was running into their home,” Flowers explained. Unsurprisingly, almost all of the areas facing these issues are home to minority communities. “The narrative used to be, ‘they don’t know how to maintain it,’ but that isn’t true. The technology isn’t working at all.”
In November of 2021, Flowers filed the first-ever civil rights complaint against sanitation in Lowndes County. Thanks to her, as well as other prominent community activists, the issue garnered nationwide attention. In less than a year, the county received a $2.1 million grant from the USDA to begin solving the sewage crisis. Similar funding efforts have also been seen in Mount Vernon. “That is an example of what a solution can look like,” Flowers said.
“That’s the kind of power that you have as a Duke student,” Flowers said in closing. With almost one million dollars available for student funding annually and access to one of the greatest networks in the world, Duke students are in a remarkable position to make a change, she said. In North Carolina, counties like Duplin and Halifax are in need of outside help. “Growing up in the computer age, you can bring those skills needed to assist those applying for funds.”
So, what can you do? Above all, Flowers emphasizes the importance of leading frombehind. ” Don’t go in the community and try to lead from the front… People from the community need to be involved from the design to the implementation.”
As students, our assistance is needed in the form of support. From assisting with grant applications, to utilizing our network access to spread the word, there are so many ways to get involved. True equity is found not when we speak for the community, but rather when we strengthen the community’s ability to speak for itself.
Click here to get in contact with Ms.Catherine Coleman Flowers, and click here for more information about work you can do in the local community!
Last Monday, Oct. 17, Duke University students who had conducted global health research had the opportunity to present their work. From North Carolina to Sub-Saharan Africa, the 2022 Global Health Research Showcase featured works that tackle some of the world’s most pressing health issues. Over 40 undergraduate, Masters, and PhD student projects examined a broad range of issues, determinants, and phenomena in countries from almost every continent. Here’s a few project highlights, in case you missed it:
Maeve Salm, pursuing her Master of Science in Global Health, went to Tanzania to study contraceptive use. Tanzania’s youth are highly impacted by teen pregnancy, and Salm wanted to understand desires for contraceptive use among adolescents affected by HIV. She learned that, much like in the U.S., stigma influences access to sexual healthcare for adolescents. This qualitative study aimed to support young people in achieving their desired health outcomes and reducing HIV transmission by examining barriers and facilitators to family planning. Findings indicate that youth agency in reproductive health is of utmost importance.
Wondering about the Covid-19 response in other countries? Master of Science in Global Health Candidate Stephanie Stan explored the barriers and enablers to the pandemic response in Peru. Per capita, Peru experienced the highest mortality rate form the disease compared to any other country. Due to several challenging factors, they were slow to receive COVID-19 vaccines. However, they implemented highly successful vaccination campaigns once vaccines were obtained. What can be learned from Peru’s pandemic response? Prolonged and proactive collaborations between sectors (healthcare, academics, and government) enable swift public health responses in a crisis. It’s important to have elected officials who are empowered to make decisions promoting science.
“Definitely meeting all the incredible people that I interviewed and learning about their work and involvement in Peru’s pandemic response. Learning about what happens moving forward from their point of view.”
Stephanie Stan, when asked about her global health research experience
Winning the first-place Graduate Student Research Award, Judith Mwobobia’s project examined the stigma of cancer in sub-Saharan Africa. Stigma is a huge barrier to receiving treatment, which is a problem considering that 70% of global cancer deaths originate from Africa. Perceptions of financial stress, misconceptions about cancer, and fear of death were common attitudes driving cancer stigma. Proposed interventions included education and policy recommendations for low-resourced communities. Mwobobia is pursuing her Master of Science in Global Health. Clearly a supportive group, her classmates erupted in cheers when the award was announced.
It’s common for a Pratt engineering student like me to be surrounded by incredible individuals who work hard on their revolutionary projects. I am always in awe when I speak to my peers about their designs and processes.
So, I couldn’t help but talk to sophomore Joanna Peng about her project: LowCostomy.
Rising from the EGR101 class during her freshman year, the project is about building a low-cost colostomy bag — a device that collects excrement outside the patient after they’ve had their colon removed in surgery. Her device is intended for use in under-resourced Sub-Saharan Africa.
“The rates in colorectal cancer are rising in Africa, making this a global health issue,” Peng says. “This is a project to promote health care equality.”
The solution? Multiple plastic bags with recycled cloth and water bottles attached, and a beeswax buffer.
“We had to meet two criteria: it had to be low cost; our max being five cents. And the second criteria was that it had to be environmentally friendly. We decided to make this bag out of recycled materials,” Peng says.
For now, the team’s device has succeeded in all of their testing phases. From using their professor’s dog feces for odor testing, to running around Duke with the device wrapped around them for stability testing, the team now look forward to improving their device and testing procedures.
“We are now looking into clinical testing with the beeswax buffer to see whether or not it truly is comfortable and doesn’t cause other health problems,” Peng explains.
Peng’s group have worked long hours on their design, which didn’t go unnoticed by the National Institutes of Health (NIH). Out of the five prizes they give to university students to continue their research, the NIH awarded Peng and her peers a $15,000 prize for cancer device building. She is planning to use the money on clinical testing to take a step closer to their goal of bringing their device to Africa.
“All of us are still fiercely passionate about this project, so I’m excited,” Peng says. “There have been very few teams that have gotten this far, so we are in this no-man’s land where we are on our own.”
She and her team continue with their research in their EGR102 class, working diligently so that their ideas can become a reality and help those in need.
As any first-year will tell you, the scramble for joining new clubs can be a daunting one. As the dust settled from the Involvement Fair, I looked at the fistful of flyers overflowing from my desk. One of these flyers stood out to me in particular: Student Collaborative on Health Policy (SCOHP). The program, backed by the Duke Margolis Center for Health Policy, seeks to educate, serve, and research within the Duke and Durham community regarding the social, economic, and political determinants of health care.
Intrigued, I ventured to the Social Sciences building the following Sunday afternoon for their inaugural GBM. The event was lively, filled with a dizzying number of avenues for involvement. One such avenue that was the SCOHP-organized Health Policy Case Competition, advertised as a two-day team sprint to develop and pitch solutions to a pressing health care problem. The prizes were handsome: $1,000 for 1st place, $500 for 2nd place, and $250 for 3rd place, courtesy of the Margolis Center and RTI International. Furthermore, participants would be given access to mentors and industry leaders with vast experience in the area of public health.
Six teams, each consisting of three to five members, participated in the case-writing festivities. On Friday, September 10 at 5:00 PM, the case document was released. Our task: to develop a five-year plan aimed at increasing the screening for human papillomavirus (HPV) in either Malawi, South Africa, or Eswatini via a novel imaging technology known as microbeads. A considerably complex task given the vast number of social, institutional, and political barriers lying between the new technology and the women who needed it the most, not to mention the potential for HPV developing into cervical cancer if left undetected and untreated.
Our team, Team J, assumed the role of a local NGO partnering with the Eswatini government. The preliminary hours of the competition were spent sifting through a sea of research. We read reviews of tissue imaging technology, feasibility studies on drug distribution networks, and mathematical projections of healthcare costs. At once invigorating and ceaselessly frustrating, the process of developing a comprehensive solution required significant mental and physical rearrangement. The nine hours following the release of the case were spent in a variety of popular campus study spots, from Bostock to Rubenstein Library, The Coffeehouse to dorm common rooms. In the early morning hours, our plan had finally begun to take shape.
A meager five hours of rest separated Day One of the competition from Day Two. After a night of brainstorming and research, we were left with three hours to finalize our five-minute proposals before a hard 12:00 PM deadline. As the deadline approached, we changed into our best attire from the clavicle up (the marvels of Zoom) and sat down. For the next hour and change, ideas flowed thickly and quickly; eager and persuasive tones emanating from our screens, tense silence as the judges moved into breakout rooms for deliberation.
The top three teams, Team J included, were selected for a final presentation round. The guidelines for this round: strengthen the argument, lengthen the presentation. We were in the final stretch. What followed was two hours of remarkably focused work, the likes of which I had never experienced in a team setting. As we sat down for the deciding presentation of the competition, I felt an immense sense of pride, not only in our solution, but also in our twenty-six hour transformations from perplexed receivers to confident presenters. This confidence and breadth of knowledge was visible in all three teams over the course of their fifteen-minute presentations and subsequent five-minute Q&A’s.
As the clock struck 7:00 PM on Saturday, September 11, the judges had submitted their verdict, at which point the teams turned towards the screen with rapt attention. The SCOHP organizers began reading the final standings. In what was described as an extremely close decision for the judges, Team J ended up winning first place. Battling the equally powerful forces of disbelief and sleep deprivation, we let out a collective breath. It was all over.
At the time of the competition, I had yet to complete a month at Duke. I didn’t know it then, but those twenty-six hours would end up being some of the most impactful in my first semester. The competition offered an entirely different approach to learning, one that was grounded in interdisciplinary inquiry and effective collaboration. And to think–it all started with a flyer buried underneath many other flyers.
Along with being a beautiful person and leading a productive life, Henrietta Lacks is the mother of modern medicine. Her scientific child was born without Henrietta’s consent through the clinical breakthroughs and medical miracles achieved with the help of her cervical cells – HeLa cells – stolen without her knowledge when she sought healthcare. Ironically, the same treatments developed from the cells of this Black woman are inaccessible for many Black Americans contemporarily. Though Ms. Lacks passed away from cervical cancer at the premature age of 31, her unique cells have become immortal. Her story lives on as a pertinent reminder of the importance of building trust between medicine and the Black community. In honor of her birthday, expert panelists met to both celebrate Ms. Lacks and discuss the path forward in trust-building, equity, and reckoning with our history to change the narrative of healthcare for Black Americans.
The panel, which took place on Tuesday, August 31, began as a conversation between Nadine Barrett (Ph.D.), Robert A. Winn (M.D.) and Vanessa B. Sheppard (Ph.D.). Among their many other titles and positions, Barrett is Director, Center for Equity in Research, Dukev CTSI and Associate Director of Equity, Community and Stakeholder Strategy, Duke Cancer Institute, Dr. Winn is the Director of the Virginia Commonwealth University (VCU) Massey Cancer Center, and Sheppard is the Associate Director of Community Outreach Engagement and Health Disparities at VCU Massey Cancer Center. The trio were joined by Reuben Warren (D.D.S., M.P.H., Dr. P.H., M.DIV.), Director of Tuskegee University’s Bioethics Center, along with a handful of other contributors including Veronica Robinson – Henrietta Lacks’ great-granddaughter and a registered nurse who represents the Lacks family on the NIH panel that reviews applications to conduct research using the HeLa genome.
Winn began by referencing the U.S. 1932 public health service study that took place in Tuskegee, Alabama. The experiment exploited Black men in Tuskegee when an effective form of treatment for syphilis was discovered 15 years into the study but withheld from participants “to track the disease’s full progression.” In 1972, 40 years after the study began, it was the associated press, not the scientific community that finally led to the experiment’s demise and the issue of an apology from the U.S. President.
As Warren pointed out, the issue with the study was less about the treatment and more about the dishonesty, the falsifying information, and lies. “Stop calling them poor, stop calling them all sharecroppers,” Warren said of the Black men who participated in the study, “They were far more than that.” “[The study] was an issue of trust, not an issue of ignorance,” he continued. Unfortunately, when talking about this story, Winn said that Black Americans “don’t always talk about the power of us standing up and saying not again.”
Bioethics violations have been a continuous part of the biomedical research enterprise in the U.S., and race and racism have been part of scientific inquiry, which continues to be of great concern, Warren said. Often, rather than putting preventative protections in place, bioethics regulations have come as a reaction to extreme violations of justice. Thus, Warren laid out a central theme of the panel that “You build trust by making yourself trustworthy and that takes time.” Rather than initiating transactional research with Black communities when the scientific and medical community needs something, Warren offered that they should start when they want to help with something.
As Sheppard said, “[Black people] have earned a mistrust” for medical communities. This is largely hinged on Barrett’s argument that the American systems from health to education to criminal justice “are working as they were designed” – to ensure that the very inequalities that exist today came to be. Using the analogy of a marathon, Barrett said while white men in the U.S. started the race 450 years ago, Black men and women only began running this race hundreds of years later. “Those who start the race are going to…ensure that they thrive,” Barrett said. This has led to Black people dying disproportionately from often treatable diseases, Sheppard said, continuing to add that these sorts of disparities were front and center for the world to see during the COVID-19 pandemic.
In the creation of our structural inequalities, the system created “two bookends: Black and white.” But there has to be a narrative that keeps this story alive. “In order to create the change, we have got to do the work to change the narrative,” said Barrett.
Robinson pointed to the importance of history, paralleling Warren’s comments that in focusing on health equities we are fully focusing on the future in a way that ignores the past and does not deal with “what really brought us into health disparities” in the first place. Robinson said that we “can no longer sweep [conversations on the historical injustices of medical racism] under the rug.” She continued to say that the reason why Tuesday’s conversation and the ongoing dialogue that is sure to follow is so powerful is because “we are no longer victims in our own legacies” by taking over conversations at the table rather than being the topics of discussion at the table.
Mistrust in the Black community for systems of medicine and healthcare are based on hundreds of years of action. Hesitancy – from Covid-19 vaccinations to participation in clinical trials for cancer research – amongst Black Americans “aren’t us saying no,” said Robinson, “We’re saying something happened.” Sharon Ribera Sanchez, Founder-Director of Saving Pennies 4 A Cure, is a cancer survivor and advocate for people of color to engage in clinical trials because of the difference they can make in medical developments that draw on more diverse and robust data.
But there is a bigger conversation than just having more Black folks take place in research and clinical trials, Winn said. “How are you going to look at my biology without looking at my history?” he asked, referencing the genetic implications of environmental conditions and stressors from socially constructed race that impact DNA.
The dialogue, which was opened and closed with a prayer, also spoke to the importance of establishing regular, ongoing, transparent relationships between the Black faith community and the medical community. This should happen, not just in times of crisis, because “mass hysteria is prime for miscommunication,” Ralph Hodge, pastor of the Second Baptist Church in South Richmond, Virginia, said.
“Today was a big way of us looking back at the past, looking at where we are at now, and moving forward to the solutions,” said Barrett. This comes by letting communities know that we care, said Winn, along with “doing things with our communities, not through them.”
A key factor in deconstructing this issue and achieving health equity is time. Time to reflect on the past in order to avoid reliving it; time to generate innovative solutions to the problems at hand; and time to invest in Black communities – to learn from them, support them, and earn their trust not because they can offer science something, but because science has something to offer them.
How many people have seen their cervix? Obscured from view and stigmatized socially, the cervix is critical to women’s, transgender-men’s, and non-binary folks’ health — and potential reproductive health issues. A team formed through Duke’s Center for Global Women’s Health Technologies (GWHT) has created a device that not only holds immense medical potential but the potential to empower people with cervixes across the globe: It makes visible a previously invisible organ.
Nimmi Ramanujam (Ph.D.), founder of GWHT and Professor of Engineering at Duke University, heads the team. Mercy Asiedu (Ph.D.), Gita Suneja (M.D.) Wesley Hogan (Ph.D.), and Andrea Kim have all been integral members of the interdisciplinary collaboration. Dr. Suneja is Associate Professor of Radiation Oncology at the University of Utah School of Medicine and a clinical researcher. Asiedu, former PhD student with Dr. Ramanujam and current postdoc at MIT, was integral to the development of Callascope.
The Callascope allows women and others who have cervixes, along with health professionals, to perform cervical exams without use of traditional examination tools that are larger, cannot be used for self-examinations, and often scary-looking.
When Wesley Hogan, director of Duke’s Center for Documentary Studies and research professor, heard about the idea “she was hooked.” Andrea Kim graduated from Duke University in 2018. Her senior thesis was a 12 minute documentary focused on the Callascope and its potential uses. Following graduation, over the last two years, she expanded the film to a 50-minute piece titled “The (In)visible Organ” that was screened January 14, 2021. Kim moderated a panel with Ramanujam, Asiedu, Suneja and Hogan January 28th, 2021.
Callascope: A handheld device that can be used to conduct cervical screenings. All that’s needed is a smart phone.
The Callascope addresses a dire global health need for better women’s reproductive health. Further, it empowers women as self-advocates of their own gynecological and reproductive health through reinvention of gynecological examination. Cervical cells have an “orderly progression,” says Suneja, we have a “great idea” of how cells become cancerous over time, “with multiple places to intervene.” Cervical examinations, however, are necessary for assessing cervical health and potential disease progression.
Originally from Ghana, Dr. Asiedu was interested in using her engineering skills to develop technology to “improve health outcomes,” particularly in countries like her own, which may lack adequate access to preventative healthcare and could benefit most from Callascope. Many women in underserved countries, as well as underserved areas of the United States, suffer disproportionately from cervical cancer — a preventable disease.
Dr. Ramanujam, who served as a voluntary test-subject for Asiedu’s Callascope prototypes, says that it’s a really important tool “in actually changing [the cervix’s] narrative in a positive way” — it is an organ “that is indeed invisible.”
The hope is that with more awareness about and use of Callascope, cervical screenings, and vaginal health, cervixes may become more de-stigmatized and cultural norms surrounding them may shift to become more positive and open. Dr. Hogan stated that when Ramanujam pitched her the Callascope idea they were in a public restaurant. Hearing Ramanujam say words like “vagina” and “cervix” loud enough for others to hear made Hogan recognize her own embarrassment surrounding the topic and underscored the importance of the project.
The project and the team serve as a wonderful example of intersectional work that bridges the sciences and humanities in effective, inspiring ways. One example was the Spring 2019 art exhibit, developed in conjunction with the team’s work, presented at the Nasher Museum which exposed the cervix through various mediums of art.
Multidisciplinary Bass Connections research teams contributed to this work and other interdisciplinary projects focused on the Callascope. Dr. Asiedu believes documentaries like Kim’s are “really powerful ways to communicate global health issues.” Kim who directed and produced “The (In)visble Organ” hopes to continue exploring how “we can create more cultures of inclusion …when it comes to reproductive health.”
A piece of artwork from the (In)visible Organ art exhibit at Duke’s Nasher Museum in the spring of 2019.
Ramanujam emphasized the need to shift biomedical engineering focus to create technologies that center on “the stakeholders for whom [they] really [matter].” It is multi-dimensional thinkers like Ramanujam, Asiedu, Hogan, and Kim who are providing integrative and inventive ways to address health disparities of the 21st century — both the obvious and the invisible.
Nikki Mahendru’s mother didn’t go to the gynecologist for 45 years — and when she did, she regretted it. Ms. Mahendru felt “decades of anxieties and hesitancy reduced to five minutes of brisk interaction with her provider,” and left convinced that the “realm of women’s health was just not for her.” According to Nikki, a Duke University undergraduate, her mother’s “trust in the system was lost.”
Mahendru joined Dr. Megan Huchko, the director of the Duke Center for Global Reproductive Health, and Dr. Chemtai Mungo, a Fogarty Global Health Fellow and OB-GYN doctor, on the Center for Global Women’s Health Technologies’ October 20 panel “Impact of Race and Socioeconomic Status in Women’s Health and Gynecology.” The panel was moderated by Ashley Deans and Alexandria Da Ponte.
Mahendru went on to detail an experience she had in the clinic with Carmen, a patient who spoke only Spanish and was also new to the gynecologist. The medical translator and Mahendru learned her story: she had been in pain for a year but had kept quiet due to money problems, had worked most of her life to send her kids to college, and was learning English via Rosetta Stone. With the details of Carmen’s story and an “equitable working relationship,” Mahendru and the translator could relay Carmen’s previous history to her provider. But Carmen’s provider knew only of her condition.
Mahendru thinks gynecology done right has the potential to help women love their bodies and take care of their health, but gynecologists must earn the trust of their patients: “Acts of listening help bridge disparities.”
Dr. Huchko stated that throughout history, a male-dominated healthcare landscape saw the depiction of menses as ‘dirty,’ terms like ‘hysteria,’ and an overall lack of female control. The “father of gynecology” James Marion Sims exploited Black women in his development of the field, using unanesthetized slaves as subjects of experimentation. In general, Dr. Huchko sees a trend: “The lessening or decentering of women in women’s health corresponds to more discrimination.” In addition to the decentering of women, Dr. Huchko said that structural and individual factors “produce outcomes that prevent women from getting the care they need.” Like Mahendru, she identified trust as a central issue.
Dr. Megan Huchko, MD, MPH, is the director of the Duke Center for Global Reproductive Health
Dr. Huchko cited an experience in which she bore witness to the unattended consequences of racial bias in medicine. In Niger to repair women’s fistulas, which occur due to lack of postpartum care, Dr. Huchko felt she was attending to the downstream symptom of a much broader issue. She felt uncomfortable when the urogynecologist on her team ignorantly praised Sims without acknowledging his problematic history. Then, she saw this ignorance firsthand.
Making a false assumption about the nature of the case, Dr. Huchko’s team chose to operate on a woman with a mass in her bladder. During the surgery, they realized the mass was a malignant tumor. With an unbiased eye and a complete exam and workup, this would have been clear. But because the team was looking at these women as “one-dimensional,” a woman with stage 4 cancer was subjected to a very invasive surgery that worsened her quality of life.
Dr. Huchko experienced a similar lack of structural competency during her residency, where colleagues openly racially profiled people and overtly discussed disparities in pain tolerances among different ethnicities. Since then, “things have changed,” and she embraces this new culture of “being patient centered, exploring our own biases, and [having] zero tolerance for racial profiling.” She stresses the need for personal education and accountability alongside systemic change. Eventually, this will lead to women feeling “respected, seen, and heard.”
Coming to the US from Kenya, Dr. Mungo quickly came to appreciate the “sheer magnitude” of structural racism and its impact on health and healthcare. Dr. Mungo explained that “mutually reinforcing systems of disadvantage” for people of color, such as food deserts, are both the result and cause of healthcare disparities and result in enduring legacies of disadvantage.
Dr. Chemtai Mungo, MD, MPH, is a Fogarty Global Health Fellow and OB-GYN doctor
Dr. Mungo also observed that with healthcare in the US being so economically driven, the best care is often directed at those with racial and socioeconomic privilege. When she worked in a high resourced (read: white, wealthy) hospital, access to uterus-saving equipment such as interventional radiology meant that she only did one hysterectomy in four years. Doctors at the hospital also came in on weekends to get a person with cancer into the OR immediately.
Now, working with a “safety net hospital,” Dr. Mungo sees a stark difference. With non-existent interventional radiology and more part-time, “less invested” employees, Dr. Mungo has done three hysterectomies (for obstetric hemorrhage) in three years — a 75% increase — and sees patients with time-sensitive conditions wait much longer before surgery. This “separate and unequal access to resources” is a cause for concern.
Dr. Mungo also stressed the need to make practices “safe places” for patients of color by increasing minority representation. Dr. Mungo explained that while Black physicians make up only 5% of doctors and 3% of faculty, there is strong evidence that patients who are cared for by someone of their own race or ethnicity have better outcomes. “We live in a racist society,” Dr. Mungo stated, “so we need specific anti-racist policies.”
Dr. Mungo also acknowledged that healthcare providers work within “templates” like 15 minute appointments, and posed the closing question, how can we make patients feel safe and heard within the constraints of modern medicine?
Dr. Mungo indicted these algorithms as “an example of how institutionalized some [racial] biases are.” There is “no concrete evidence” on why these corrections for race — which typically act to reduce the probability of success for a procedure or favorability of an outcome — exist. Dr. Mungo would urge providers “not to stop at, ‘well, African Americans have an increased risk of diabetes.’ Ask why. Have them explain food deserts… and structural and environmental racism.”
Dr. Huchko stated that giving aspirin throughout pregnancy reduces preeclampsia, and is thus traditionally offered based on risk factors for preeclampsia, like low socioeconomic status and African American race. Sometimes, healthcare providers may not be able to address these risks without the acknowledgement of race as a risk factor. Dr. Huchko is right, African American women are at a higher risk for preeclampsia, and ignoring this correlation would probably do more harm than good.
But per Dr. Mungo’s appeal, providers must interrogate these associations more deeply — and be ever anti-racist in their efforts — if they are to create the safe spaces and trusting relationships that Mahendru, Dr. Huchko, and Dr. Mungo each hope to see.
The COVID-19 epidemic has impacted the Duke research enterprise in profound ways. Nearly all laboratory-based research has been temporarily halted, except for research directly connected to the fight against COVID-19. It will take much time to return to normal, and that process of renewal will be gradual and will be implemented carefully.
Trying to put this situation into a broader perspective, I thought of the 1939 essay by Abraham Flexner published in Harper’s magazine, entitled “The Usefulness of Useless Knowledge.” Flexner was the founding Director of the Institute for Advanced Study at Princeton, and in that essay, he ruminated on much of the type of knowledge acquired at research universities — knowledge motivated by no objective other than the basic human desire to understand. As Flexner said, the pursuit of this type of knowledge sometimes leads to surprises that transform the way we see that which was previously taken for granted, or for which we had previously given up hope. Such knowledge is sometimes very useful, in highly unintended ways.
Gregory Gray, MD MPH
The 1918 influenza pandemic led to 500 million confirmed cases, and 50 million deaths. In the Century since, consider how far we have come in our understanding of epidemics, and how that knowledge has impacted our ability to respond. People like Greg Gray, a professor of medicine and member of the Duke Global Health Institute (DGHI), have been quietly studying viruses for many years, including how viruses at domestic animal farms and food markets can leap from animals to humans. Many believe the COVID-19 virus started from a bat and was transferred to a human. Dr. Gray has been a global leader in studying this mechanism of a potential viral pandemic, doing much of his work in Asia, and that experience makes him uniquely positioned to provide understanding of our current predicament.
From the health-policy perspective, Mark McClellan, Director of the Duke Margolis Center for Health Policy, has been a leading voice in understanding viruses and the best policy responses to an epidemic. As a former FDA director, he has experience bringing policy to life, and his voice carries weight in the halls of Washington. Drawing on faculty from across Duke and its extensive applied policy research capacity, the Margolis Center has been at the forefront in guiding policymakers in responding to COVID-19.
Through knowledge accrued by academic leaders like Drs. Gray and McClellan, one notes with awe the difference in how the world has responded to a viral threat today, relative to 100 years ago. While there has been significant turmoil in many people’s lives today, as well as significant hardship, the number of global deaths caused by COVID-19 has been reduced substantially relative to 1918.
One of the seemingly unusual aspects of COVID-19 is that a substantial fraction of the population infected by the virus has no symptoms. However, those asymptomatic individuals shed the virus and infect others. While most people have no or mild symptoms, other people have very adverse effects to COVID-19, some dying quickly.
This heterogeneous response to COVID-19 is a characteristic of viruses studied by Chris Woods, a professor medicine in infectious diseases. Dr. Woods, and his colleagues in the Schools of Medicine and Engineering, have investigated this phenomenon for years, long before the current crisis, focusing their studies on the genomic response of the human host to a virus. This knowledge of viruses has made Dr. Woods and his colleagues leading voices in understanding COVID-19, and guiding the clinical response.
A team led by Greg Sempowski, a professor of pathology in the Human Vaccine Institute is working to isolate protective antibodies from SARS-CoV-2-infected individuals to see if they may be used as drugs to prevent or treat COVID-19. They’re seeking antibodies that can neutralize or kill the virus, which are called neutralizing antibodies.
Barton Haynes, MD
Many believe that only a vaccine for COVID-19 can truly return life to normal. Human Vaccine Institute Director Barton Haynes, and his colleagues are at the forefront of developing that vaccine to provide human resistance to COVID-19. Dr. Haynes has been focusing on vaccine research for numerous years, and now that work is at the forefront in the fight against COVID-19.
Engineering and materials science have also advanced significantly since 1918. Ken Gall, a professor of mechanical engineering and materials science has led Duke’s novel application of 3D printing to develop methods for creatively designing personal protective equipment (PPE). These PPE are being used in the Duke hospital, and throughout the world to protect healthcare providers in the fight against COVID-19.
Much of the work discussed above, in addition to being motivated by the desire to understand and adapt to viruses, is motivated from the perspective that viruses must be fought to extend human life.
In contrast, several years ago Jennifer Doudna and Emmanuelle Charpentier, academics at Berkeley and the Max Planck Institute, respectively, asked a seemingly useless question. They wanted to understand how bacteria defended themselves against a virus. What may have made this work seem even more useless is that the specific class of viruses (called phage) that infect bacteria do not cause human disease. Useless stuff! The kind of work that can only take place at a university. That basic research led to the discovery of clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial defense system against viruses, as a tool for manipulating genome sequences. Unexpectedly, CRISPR manifested an almost unbelievable ability to edit the genome, with the potential to cure previously incurable genetic diseases.
Charles Gersbach, a professor of Biomedical Engineering, and his colleagues at Duke are at the forefront of CRISPR research for gene and cell therapy. In fact, he is working with Duke surgery professor and gene therapy expert Aravind Asokan to engineer another class of viruses, recently approved by the FDA for other gene therapies, to deliver CRISPR to diseased tissues. Far from a killer, the modified virus is essential to getting CRISPR to the right tissues to perform gene editing in a manner that was previously thought impossible. There is hope that CRISPR technology can lead to cures for sickle cell and other genetic blood disorders. It is also being used to fight cancer and muscular dystrophy, among many other diseases and it is being used at Duke by Dr. Gersbach in the fight against COVID-19.
David Ashley, Ph.D.
In another seemingly bizarre use of a virus, a modified form of the polio virus is being used at Duke to fight glioblastoma, a brain tumor. That work is being pursued within the Preston Robert Tisch Brain Tumor Center, for which David Ashley is the Director. The use of modified polio virus excites the innate human immune system to fight glioblastoma, and extends life in ways that were previously unimaginable. But there are still many basic-science questions that must be overcome. The remarkable extension of life with polio-based immunotherapy occurs for only 20% of glioblastoma patients. Why? Recall from the work of Dr. Woods discussed above, and from our own observation of COVID-19, not all people respond to viruses in the same way. Could this explain the mixed effectiveness of immunotherapy for glioblastoma? It is not known at this time, although Dr. Ashley feels it is likely to be a key factor. Much research is required, to better understand the diversity in the host response to viruses, and to further improve immunotherapy.
The COVID-19 pandemic is a challenge that is disrupting all aspects of life. Through fundamental research being done at Duke, our understanding of such a pandemic has advanced markedly, speeding and improving our capacity to respond. By innovative partnerships between Duke engineers and clinicians, novel methods are being developed to protect frontline medical professionals. Further, via innovative technologies like CRISPR and immunotherapy — that could only seem like science fiction in 1918 (and as recently as 2010!) — viruses are being used to save lives for previously intractable diseases.
Viruses can be killers, but they are also scientific marvels. This is the promise of fundamental research; this is the impact of Duke research.
“We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time.”
T.S. Eliot, Four Quartets
Post by Lawrence Carin, Vice President for Research
The results of evolution are often awe-inspiring — from the long neck of the giraffe to the majestic colors of a peacock — but evolution does not always create structures of function and beauty.
In the case of cancer, the growth of a population of malignant cells from a single cell reflects a process of evolution too, but with much more harrowing results.
Johannes Reiter uses mathematical models to understand the evolution of cancer
Researchers like Johannes Reiter, PhD, of Stanford University’s Translational Cancer Evolution Laboratory, are examining the path of cancer from a single sell to many metastatic tumors. By using this perspective and simple mathematical models, Reiter interrogates the current practices in cancer treatment. He spoke at Duke’s mathematical biology seminar on Jan. 17.
The evolutionary process of cancer begins with a single cell. At each division, a cell acquires a few mutations to its genetic code, most of which are inconsequential. However, if the mutations occur in certain genes called driver genes, the cell lineage can follow a different path of rapid growth. If these mutations can survive, cells continue to divide at a rate faster than normal, and the result is a tumor.
As cells divide, they acquire mutations that can drive abnormal growth and form tumors. Tumors and their metastases can consist of diverse cell populations, complicating treatment plans out patient outcomes. Image courtesy of Reiter Lab
With each additional division, the cell continues to acquire mutations. The result is that a single tumor can consist of a variety of unique cell populations; this diversity is called intratumoral heterogeneity (ITH). As tumors metastasize, or spread to other locations throughout the body, the possibility for diversity grows.
Intratumoral heterogeneity can exist within primary tumors, within metastases, or between metastases. Vogelstein et al., Science, 2013
Reiter describes three flavors of ITH. Intra-primary heterogeneity describes the diversity of cell types within the initial tumor. Intra–metastatic heterogeneity describes the diversity of cell types within a single metastasis. Finally, inter-metastatic heterogeneity describes diversity between metastases from the same primary tumor.
For Reiter, inter-metastatic heterogeneity presents a particularly compelling problem. If treatment plans are made based on biopsy of the primary tumor but the metastases differ from each other and from the primary tumor, the efficacy of treatment will be greatly limited.
With this in mind, Reiter developed a mathematical model to predict whether a cell sample collected by biopsy of just the primary tumor would provide adequate information for treatment.
Using genetic sequence data from patients who had at least two untreated metastases and a primary tumor, Reiter found that metastases and primary tumors overwhelmingly share a single driver gene. Reiter said this confirmed that a biopsy of the primary tumor should be sufficient to plan targeted therapies, because the risk of missing driver genes that are functional in the metastases proved to be negligible.
In his next endeavors as a new member of the Canary Center for Cancer Early Detection, Reiter plans to use his knack for mathematical modeling to tackle problems of identifying cancer while still in its most treatable stage.
For many years, the standard strategy for fighting against cancer has been to find it early with screening when the person is still healthy, then hit it with a merciless treatment regimen to make it go away.
But not all tumors will become life-threatening cancers. Many, in fact, would have caused no issues for the rest of the patients’ lives had they not been found by screening. These cases belong to the category of overdiagnosis, one of the chief complaints against population-level screening programs.
Scientists are reconsidering the way to treat tumors because the traditional hit-it-hard approach has often caused the cancer to seemingly go away, only to have a few cells survive and the entire tumor roar back later with resistance to previously effective medicine.
Dr. Marc Ryser, the professor who gave this meaty talk
In his May 23 talk to Duke Population Health, “Cancer Overdiagnosis: A Discourse on Population Health, Biologic Mechanism and Statistics,” Marc Ryser, an assistant professor at Duke’s Departments of Population Health Sciences and Mathematics, walked us through how parallel developments across different disciplines have been reshaping our cancer battle plan. He said the effort to understand the true prevalence of overdiagnosis is a point of focus in this shift.
Past to Future: the changing cancer battle plan Credit: Marc Ryser, edit: Brian Du
Ryser started with the longstanding biological theory behind how tumors develop. Under the theory of clonal sweeps, a relatively linear progression of successive key mutations sweeps through the tumor, giving it increasing versatility until it is clinically diagnosed by a doctor as cancer.
Clonal sweeps model, each shade is a new clone that introduces a mutation credit: Sievers et al. 2016
With this as the underpinning model, the battle plan of screen early, treat hard (point A) makes sense because it would be better to break the chain of progression early rather than later when the disease is more developed and much more aggressive. So employing screening extensively across the population for the various types of cancer is the sure choice, right?
But the data at the population level for many different categories of cancers doesn’t support this view (point B). Excluding the cases of cervical cancer and colorectal cancer, which have benefited greatly from screening interventions, the incidence of advanced cases of breast cancer and other cancers have stayed at similar levels or actually continued to increase during the years of screening interventions. This has raised the question of when screening is truly the best option.
Scientists are thinking now in terms of a “benefit-harm balance” when mass-screening public health interventions are carried out. Overdiagnosis would pile up on the harms side, because it introduces unnecessary procedures that are associated with adverse effects.
Thinking this way would be a major adjustment, and it has brought with it major confusion.
Paralleling this recent development on the population level, new biological understanding of how tumors develop has also introduced confusion. Scientists have discovered that tumors are more heterogeneous than the clonal sweeps model would make it appear. Within one tumor, there may be many different subpopulations of cancer cells, of varying characteristics and dangerousness, competing and coexisting.
Additional research has since suggested a more complex, evolutionary and ecological based model known as the Big Bang-mutual evolution model. Instead of the “stepwise progression from normal to increasingly malignant cells with the acquisition of successive driver mutations, some cancers appear to evolve more like a Big Bang, where the malignant ability is already concentrated in the founder cell,” Ryser said.
As the first cell starts to replicate, its descendants evolve in parallel into different subpopulations expressing different characteristics. While more research has been published in favor of this model, some scientists remain skeptical.
Ryser’s research contributes to this ongoing discussion. In comparing the patterns by which mutations are present or absent in cancerous and benign tumors, he obtained results favoring the Big Bang-mutual evolution model. Rather than seeing a neat region of mutation within the tumor, which would align with the clonal sweeps model, he saw mutations dispersed throughout the tumor, like the spreading of newborn stars in the wake of the Big Bang.
How to think about mutations within a tumor credit: NASA
The more-complicated Big Bang-mutual evolution model justifies an increasingly nuanced approach to cancer treatment that has been developing in the past few years. Known as precision medicine (point C), its goal is to provide the best treatment available to a person based on their unique set of characteristics: genetics, lifestyle, and environment. As cancer medicine evolves with this new paradigm, when to screen will remain a key question, as will the benefit-harm balance.
There’s another problem, though: Overdiagnosis is incredibly hard to quantify. In fact, it’s by nature not possible to directly measure it. That’s where another area of Ryser’s research seeks to find the answers. He is working to accurately model overdiagnosis to estimate its extent and impact.
Going forward, his research goal is to try to understand how to bring together different scales to best understand overdiagnosis. Considering it in the context of the multiscale developments he mentioned in his talk may be the key to better understand it.