Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Karl Bates Page 8 of 18

Director of Research Communications, Duke University

Brain Institute Goes Underground

By Karl Leif Bates

From the top side, it looks like a miniature of the landmark Apple store on Fifth Ave. in Manhattan — a simple glass cube.

DIBS

The entrance to the new DIBS space is just a glass box on the plaza next to LSRC.

But descending the stairs or the glass elevator brings one into the newest, hippest space on campus, the new headquarters of the Duke Institute for Brain Sciences (DIBS). DIBS opened the new underground space at the Levine Science Research Center (LSRC) this week with a reception and lecture.

(The inaugural lecture by Sarah-Jayne Blakemore of University College London, was about her work on the adolescent brain. The peak volume of gray matter in the human brain comes around age 14 and then declines, Blakemore says, but that’s not all a bad thing. It’s the pruning and streamlining of connections that turns a socially obsessed, impulsive teenager into a confident, somewhat-rational adult.)

DIBS atrium

The atrium of the new center feels spacious, despite being underground.

The 11,000-square-foot space stretches south from the cube and  beneath the Blue Front dining hall in a big bay that used to house utilities equipment for LSRC. The ceilings still boast giant pipes marked CHILLED WATER and such, but the rest of it is comfortable, ultra-modern space for brain scientists to communicate, collaborate and learn, with space-saving sliding doors on the offices, and glass garage doors to section off or open up the meeting rooms.

There are actually two levels in the new lair. The mezzanine, ringed by a groovy steel-cable balustrade, provides offices,  a conference room, and even a sort of balcony overlooking the main events space where Blakemore spoke.

DIBS lecture hall

The lecture hall is a flexible space with a ‘balcony’ of sorts.

The main level below is larger and has more staff offices, two teaching labs, and an airy atrium topped with big ring-shaped light fixtures. A divisible “team room” can be used for Bass Connections meetings or other gatherings, and an even larger multi-function space is set up for lectures, but has a flat floor and stackable chairs, so it could do lots of other things too.

There’s even a little room between the teaching labs that might come in handy for storing brains, DIBS Director Michael Platt points out on an introductory tour.

“We haven’t come up with a name yet,” Platt says. “It’s been called the DIBS underground, the Cube…” Standing nearby, psych and neuroscience professor Scott Huettel offers, “We could call it the voxel,” a cubic measure often used in MRI studies.

Michael and Zab

DIBS Director Michael Platt and Associate Director Zab Johnson designed the new space.

The orange walls on the lower level offices don’t go all the way to the ceiling, which helps it feel less underground but may require some new telephone and meeting etiquette, says communication director Julie Rhodes.

“We’re thrilled with it,” said DIBS Associate Director Elizabeth “Zab” Johnson, who co-designed the space with Platt and has already relocated her office from LSRC to the still-unnamed new space.

A Gutsy Approach to Lemur Science

By Sheena Faherty, biology Ph.D. candidate

Can the microorganisms living in a baby lemur’s gut help it grow up to be a vegetarian or an omnivore?

A new study appearing May 13 in Plos One shows that baby lemurs’ gut bacteria have different, diet-dependent strategies for reaching adult mixtures of microbes.  This, in turn, might contribute to why some lemurs are strictly leaf-eaters, while some nosh on just about everything.

lemur eating flowers

A black and white ruffed lemur (Varecia variegata) finds North Carolina’s vegetation as delicious as it is beautiful. (Duke Lemur Center, David Haring)

Erin McKenney, lead author on the study and a Ph.D. candidate in the Biology department, is looking at the patterns of how the bacteria colonize the gut of their lemur host and why this is essential for helping the adult lemurs navigate their environment — and their diets.

“This study is important because all mammals are born with basically sterile guts,” McKenney said. “But by the time we’re adult mammals, there are 20 trillion bacteria living in the gut. (The bugs are an) adaptive super organ that has co-evolved with the host and dictated the host’s evolution. We want to know more about how that happens.”

This “microbiome” of the gut is a jack-of-all-trades, performing jobs like protecting the host’s body from pathogens and helping it digest food. When the gut’s microbes digest foods that are high in fiber — like plant matter — some of the digestion by-products are absorbed by the intestine, which provides nutrition for the body. Humans get up to 10 percent of our daily nutritional requirements from fiber breakdown by bacteria.

Erin McKenney

Erin McKenney scooping lemur poop for SCIENCE!

“Mammals don’t secrete the enzymes that are necessary, so no mammal can digest fiber on its own,” McKenney said. “These microbes are performing an incredibly important life process for us.”

At the Duke Lemur Center, McKenney collected fecal samples from three different species of lemur that evolved to eat different foods—a strict leaf-eater, and two omnivores. Using DNA sequencing, she determined the communities of bacteria that are living in their guts at different life stages from birth to adulthood.

Watching microbiomes through time may enable her to answer the question of how the microbiome of each species becomes teeming with 20 trillion bacteria, and if the patterns differ based on diet.

lemur eating pokeweed

Vegetarian lemurs can eat a surprising variety of stuff we’d find nasty, like pokeweed and even poison ivy. (Duke Lemur Center, David Haring)

The results suggest that all species of baby lemurs, when they are born and nursing from their mothers have similar microbiome profiles that are much less complex than adult profiles. But leaf-eaters that eat the most fiber show adult microbiome profiles as soon as solid foods are introduced, which is in contrast to the other two species that take longer to reach adult microbiome profiles. Additionally, leaf-eaters have more complex microbial communities, which allows them to digest fiber-rich foods.

“So when you start to think about the really big picture, beyond everything the gut microbes do for the hosts they live inside of, we find the microbes have done an incredible service to mammalian speciation. The only way that we have leaf-eaters is because of these gut microbes,” McKenney said.

Researcher Goes to the Dogs, Lands on TV

Fresh off a visiting teaching gig at Duke-Kunshan University and a sabbatical in Australia, canine and primate cognition researcher Brian Hare is about to land in your living room.

Hare, an associate professor of Evolutionary Anthropology and founder of Duke’s canine cognition lab and the Triangle startup Dognition.com, is now a television host too.

He’ll be hosting a three-part series on Nat Geo WILD at 10 p.m. ET this Friday, Saturday and Sunday nights called “Is Your Dog a Genius?”

Hare will introduce viewers to some of the latest knowledge about what our dogs think and understand, as well as sharing some at-home games you can use to reveal your dog’s personality. He’ll also visit with some ordinary and extraordinary dogs to see their problem-solving in action.

Friday’s episode is titled ” Doggy See Doggy Do.” Saturday is “Who’s Your Doggy.” And Sunday is “Talk Doggy to Me.”

Bringing a Lot of Energy to Research

By Karl Leif Bates

The Duke Energy Initiative‘s annual research collaboration workshop on May 5 was an update on how the campus-wide alliance of more than 130 faculty has been pursuing its goals of making energy  “accessible, affordable, reliable and clean.” In short, they’ve been busy!

energy posters

Energetic discussion swirled around research posters from graduate student projects and Bass Connections. (Photo: Margaret Lillard)

At the afternoon session in Gross Hall, David Mitzi, professor of mechanical engineering and materials science, led a panel of five-minute updates on energy materials including engineered microbes, computational modeling of materials, solar cells built on plastic rather than glass, and a nanomaterial-based sheet of material that would combine photovoltaics with storage on a single film.

Kyle Bradbury, managing director of the new Energy Data Analytics Lab that works with the ‘big data’ folks at iiD and the social scientists at SSRI, led a panel on the lab’s latest projects. As smart meters and Internet-enabled appliances enter the market, energy analysts will be flooded with new data, Bradbury explained. There should be great potential to improve efficiency and provide customers with useful real-time feedback, but first the torrent of information has to be corralled and analyzed.

energy panel

Kyle Bradbury (standing) moderated a data analytics panel with Leslie Collins and Matt Harding (right).

For one example of what big energy data might do, Bradbury and Electrical and Computer Engineering professor Leslie Collins (his former advisor) have done a pilot study to see if computers could be taught to  pick out roof-top solar arrays in satellite photos.  Nobody actually knows how many arrays there are or how much power they’re producing, Collins said. But without too much fussing around, their first visual search algorithm spotted 92 percent of the arrays correctly in some hand-picked images of California neighborhoods. Ramped up and tweaked, such an automated search could begin to identify just how much residential solar there is, where it is, and roughly how much energy it’s producing.

The third group of researchers, moderated by Energy Initiative associate Daniel Raimi, is working on energy markets and policy, including energy systems modeling and the regulation of green house gasses through the Clean Air Act.

Energy Initiative director Richard Newell said there were 1,400 Duke students enrolled in energy-related courses this year. A first round of six seed-funded research projects was completed and seven new projects have been selected. Eight Bass Connections teams in the energy theme were very productive as well, examining smart grids, solar energy and household energy conservation with teams of undergraduates, graduate students and faculty.

Underwater Cave is a Lemur Treasure Trove

Guest post by Gregg Gunnell, Division of Fossil Primates

(A version of this column originally appeared in the Duke Lemur Center newsletter)

Lagerstätten – that word sends a shiver of excitement up and down the spine of every paleontologist.

In German the word means ‘storage place’ or ‘deposits,’ but in paleontology it has come to mean a very rich fossil deposit that contains complete or nearly complete specimens that sample a wide variety of the creatures living at a certain time.

cave diver

A cave diver and subfossil specimen in Aven Cave, Madagascar. The plastic triangle is a scale for photographs of the specimen in situ. (Image by Phillip Lehman and Pietro Donaggio-Bitner)

As you might imagine, Lagerstätten are quite rare. Some of the more famous examples are the Burgess Shale in Canada which preserves soft body outlines of ancient (530 million years ago) Cambrian animals; the Jurassic (150 Ma) Solenhofen limestones in Germany where the famous Archaeopteryx is found; and the middle Eocene (45 Ma) Messel Oil Shale in Germany which preserves whole skeletons of many birds, mammals, reptiles, amphibians, and insects.

I have had the good fortune to be in on the discovery of two Lagerstätten in addition to studying specimens from two others. The first one our team discovered was in 1998 in Pakistan, a place we named Gandhera Quarry. It preserves a remarkable wealth of early Eocene (52 Ma) mammals from Balochistan Province – an assemblage that has yet to completely studied.

But the latest and most exciting to me as Director of the Division of Fossil Primates in the Duke Lemur Center happened late last year in Southwest Madagascar.

The discovery of subfossils at a place called Aven Cave was known to local people, but not reported to the scientific community until an Australian cave diver named Ryan Dart saw it. The cave and its specimens are underwater. The specimens are called subfossils, because they aren’t old enough to have completed (or in some cases even started) the fossilization process.

A joint team from the University of Antananarivo, Duke University, University of Massachusetts, Brooklyn College and Midwestern University led an expedition to this cave site in October 2014. Cave divers Phillip Lehman  and the Dominican Republic Speleological Society dive team helped us find a treasure trove of subfossils.

lemur skulls

Lemur skulls, as they were found in the cave, with a scale marker. (Photo courtesy of Phillip Lehman and Pietro Donaggio-Bitner)

Only a preliminary survey has been made of Aven Cave to date, but it is clear already that it is one of the richest subfossil sites ever discovered in Madagascar. The initial list of animal specimens found in the cave includes three genera of extinct lemurs (Pachylemur, Mesopropithecus, and Megaladapis) as well as one species of a living form, Lemur catta, the familiar ring-tailed lemur. In addition to the primates there are abundant specimens of bats (Hipposideros), carnivores (the extinct fossa Cryptoprocta spelea as well as a smaller, still living species, C. ferox), two species of rodents, an extinct pygmy hippopotamus, crocodiles, turtles, and two bird species including the extinct elephant bird Mullerornis.

Not only is there a diverse assembly of species coming from Aven Cave, the sample is also abundant, with many species represented by multiple specimens. Many specimens appear to be complete or nearly complete skeletons.

The expedition was aided by Mr. Lovasoa Dresy, the director of Tsimanampetsotsa National Park, and was generously supported by the National Science Foundation and the National Geographic Society.

We anticipate many more and surprising discoveries in the future. Stay tuned for updates from Aven Cave!

When Bad Viruses Do Good

Guest post by Ted Stanek, Graduate Student in Neurobiology

Poliovirus via wikimedia commons

Poliovirus binding to a receptor, the first stage in infection.

The polio vaccine was a medical triumph, single-handedly decreasing the number of polio cases in the world from more than 350,000 in 1988 to only 416 in 2013. Now, surgeons at Duke University are using the once universally feared virus to target another disease – cancer.

One of the big problems with cancer is that your body doesn’t know it’s dangerous.  For most infections, your immune system learns to recognize what a dangerous or infected cell looks like. Cells infected by a virus will display protein markers which alert your immune system that they are infected. Invading bacteria also display similar markers, aiding the immune system in finding and targeting them.

But in cancer, your own cells appear just like they always do, even while they are multiplying uncontrollably. Your immune system has no way to distinguish these multiplying cells from healthy cells, and so it doesn’t know to attack the tumor.

mastication circuit

In Fan Wang’s lab at Duke, we use the rabies virus and special dyes to trace the paths of individual neurons in a mouse’s brain.

A team at the Preston Robert Tisch Brain Tumor Center at Duke is looking to viruses to help the immune system find and kill tumor cells. If a virus could be made to only attack tumor cells, then infecting tumors with such a virus could help your immune system clear away tumors – whether benign or malignant.

It turns out the polio virus can do this. Because tumor cells are growing and multiplying rapidly, they look a lot like muscle cells in a healthy, growing child – polio’s prime target. Infection of these cells results in muscle loss seen in some children with the disease. From here polio can infect neurons that activate these muscles, causing paralysis. In that sense, it uses the same process of entry into the nervous system as the rabies virus, which I and others in the lab of Fan Wang here at Duke use to trace circuits in the brain.

Matthias Gromeier engineered a poliovirus to attack brain tumors.

Matthias Gromeier engineered a poliovirus to attack brain tumors.

Like the rabies virus, most of the machinery in the polio virus is made to target and reproduce in these growing cells, while only one gene causes the actual disease. To get around this, associate professor of neurosurgery Dr. Matthias Gromeier deleted this polio disease gene and replaced it with one for the common cold. When tested in monkeys, the virus was found to be effective in targeting and helping to clear out brain tumors without affecting the nearby healthy neurons.

Gromeier and Duke neurosurgeons are injecting a form of the polio vaccine directly into human brain tumors in a Phase I trial they hope will lead to approval as a cancer treatment – and so far they  have had some encouraging successes.

The beauty of this treatment is that it might not be  limited to brain tumors. Gromeier is planning to test the virus in future clinical trials against prostate cancer, lung cancer, colon cancer, and many others.

(CBS 60 Minutes just aired a special two-part segment on these experiments with polio virus. View them here.)

Science Bracketology Runs Amok

By Karl Leif Bates

Okay, this bracket thing might be getting out of hand.

In addition to the men’s basketball tournament — where nearly 20 percent of the surviving teams are from our fair Triangle — and the women’s basketball tournament, in which both Duke and UNC are still alive — there have been a wave of science-related me-too brackets hoping to garner some social media love.

But hey, we have some big dogs in all of those fights too, so we’ll play along.

Maintenance workers inside the Super Kamiokande neutrino detector float on a rubber raft atop superpure water. (Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo)

Maintenance workers inside the Super Kamiokande neutrino detector float on a rubber raft atop superpure water. (Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo)

The particle physics folks at Symmetry magazine rolled out a bracket this week that pits sixteen of the coolest big machines in experimental physics against each other in head-to head-fashion.

Round one of their pair-wise elimination tournament pits an underground dark matter detector called LUX (The Large Underground Xenon dark-matter detector, naturally) against Swiss media darling, the Large Hadron Collider.

We’re going to stay on the sidelines for this one, as both experiments involve Duke people: Neutrino hunter Kate Scholberg, a professor of physics, works with LUX . And the LHC — specifically the ATLAS experiment — has dozens of Duke folks involved, most notably Mark Kruse, the Fuchsberg-Levine Professor of physics and head of ATLAS outreach in the U.S.

The fifth match in the physics bracket pits the Super-Kamiokande neutrino detector in Japan against something called DEAP in Canada which is looking for WIMPS. (We’re not making that up; it stands for Weakly Interacting Massive Particles.)

Kate Scholberg is a professor of physics at Duke.

Kate Scholberg is a professor of physics at Duke.

DEAP is probably a piece of junk though, because Super K has Scholberg and Associate Professor Chris Walter in its corner. And by the way, they’re already at work on Hyper-Kamiokande, which we’re sure the Canadians could only match with what, hyper wimps?

Go ahead and vote before 3 a.m. March 27, if you’re a fan of giant, expensive physics machines. We know we are!

UPDATE: April 7, 2015: The Dark Energy Camera, a big boy at the top of a Chilean mountain, topped the Large Hadron Collider in the final. Read the results here. We can’t believe there wasn’t some concerted ballot-stuffing going on.

Meanwhile, the good folks at ThomsonReuters have once again put out a bracket pitting the 64 universities in the men’s basketball tournament against each other on the strength of their academic publishing stats.

Last year, you’ll recall, the Blue Devils lost a heartbreaker in the final round to some California team that has like, a dancing tree for a mascot? What the Fir is up with that?

The ThomsonReuters contest is waged over h-indices, citation impact, international collaborations and other measures of research publishing rigor.

The California tree-huggers’ ballers didn’t make the basketball tournament this year, so maybe we have a clear shot to the finals again. Wisconsin and Harvard might give us a scare coming from the other side of the bracket, though.

UPDATE – April 7, 2015: We did indeed have a clear shot to the final contest, where Harvard beat us. This marks our second consecutive final-round disappointment. Read the disappointing news from Thomson Reuters. 

By the way, Duke won the dang basketball tournament at least!

Cameron Crazies are rooting for our scientists too!

Cameron Crazies are rooting for our scientists too!

Mouse Lemur Quandary Stumps Researchers

By Sheena Faherty, Ph.D. Candidate in Biology

What does famous lemur researcher, Dame Alison Richard, do when she has a burning question she can’t answer?

She visits Duke and appeals to a room full of lemur enthusiasts to help out.

Richard’s question concerns the curious case of the mouse lemurs at Beza Mahafaly in southwestern Madagascar, where she has been involved in a wildlife-monitoring program since the mid-1990s.

Alison Richard (left) and Lemur Center Director Anne Yoder (right) lead a discussion in the 'Beach House' at DLC.

Alison Richard (left) and Lemur Center Director Anne Yoder (right) lead a discussion in the ‘Beach House’ at DLC.

“What do I know about mouse lemurs?” she questioned a group that gathered at the Duke Lemur Center on March 3 as the first of three talks she held at Duke this week as part of the Von der Heyden Fellows Program. “Probably less than you do. But I am incredibly interested in what is going on with them at Beza Mahafaly.”

Everywhere else in Madagascar, mouse lemurs that look indistinguishable are classified as different species due to big variations at the genetic level. But at Beza Mahafaly, Richard is finding that mouse lemurs with major deviations in appearance are genetically the same.

Dame Alison Richard (Photo: HHMI)

Dame Alison Richard (Photo: HHMI)

For a long time, the general view was that there were two species of mouse lemur in the forests of Beza Mahafaly : the gray-brown mouse lemur and the gray mouse lemur (both being exceptionally adorable).

A few studies in the mid-1990s and early 2000s compared the shapes of certain features such as jawbone shape and leg length, and confirmed this view. Then, researchers started noticing a few trapped animals that had very noticeable differences in coat coloration. These animals were redder than the other two known species. Was this a possible third species?

In 2006, Duke Lemur Center Director, Anne Yoder, and her former Ph.D. student Kellie Heckman examined this same population of mouse lemurs from a genetic standpoint. Comparing sequences of DNA they expected to find major genetic differences between the two known species, and possibly confirm the existence of a third species.

“The genetic data was a disaster for the mouse lemurs,” Richard said.

All the samples collected from animals at Beza Mahafaly, regardless of the animal’s outward appearance, sorted together and seemed to be one species.

Dame Alison and the bedeviled mouse lemur of Beza Mahafaly

Dame Alison and the bedeviled mouse lemur of Beza Mahafaly

“There’s a part of me that’s very distressed about this, but there’s a part of me that thinks this is great,” Richard said. “At Beza Mahafaly we swim upstream. We’re contrarians,” she said laughing. “But we still don’t know how to best explain the diversity that we do see.”

She offered up some suggestions: A glimpse of an ongoing process of change? A replacement by one species over another? The beginning of a new species?

Flashing a picture of a mouse lemur displaying ominous eye shine from a headlamp, she said: “The mouse lemurs are waiting with an evil gleam in their eye to be told the truth about themselves. The question is how should we take this forward?”

Seed Grants Pair Scientists at Duke and RTI International

The original intent of Funds Launching Alliances for Research Exploration (FLARE) had been to provide seed funding to one research project that joins Duke University scientists with those at RTI International, a global non-profit research institution in the Research Triangle Park.

In the end, the proposals were so good that Duke Vice Provost for Research Larry Carin and RTI President and CEO Wayne Holden decided they had to fund two.

The goal of the seed funding, which was announced last week, is to create new collaborations that would be attractive to federal funding. Each team will receive $100,000 in seed funding.

Kirsten Corazzini of the Duke School of Nursing and Michael Lepore of RTI will co-lead a project on improving nursing home care.

Kirsten Corazzini of the Duke School of Nursing and Michael Lepore of RTI will co-lead a project on improving nursing home care.

One of the winning ideas is a team combining Duke’s department of sociology and School of Nursing with RTI’s public health and health policy researchers. They’ll be examining methods to improve nursing home care through patient-directed  planning. After a year of theoretical framing and data collection, the group hopes to pursue an R21 application with the National Institute of Nursing Research (NINR).

This group will be led by Duke’s Kirsten Corazzini, PhD, an Associate Professor of Nursing, and Michael Lepore, PhD, Senior Health Policy & Health Services Researcher at RTI.

(Clockwise from upper left) RTI's Brooks Depro and William Studabaker will join Duke's Jim Zhang and Christopher Timmins in a study about air quality around fracking operations.

(Clockwise from upper left) RTI’s Brooks Depro and William Studabaker will join Duke’s Jim Zhang and Christopher Timmins in a study about air quality around fracking operations.

The second winning proposal will do air quality assessments before shale gas fracking operations have begun in a local area. This combines Duke economist Christopher Timmins, Ph.D. and Jim Zhang, Ph.D. of the Nicholas School of Environment with RTI economist Brooks Depro, Ph.D. and research chemist William Studabaker, Ph.D.

They plan to apply data visualization and an exploration of correlations with identifiable sources of local air pollution (especially toxics, VOC’s and particulates) and characteristics of local populations. Documenting ambient pollution before fracking starts will be critical to accurately measuring the air quality effects of the practice. This group intends to approach NIH for funding after the pilot program.

Madagascar's Conservation Superhero to Visit Campus

Guest Post By Sheena Faherty, Ph.D. Candidate in Biology

Dame Alison Richard is the epitome of someone who puts her money where her mouth is. And her dedication is directed precisely where it’s needed most.

Richard, a protector of lemurs, artisanal salt entrepreneur and endless optimist, is not just doing something about Madagascar’s conservation crisis. She’s doing everything about it.

Alison Richard (Photo: HHMI)

Alison Richard (Photo: HHMI)

She’ll visit Duke March 3-5 to give three-part lecture series discussing her role in over forty years of community-based conservation efforts in Madagascar.

Members of the Duke community know all too well that our beloved lemurs— many of which can only be found at the Duke Lemur Center or in Madagascar—are in dire straights.

Their plight has been a life’s work for Richard, who is best known for her research on sifakas in the spiny forests of Madagascar.  But she also lays claim to having been the first female vice-chancellor at Cambridge. She has now returned to Yale, where she spent most of her career, as a senior research scientist and professor emerita.

“Sometimes I think that because I’m covering so many bases, I end up doing nothing very well,” Richard said. “But it’s what I do and I can’t imagine not doing any of them—so it’s too bad,” she said laughing.

Richard is a conservationist who understands that without considering the local people’s well-being, all attempts to save wildlife habitats will fail.

“There are a variety of ways in which we are trying to facilitate socio-economic enhancements to people’s lives,” Richard said. “[On a recent trip to Madagascar] I met with the association of women salt producers, who are producing artisanal salt by techniques that have been in place for hundreds of years.”

In collaboration with a start-up company that is highly focused on sustainability, she recently shipped the first 500 kilos of the Madagascan salt to the U.S.

Verreaux's Sifaka, a favorite of Richard's in Southwestern Madagascar. (Credit: Flickr user nomis-simon, CC)

Verreaux’s Sifaka, a favorite of Richard’s in Southwestern Madagascar. (Credit: Flickr user nomis-simon, CC)

Taking time away from protecting the lemurs and enhancing the lives of the Malagasy people, Richard said her Duke lectures will have broad appeal for anyone interested in conservation, or for those who just enjoy seeing adorable pictures of lemurs.

She hopes to focus on writing a book, the topic of which will draw from her public lecture on March 5 at 6:00 pm at the Great Hall of the Mary Duke Biddle Trent Semans Center for Health Education. This lecture is set to explore how an array of different sciences has changed our understanding of Madagascar’s history.

And the conservationist who said she does everything has some advice for conserving her own mental sanity.

“One thing I need to do going forward is to find things to stop doing,” she admits. “And I’m not good at that because they are all too interesting and seemingly too important,” she said.

So, what’s next for Alison Richard?

“More of doing everything!” she said.

Richard's installation as vice chancellor of Cambridge in November 2009 was occasioned by a visit from  her Majesty Queen Elizabeth II, who's husband, Prince Philip, is the chancellor.

Richard’s installation as vice chancellor of Cambridge in November 2009 was occasioned by a visit from her majesty Queen Elizabeth II, who’s husband, Prince Philip, is the chancellor.

Page 8 of 18

Powered by WordPress & Theme by Anders Norén