Research Blog

Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

What’s Up In Space? 3 Experts Weigh In

On Friday, February 25th, 2022 the brand-new Duke Space Diplomacy Lab (SDL) had an exciting launch with its first panel event: hosting journalists Ramin Skibba, Loren Grush, and Jeff Foust for a conversation on challenges in space within the next year. Moderated by Benjamin L. Schmitt of Harvard University, the conversation was in line with the SDL’s goals to convene a multidisciplinary group of individuals for the development of research, policy proposals, and solutions to mitigate risks in space.

In conversation, three key themes arose:

  1. U.S Russia Relations

With the current Russian invasion in Ukraine and the subsequent strain on U.S-Russia relations, the geopolitics of space has been in the limelight. Control of outer space has been a contentious issue for the two countries since the Cold War, out of which an uneasy yet necessary alliance was forged. Faust remarked that he doesn’t see U.S-Russia space relations lasting beyond the end of the International Space Station (ISS) in 2030. Grush added that before then, it will be interesting to see whether U.S-Russia relations will sour in the realm of space, simply because it’s questionable whether the ISS could continue without Russian support. However, Russia and NASA have historically acted symbiotically when it comes to space, and it’s unlikely that either party can afford to break ties.

2. Space debris

Major global players, from the U.S to China to India to Russia, are all guilty of generating space debris. Tons of dead satellites and bits of spacecraft equipment litter the areas around Earth – including an estimated 34,000 pieces of space junk bigger than 10 centimeters – and if this debris hit something, it could be disastrous. Grush paints the picture well by comparing spacecrafts to a car on a road – except we just trust that the satellite will maneuver out of the way in the event of a collision, autonomously, and there are absolutely no rules of the road to regulate movement for any other vehicles.

A computer-generated graphic from NASA showing objects in Earth orbit that are currently being tracked. 95% of the objects in this illustration are orbital debris, i.e., not functional satellites.

Skibba suggests that the best thing to do might be to make sure that more stuff doesn’t enter space, since the invention of technologies to clean up existing space debris will take a while. He also points to efforts to program new spacecrafts with graveyard orbit and deorbit capabilities as a necessary step.

3. Who is in charge of space?

Faust explained that commercial space exploration is moving incredibly fast, and legal regulations are struggling to keep up. Tons of companies are planning to launch mega-constellations in the next few years, for reasons that include things like providing higher-speed Internet access – something that we can all benefit from. Yet with new players in space comes the question of: who is in charge of space? The Artemis Accords are the existing rules that govern space at an international level, but they function as an agreement, not law, and with more players in space comes a need for legally binding terms of conduct. But as Grush puts it, “there’s a tension between the nimble, rapid commercial environment and a regulatory environment that wasn’t quite prepared to respond.”

The eight signees of the Artemis Accords

Beyond who rules over space, there’s also the question of decolonizing space. Skibba brings up that amidst a growing number of mega-constellations of satellites being launched, there are key questions being asked about who has access to space, and how we can level the playing field for more countries and companies to enter space exploration.

Space is uncharted territory, and to understand it is no small feat. While science has come incredibly far in terms of technological capabilities in space, it’s clear that we don’t know what we don’t know. But with a more multilateral, global approach to exploring space, we may just be able to go even farther.

Post by Meghna Datta, Class of 2023

What is The Duke Summer Experiences Database?

Graphics courtesy of Catherine Angst, Director of Communications in the Division of Experiential Education at Duke University.

Pre-pandemic, Duke undergraduates looking for a good summer experience might have seen something good at an in-person fair or maybe heard about an opportunity from a favorite professor. But there was a lot of luck involved.

Now, thanks to the Duke Summer Experiences database, which launched in late January, undergrads can view a variety of summer opportunities in one centralized place. They can search by area of interest, type of program, program cost, year in school, and several other filters.

“Duke Summer Experiences is a resource for all of Duke,” says Catherine Angst, Director of Communications in the Division of Experiential Education, “because it’s an easily searchable, permanent database that allows people to select the features of an opportunity that are important to them.”

Angst explains that the new database is “an evolution of the Duke summer opportunities fair and the ‘Keep Exploring’ project.”

In previous years, Duke organized an in-person fair with representatives from various summer programs. During the pandemic, the “Keep Exploring” project was created to “[provide] students with summer opportunities and mentorship during a time when not a lot of traditional opportunities were operating because of COVID.” The two programs joined forces, she said, and ultimately expanded into the Duke Summer Experiences website.

By aggregating opportunities into one place, the database should increase awareness and access for summer programs.

Dean Sarah Russell, Director of the Undergraduate Research Support Office, thinks this might be especially valuable for research opportunities, which she says tend to be less publicized. “Previously,” she says, “students might know about DukeEngage, GEO, or summer courses, but would have to rely on word of mouth or, if they were lucky, a tip from faculty or advisors to find out about smaller, lesser-known programs.”

Ms. Leigh Ann Muth-Waring, Assistant Director in Employer Relations at the Career Center, sees similar benefits to the new database: “Prior to the website’s creation, students had to actively search for information about summer programs by contacting individual departments on campus,” sometimes causing students to miss deadlines. The Duke Summer Experiences website, on the other hand, provides easy-to-navigate and up-to-date information.

Another goal of the Duke Summer Experiences database, Ms. Angst says, is to “build a community of practice where administrators can share best practices, resources, and lessons learned.”

Dr. Karen Weber, Executive Director of the Office of University Scholars and Fellows, hopes this will “enable administrators across campus to collaborate more effectively together and improve programmatic outcomes.” For instance, “They can communicate on shared initiatives, such as developing successful recruitment and marketing strategies, creating student applications, editing participation agreements, addressing student and administrative issues, engaging with faculty, and assessing programs.”

Along with making summer opportunities easier to find and encouraging administrative collaboration, Duke Summer Experiences is also beta-testing a new application process that would allow students to use one application to apply for multiple opportunities at once. Muth-Waring said the Duke Experiences Application “allows the student to complete one questionnaire with general information (name, major, etc.) which then can be used to apply to multiple Duke-sponsored summer programs.” It also provides links to other programs students might be interested in.

Ms. Angst also sees the new application system as a valuable tool. She hopes that it will reduce “application fatigue” among students looking for summer opportunities.

The Career Center is already using the new application platform for their summer Internship Funding Program, which encourages participation in unpaid or low-paying summer internships by providing financial support to students. According to Ms. Muth-Waring, the new application system “has helped us streamline our program’s application process so that it is easier and less burdensome for students.” Streamlining the process of finding summer opportunities is a major goal of the Summer Experiences website as well. Ultimately, Ms. Muth-Waring says, “both the Duke Summer Experiences Database and the Duke Experiences Application are creating an easier way for students to learn about and apply to university-sponsored summer programs, research opportunities, internships, and funding sources.” For students seeking summer opportunities through Duke, the Summer Experiences website can make the process easier.

Post by Sophie Cox, Class of 2025

2019 Duke Grad Founds Cryptocurrency Startup Fei Protocol

As cryptocurrency gains popularity, people continue to question “How and where can these tokens be used?” A November 2021 study by Pew Research reported that 86% of Americans claimed to have heard about cryptocurrency and 16% say they personally have invested in, traded, or otherwise used it

Despite this, there are still very few places where one can make purchases directly using crypto. This means that in order to use cryptocurrency, people must first convert it back to US dollars, which can cost a lot due to transaction fees. Additionally, the exchange rate between any given crypto token and USD changes by the second, resulting in a lack of price stability.

(If you are unfamiliar with cryptocurrency or transaction (gas) fees please refer to my prior article here.)

Duke Alum, Joey Santoro, sensed this gap and saw an opportunity. Santoro graduated from Duke in 2019 with a major in Computer Science. There needed to be a volatility-free token with a stable valuation (i.e. matching the USD), to move between the worlds of crypto and fiat currency. This is also known as a stablecoin. While several were already in existence, Santoro wanted to create a more scalable and decentralized one.

Thus, in December of 2020, Joey founded the Fei Protocol. Fei is a stablecoin in Ethereum native decentralized finance (DeFi). Stablecoins are a type of token that aids in maintaining a liquid market by pegging the token’s value to the USD.  Fei is able to achieve this through various stability mechanisms. Stablecoins can be used for real-life transactions while still benefiting from instant processing and the security of cryptocurrency payments.

When asked why he chose to work in crypto as opposed to Machine Learning (ML) or Artificial Intelligence (AI) Joey explained that it came down to how much impact he could have.

“The barrier for making an avenue of innovation in crypto is so much lower than something like a machine learning. Higher risk, higher reward.”

joey santoro

Santoro did not come to Duke with the plan of founding a web3 DeFi protocol. In fact, when he matriculated he was actually pre-med and originally only took CS 101 because it was a pre-requisite for the Neuroscience major.

However, it did not take long for Joey to realize he wanted to work in the crypto space. In his second semester, he joined the Duke Blockchain Lab and ended up teaching a blockchain course in his junior and senior years.

Because decentralized finance is still so new, no one completely knows what they are doing, which creates considerable opportunities for innovation. Additionally, because the crypto space is decentralized, it is inherently collaborative and community-driven. 

“Being able to write code that’s immediately interoperable with dozens of financial protocols is the coolest thing ever,” Santoro said

Joey argues anyone can become an expert in a particular area in crypto in a couple of months. He said economists and mechanism designers are increasingly moving into the crypto space. 

When the Fei Protocol launched in 2020 it was the height of a bull market for crypto and there was heavy demand for a decentralized stablecoin. While there were several other stablecoins in existence, USDC and tether were the most popular and they were both centralized, meaning they were owned by companies. 

“What so important to me and why I do this is because I want people to be able to do whatever they want with their money.”

JOey santoro

The demand for a decentralized stablecoin created excitement around Feio but also a highly compressed timescale. The Fei Protocol ended up having the largest token launch for an Ethereum DeFi protocol in history, raising $1.25B. However, when it launched,  the peg broke due to issues with the incentive mechanism and bugs in the code.

Santoro recalled the surreal and challenging experience of watching the protocol he spent countless weeks working on fall apart before his eyes. However, his team and investors decided to stick it through and try to salvage what they had built. It took over a month just to fix everything that had gone wrong. In the meantime, people were threatening Santoro and his team. 

While the Fei protocol faced challenges while launching,  Joey and his team were able to adapt, learn from their mistakes, and come back stronger. They recently conducted a multi-billion-dollar merge with Rari Capital and launched Fei version2 (V2).

Additionally, this is the first multi-billion dollar merger in DeFi meaning that the decision to merge was voted on by members of the respective Decentralized Autonomous Organizations (DAOs). This is a huge milestone in the world of DeFi and sets a precedent for the potential of decentralized business operations. 

Joey Santoro Presenting at the ETHDenver Convention

Moving forward Joey explained, “I’m obsessed with simplicity now; I still move fast but more carefully.”

Post by Anna Gotskind, Class of 2022

Quorum Sensing: The Social Network of Bacteria

Dr. Bonnie L. Bassler, the Chair of Molecular Biology at Princeton University, is an advocate for diversity in science.

Bonnie Bassler of Princeton University

Throughout her presentation of the Ingrid Daubechies Lecture on Jan. 31 during Research Week, she emphasized that the diversity of her scientific team allowed every lab member to contribute to different steps of the process of studying quorum sensing, a form of microbial communication. (Watch her talk.)

Bacteria are everywhere. They’re sitting at the tables you sit at, burrowing in the clothes you wear and unfortunately, also crawling around on your skin. For a long time, they’ve had a pretty bad reputation, and for good reason! They have caused plagues that have wiped out masses across the globe, driven up breath mint sales by thriving in your mouth and mutated into every biologist’s Boogeyman when you try to kill them with antibiotics – super bugs!

However, the bacterial redemption arc is also quite compelling. “Good guy” bacteria in the gut help us break down food, produce essential vitamins and also sometimes fight off their evil siblings.

So, good or bad, the impact of bacteria in our daily lives is undeniable. But how does a microscopic little being have the capacity to influence the macroscopic world so greatly?

It doesn’t. At least, not by itself.

Lactococcus lactis is one of the starter bacteria in a cheese culture!

A bacterium never works alone because its strength lies in its numbers! Groupwork and communication (as any Pratt star going through recruiting season will swear to their interviewers) are what make bacteria so powerful. A bacterium by its lonesome will act differently than a bacterium surrounded by its daughters, sisters and cousins (bacterial family tree dynamics can get a little unusual).

Knowing that bacteria optimize their behaviors to work efficiently in a group answers the question of how they are so powerful, but it raises another.

How do bacteria know when they have company?

In a world where social media helps us stay connected, it is easy to take rapid status updates for granted. But for tech-deprived microbial colony, how does one member gauge the population of their surroundings? This question is one that Bassler’s lab answered: with a special chemical compound called autoinducers.

Autoinducers are little chemical signaling molecules that each bacterium sends out into its immediate environment. These molecules allow for quorum sensing, or cell-to-cell communication, to take place among bacteria.

Basic quorum sensing: How bacteria know who’s around them. (Nidhi Srivaths)

Every bacterium senses changes in the concentration of these autoinducers in their surroundings. Sensing a sudden increase in autoinducer concentration will change a bacterium’s gene expression, protein synthesis, and consequently, behavior. It will adapt to group behavior, while a bacterium that senses a drop in autoinducers will adapt to individual behavior.

Bacteria not only sense how many others are around them but also who their neighbors are. Autoinducers are universal to both Gram positive and negative bacteria and are unique to the type of bacteria that produce them.

This provides the bacterium with qualitative information on the population of its surroundings. Are they friends or foes?

Quorum sensing also includes nametags so bacteria can tell friend from foe. (Nidhi Srivaths)

In marine vibrio (a genus of Gram-negative bacteria), Bassler’s lab found that quorum sensing could perform intra-species, intra-genus and inter-species identification. This additional information helps the microbes adjust their behavior – from being friendly and supportive towards their relatives to being aggressive and competitive with their enemies.

Bassler provided a real-world perspective on quorum sensing. One species of the vibrio genus, Vibrio cholerae, is responsible for causing Cholera a deadly food and water-borne disease that has plagued low- and middle-income countries for centuries.

When the cholera bacteria enter the host, they are highly virulent and create a sticky biofilm around themselves that helps them clump into aggregates. Their cell density increases with bacterial division until the bacteria sense a certain concentration of autoinducers. Then their gene expression is modified to reduce virulence and biofilm production and the bacterial gene expression patterns shift to escape mechanisms. The bacteria soon break out in large numbers in search of a new host. (Their human host has voluminous, watery diarrhea in response and that becomes the vector for infecting new hosts.)

While the sequence of events that occurred in a cholera infection was known, the discovery of quorum sensing in V. cholerae opens doors for possible treatments, Bassler said. As bacterial communication sets the cycle of infection and division in motion, interfering with the autoinducers produced or disrupting bacteria’s ability to sense them sets the stage for innovative therapies for several infectious diseases.

Quorum sensing is another step towards understanding the world of the tiny microorganisms that influence our world and Bassler and her team are another example of the incredible research that can come from diverse teams in science.

Post by Nidhi Srivaths, Class of 2024

Measuring What Climate Change Does, Not Just Whether It’s Happening

Duke has a goal of being a “climate university,” Nicholas School of Environment Dean Toddi Steelman said in introducing a panel discussion on Climate Change Science during Research Week. She said it’s a vision in which the university’s focus on climate informs every aspect of its mission, from education and operations to community partnerships – and, of course, research.

Five Duke climate scientists spoke on the Feb. 1 panel, all remotely. (View the Discussion.)

Jim Clark, professor of statistical science at the Nicholas School, described our planet’s climate as a “moving target” when it comes to understanding its impact on biodiversity. Complex connections exist between species, like a “system of interactions” between each other, that responds to climate change.

Our understanding of this system is limited by population data collection like the Breeding Bird Survey and the USDA Forest Inventory & Analysis — projects that lack “co-located monitoring of multiple species groups,” Clark said. Such measures fail to capture the relationships between species.

Professor James Clark

Instead, Clark advocates moving away from static models like these population measurements and towards the question of “How does change in the whole community respond to the environment and other species?” In order to understand our dynamic climate, we need an equally dynamic conception of biodiversity, he argued.

Marc Jeuland, associate professor of public policy and global health, and leader of the Sustainable Energy Researchers Initiative (SETI), talked about the “deep inequities” in energy access across rural parts of developing regions and the prospect of accomplishing “a just and sustainable energy transition” of their energy sources.

He thinks the transition can be accomplished with existing sustainable energy technologies like wind and solar.

The problem has two main parts, he said. First is the lack of clean cooking energy, with 2.6 billion humans dependent on solid fuels (wood and charcoal) and polluting stoves. The second is the lack of electricity and electrical services, with 760 million people going without and millions more lacking reliable service, he said.

Professor Marc Jeuland

Jeuland said there is an urgent need to reallocate resources to spread climate solution technologies in these parts of the world.

Jeuland and his SETI team tirelessly investigate how to overcome energy poverty and the populations they affect most – primarily in Africa and Southern Asia – to understand the feasibility and tradeoffs with the adoption of increased access to alternative fuels.

Emily Bernhardt, the James B. Duke distinguished professor of biogeochemistry in the Nicholas School and chair of Duke Biology, addressed the question of how climate change and sea level rise will impact coastal communities and ecosystems.

She said we don’t really have to wait to see what will happen: predominantly low-income communities along the coast are already suffering the consequences of sea water and extreme weather events. But she said the regions’ struggles remain unsolved and underrepresented because they lack the economic and political power to affect change.

Professor Emily Bernhardt

Whenever an event like a hurricane occurs, coastal plain communities are susceptible to storm surges that introduce salt into freshwater environment – leading to sometimes catastrophic, often long-lasting impacts on existing ecosystems, Bernhardt said.

Bernhardt and hundreds of other scientists along the United States coast are working together on something she called “convergence research” that seeks solutions for coastal and other vulnerable communities. It’s called the Saltwater Intrusion and Sea Level Rise (SWISLR) Research Coordinating Network. 

Betsy Albright, associate professor of environmental science and policy, and Brian McAdoo, associate professor of earth and climate science, shared their zoom-hosting duties.

They talked about social justice and social science in mitigating the impact of climate change. Their work examines the role of local communities and governments in disaster recovery and how they can work to create systems to manage aid and other resources as extreme weather events become more common.

As with most climate issues, marginalized communities are disproportionately impacted by these events, they said. Albright and McAdoo are searching for ways to help these regions create the capacity to respond and become more resilient to future events.

Professor Elizabeth Albright
Professor Brian McAdoo

The climate crisis is arguably the greatest challenge of this generation, but this esteemed panel brought much-needed attention to the obstacles facing every aspect of the world of climate science research and how their research is working to overcome them.

Post by Nhu Bui, Class of 2024

Medicine Under a Microscope

Duke Research Week 2022 featured a range of speakers from across all disciplines. The Lefkowitz Distinguished Lecture on January 31st highlighted some of our favorite things here at Duke Research Blog: ingenuity and perspective. 

Dr. Huda Yahya Zoghbi’s career spans decades; her Wikipedia page sports an “Awards and Honors” section that takes up my entire computer screen. She is a geneticist, neuroscientist, pediatric neurologist, pharmaceutical executive, and literature lover. Her presentation kicked off 2022 Research Week with a discussion of her work on Rett Syndrome. (View the session)

Rett Syndrome is a rare genetic disorder. The gene that researchers identified as the driver of the syndrome is MeCP2, which is especially active in brain cells. Certain mutations of this one gene can be responsible for a loss of speech, development issues, and persistent fidgeting. 

This image has an empty alt attribute; its file name is _Sk5Y-Q39YYuBd_Ntz_77pXwX8uwtEhTnl4yokbul2AdWHu0xpP_mTKi8mQQHlG7GjmP32Nc4xb1oq-InXReJVfbBai5DF8Enf6LvkuPNZlPou9rc5RCjjjc6B_fRj1oCaVMGWCS
The MeCP2 protein. Image: Wikipedia Commons

Children with Rett Syndrome faced chronic misdiagnosis, and even with proper care were limited by a lack of research.

Duke’s Dr. Robert Lefkowitz introduced Zoghbi at the beginning of the seminar and explained how she came to become the leading expert on this relatively unknown disorder. After completing medical school in Beirut in the midst of the ravaging Lebanese Civil War, she came to Texas Children’s Hospital, where she was able to observe and diagnose her first case of the syndrome, a process spurred by a simple interest in a newly-published journal article.

Holistic knowledge of Rett Syndrome is completely dependent on genetic research. A mutation on the MeCP2 gene causes errors in transcription, the reading out of DNA in your cells which leads to the production of proteins.

The mutated gene’s MeCP2 protein is then lacking the ability to do its job, which is helping other genes be expressed, or actively transcribed.

It’s a vicious cycle; like when you go to sleep late one night, so you sleep in the next day, then go to sleep late the next night, then sleep in the next day, and so forth.

In order to simulate and measure the effect of different kind of mutations on the MeCP2 gene, Zoghbi and her team studied genetically modified mice. While Rett Syndrome is caused by a lack of MeCP2 function, an overactive MeCP2 gene causes MeCP2 duplication syndrome. Varying degrees of gene efficiency then produce varying degrees of severity in the syndrome’s traits, with fatality at either end of the curve.  

Varying degrees of phenotype severity.

Zoghbi’s talk focused mainly on the mechanics of the disorder on a genetic level, familiar territory to both Nobel Laureate Lefkowitz and Duke Medicine Dean Mary Klotman, who shared some discussion with Zoghbi.

This medicine on a microscale is applicable to treating genetic disorders, not just identifying them. Zoghbi has been able to experimentally correct MeCP2 duplication disorder in mice by modifying receptors in a way that reverses the effects of the disorder.

The symptoms of Rett Syndrome are physical; they present themselves as distinct phenotypes of a subtle difference in genotype that’s too small to see. The field of genetics in medicine is responsible for making that connection.

Post by Olivia Ares, Class 2025

This image has an empty alt attribute; its file name is ARES_Olivia.jpg

The Mind Behind Muser

Biology professor Sheila Patek remembers when she was an undergraduate, petrified as she waded through the world of academia in search of a research position. Knocking on door after door, Patek promised herself that if she was able to enter that world of research, she was going to change it; she was going to help students find opportunities and shift the rigid, exclusionary culture of academia.

Years later, Professor Patek was able to keep her promise. She created Muser, a website to connect students to research opportunities in an effort “to achieve accessible, transparent, equitable, and multidisciplinary research experiences for students and mentors.”

Patek first began this effort as a faculty member at the University of Massachusetts, where she found few efficient pathways for undergraduates to find research opportunities. Patek had grown accustomed to being at UC Berkeley, where they utilized a fully integrated system known as the Undergraduate Research Apprentice Program. The University of Massachusetts was more reminiscent of Patek’s own undergrad experience, and it was there that she and her colleagues began working on the first version of Muser’s software. This is the version that she brought with her when she came to Duke.

Here, we’re lucky to have a slew of resources — DukeList, the Undergraduate Research Support Office, Bass Connections — that are intended to help students pursue research. However, Patek says that Muser distinguishes itself by being specifically designed to address the many barriers that still prevent students from pursuing research — from a lack of support and resources to racial and gender biases. 

Team Muser: (from left) Sheila Patek, Founder; Sonali Sanjay, Co-Student Leader; Katherine Wang, Co-Student Leader; Theo Cai, Duke Undergrad Muser Director and Nowicki Fellow (Credit: Ben Schelling)

One way Muser does this is by making all initial applications anonymous. Patek mentions studies that have found that things like the race and gender connotation of names have significant influence on who gets a position; for example, when given CVs that are identical except for the gender of the names, faculty are more likely to rate the male CVs higher. From the mentor side of Muser, research leads see students’ personal statements first, then must formally review the applications if they wish to view all the information the student has provided — including their names. Patek notes that it has surprised and perhaps frustrated many mentors, but it’s a feature for the benefit of students; it allows them to first be heard without the preconceptions attached to something like their name.

On the flip side, Muser tries to keep things as transparent as possible for students (although anonymous mentors are in the works). There are set timelines — called “rounds” — in which mentors post positions and students apply then hear back. With most other forums for research like DukeList, students are expected to check in and apply constantly — not even knowing if they will get a response. Muser solves this through these rounds, as well as a unique “star” system: mentors that actually review every application get a gold star, visible to students applying. 

So far, over three thousand (3000) undergraduates have used the software, and Patek estimates that in 2021, 20% of Duke undergraduates had, at some point, held a research position thanks to Muser. She also boasts the diversity of research leads that have become involved with Muser; it features professors, graduate students, and lab managers alike as mentors, who represent a better gender and diversity balance than academia as a whole. But as much progress has been made, Patek’s ultimate dream would be for every project in every department to be posted on Muser, available for undergraduates who don’t have to worry about being denied because of bigotry or ignored altogether. 

“The culture of academia is fundamentally opaque to everyone not in it,” Patek notes, but she and the Muser team are doing everything they can to change that. The newest version of Muser’s software open source on GitHub and available for free — has recently been adopted by Harvey Mudd College and the University of Massachusetts, and Patek expresses her hope for the idea to spread nationwide. 

Universities that have adopted Muser

The website used to be called MUSER — an acronym meaning Matching Undergraduates to Science and Engineering Research — but nowadays, it’s known simply as “Muser.” I’ve been told that the rebranding is a play on words, referencing the Muses of Greek and Roman mythology who oversaw the full range of arts and sciences, to represent all thinkers. 

The next round of Muser for Summer 2022 research positions opens on February 19. Mentors can post opportunities NOW, until February 18. For more information, visit the website and check out this fantastic article introducing Muser.

Materials For a Changing World… What is That?

Everything in our world is made from materials, meaning life is enabled by material development and efficiency. In today’s society, from constant technological revolution to the global pandemic, life as we know it is always evolving. But as the world around us evolves, the materials around us also need to evolve to keep up with current demands. But how? As a part of Duke University’s annual Research Week on Feb. 3, researchers from a multitude of practices offered their wisdom and research.

Moderated by Dr. Catherine L. Brinson, Ph.D., the panel hosted three Duke Scholars and their research on ‘Materials for a Changing World’. “The development of new materials can really be key in solving some of the more critical challenges of our time,” Brinson maintained.

Dr. David Beratan explaining his research on bio-machines and their material efficiency.

The first scholar to present was R.J Reynolds distinguished professor of chemistry, Dr. David N Beratan, Ph.D. His research concerns the transition from soft, wet, and tiny research machines to more durable, long-term research machines in the science field. “The machines of biology tend to be stochastic and floppy rather than deterministic and hard,” Beratan began. “They’re messy and there are lots of moving parts. They’re intrinsically noisy and error-prone, etc…They’re very different from the kinds of things you see under the hood of your car, and we’d really like to understand how they work and what lessons we might derive from them for our world.” His complex research and research group have aided in bridging the gap in knowledge regarding the transition of biological functional machines to synthetic ones.

Dr.Rubinstein presenting his research on materials at Duke’s Pratt School of Engineering in 2019.

The panel continued with Aleksandar S. Vesic Distinguished Professor in mechanical engineering, Dr. Michael Rubinstein, Ph.D. His research involves the development of self-healing materials across multiple spectrums. “What you want to think about is materials that can heal themselves,” he stated. “If there’s a crack or a failure in a material, we would like the material to heal itself without external perturbation involvement. So it could be done by the other diffusion of molecules across some physical approaches, or by a chemical approach where you have bonds that were broken to the form.” His research on this possibility has made strides in the scientific field, especially in a time of such ecological stress and demand for materials.

Dr. Segura talking with Dr. Brinson on her research involving self-healing materials.

The panel concluded with biomedical engineering professor Dr. Tatiana Segura, Ph.D. Segura talked about work they are doing at their lab regarding materials that can be used to heal the human body after damage or injury. She began by mentioning that “we are a materials lab and that’s what we’re interested in designing. So what are we inspired by? Well, we are really inspired by the ability of our body to heal.” At her lab, a primary motivation is healing disabilities after a stroke. “Sometimes you have something that you deal with for a long time no matter how your body healed. And that inspires us to consider how do we actually engage this process with materials to make it go better and actually make our body heal in a way that we can promote repair and regeneration.” Understanding this process is a complex one, she explained, but one that she believes is crucial in understanding the design of the material.

‘Materials for a Changing World’ was yet another extremely powerful speaker series offered this year during Duke Research Week. Our world is changing, and our materials need to keep up. With the help of these experts, material innovation has a bright future.

Written by Skylar Hughes
Class of 2025

Hidden in Plain Sight: The Growing Role of Computation in Science

One of downtown Durham’s most memorable landmarks, the Chesterfield building looks like it was aesthetically designed to maintain the country’s morale during World War II. On the former cigarette factory’s roof rests a brilliant red sign that’s visible from miles away:

But don’t mistake the building’s quaint exterior for antiquity: the Chesterfield Building is home to one of the nation’s most powerful quantum computers. Managed by the Duke Quantum Center, the computer is part of Duke’s effort to bolster the Scalable Quantum Computing Laboratory (SQLab).

On February 2nd, the lab’s director – Christopher Monroe – joined engineering professor Michael Reiter and English professor Charlotte Sussman in a Research Week panel to discuss the growing presence of computation at Duke and in research institutions across the country. (View the panel.)

Chris Monroe

Monroe opened by detailing the significance of quantum computing in the modern world. He explained that quantum mechanics are governed by two golden rules: first, that quantum objects are waves and can be in superposition, and second, that the first rule only applies when said objects are not being measured.

The direct impact of quantum mechanics is that electrons can be in two orbits at the same time, which revolutionizes computing. Quantum computers factor numbers exponentially faster than classical computers, converge to more desirable solutions in optimization problems and have been shown to bolster research in fields like biomolecular modeling.

Still, Monroe insists that the future reach of quantum computing is beyond anyone’s current understanding. Says Monroe, “quantum computing is an entirely new way of dealing with information, so we don’t know all the application areas it will touch.” What we do know, he says, is that quantum computers are poised to take over where conventional computers and Moore’s Law leave off.

While Monroe discussed computing innovations, Michael Reiter – James B. Duke Professor of Computer Science and Electrical and Computer Engineering – demonstrated the importance of keeping computing systems safe. By pointing to the 2010 Stuxnet virus, a series of cyberattacks against Iranian nuclear centrifuges, and the 2017 Equifax Data Breach, which stole the records of 148 million people, Dr. Reiter provided evidence to show that modern data systems are vulnerable and attractive targets for cyber warfare.

Michael Reiter

To show the interdisciplinary responsibilities associated with the nation’s cybersecurity needs, Reiter posed two questions to the audience. First, what market interventions are appropriate to achieve more accountability for negligence in cybersecurity defenses? Second, what are the rules of war as it relates to cyber warfare and terrorism?

After Reiter’s presentation, Charlotte Sussman transitioned the conversation from the digital world to the maritime world. A professor of English at Duke, Sussman has always been interested in ways to both memorialize and understand the middle passage, the route slave trading ships took across the Atlantic from Africa to the Americas. Through the University’s Bass Connections and Data+ research programs, she and a group of students were able to approach this problem through the unlikely lens of data science.

Sussman explained that her Data+ team used large databases to find which areas of the Atlantic Ocean had the highest mortality rates during the slave trade, while the Bass Connections team looked at a single journey to understand one young migrant’s path to the bottom of the sea.

Professor Sussman (second from right), and the Bass Connections/Data+ Team.

Monroe, Reiter, and Sussman all showed that the applications of computing are growing without bound. Both the responsibility to improve computing infrastructures and the ability to leverage computing resources are rapidly expanding to new fields, from medicine and optimization to cybersecurity and history.

With so many exciting paths for growth, one point is clear about the future of computing: it will outperform anyone’s wildest expectations. Be prepared to find computing in academia, business, government, and other settings that require advanced information.

Many of these areas, like the Chesterfield Building, will probably see the impact of computing before you know it.

Post by Shariar Vaez-Ghaemi, Class of 2025

What are Healthcare Researchers Doing to Address Health Equity?

“Community engagement” and “health disparities” are some of the most trending terms in healthcare right now, but what are people actually doing about them? On Wednesday, February 2, panelists in healthcare sat down as part of Duke’s Research Week to talk about ways in which they and their organizations were actively addressing health disparities by focusing on communities. (View the session)

Dr. L. Ebony Boulware, professor at the Duke University School of Medicine and director of the Duke Clinical and Translational Science Institute, set the stage by defining health equity for the vast number of us that might only have read about it in a mission statement or an article but weren’t exactly sure how it was conceptualized. To work towards health equity, she said, means that “everyone has an opportunity to attain their full health potential regardless of any socially defined circumstance.” These circumstances could range from poverty to structural racism, but the main theme was that community engagement is a key player as we think about how best to achieve equity.

Slide taken from Dr. L. Ebony Boulware’s presentation.

COVID-19 is a great example of why health equity matters, as we ponder whether the pandemic could have turned out any different if more people had access to vaccines, personal protective equipment, and the capacity to socially distance. Dr. Michael Cohen-Wolkowiez, a professor of Pediatrics at the Duke University School of Medicine, and Dr. Giselle Corbie-Smith, a professor at the UNC School of Medicine gave a pertinent example of their work addressing the health disparity on our minds right now– access to COVID-19 testing – and the RADx program out of the NIH that is funding work to address this problem.

But even before COVID-19, attaining health equity was a tough goal to address for virtually every country in the world. Health equity isn’t just a nicety, it affects how long we are alive. And while progress in terms of life expectancy differences is improving, much work remains to be done to close the myriad gaps that remain. Dr. Tyson Brown, associate professor of Sociology at Duke, highlighted his research into structural racism to stress the fact that structural racism is toxic for population health and disproportionately affects people of color.

Slide taken from Dr. Tyson Brown’s presentation.

Dr. Schenita Davis Randolph, a registered nurse and professor at the Duke School of Nursing, zoomed in a little to highlight what true community engagement looks like. As part of her lab’s research to improve uptake of pre-exposure prophylaxis (PrEP) treatment to address HIV in Black women, they designed an intervention for beauty salons, known to be trusted venues for health promotion in the Black female community. But “how do we use community engagement so it’s not just a checkmark?” This, among other pressing challenges to community engagement in addressing health disparities, is what Dr. Keisha Bentley-Edwards, developmental psychologist and professor at the Duke University School of Medicine, talked about.

As the panel discussion came to a close, a key message emerged. As Dr. Davis remarked, both disparities and the communities that are hurt by them are complex, and so until we take a multi-faceted approach to understanding them, we continue to grasp for the ultimate goal of health equity.

But while these disparities are complex, they are certainly not unsolvable. Dr. Corbie-Smith emphasized that “we have a clear understanding of of how health disparities work.” All that’s left to do is solve them, and Dr. Bentley-Edwards highlights this move from awareness to solutions as a challenge to achieving health equity. Perhaps most significantly, though, it’s important to move from inertia to action. While there are seemingly thousands of ways in which communities in the U.S and around the world face barriers to health access, it’s important to do something – however small. As Dr. Bentley-Edwards concluded, by everyone working within their sphere of influence to close the health equity gap, that sphere becomes bigger and bigger and the gap becomes smaller and smaller.   

Page 23 of 111

Powered by WordPress & Theme by Anders Norén