Following the people and events that make up the research community at Duke

Author: Meghna Datta

A Day of STEM for Girls

Sticky post

On any average weekday at Duke University, a walk through the Engineering Quad and down Science Drive would yield the vibrant and exciting sight of bleary-eyed, caffeine-dependent college students heading to labs or lectures, most definitely with Airpods stuck in their ears.

But on Saturday, February 22nd, a glance towards this side of campus would have shown you nearly 200 energetic and chatty female and female-identifying 4th to 6th graders from the Durham area. As part of Capstone, an event organized by Duke FEMMES, these students spent the day in a series of four hands-on STEM activities designed to give them exposure to different science, technology, engineering, and math disciplines.

Nina MacLeod, 10, gets grossed out when viewing fruit fly larvae through a microscope while her guide, Duke first-year Sweta Kafle, waits patiently. (Jared Lazarus)

FEMMES, which stands for Females Excelling More in Math, Engineering, and Science, is an organization comprised of Duke students with the aim of improving female participation in STEM subjects. Their focus starts young: FEMMES uses hands-on programming for young girls and hosts various events throughout the year, including after-school activities at nearby schools and summer camps. 

Capstone was a day of fun STEM exposure divided into four events stationed along Science Drive and E-Quad — two in the morning, and two in the afternoon, with a break for lunch. Students were separated into groups of around eight, and were led by two to three Duke undergraduates and a high school student. The day started bright and early at 8:45 A.M with keynote speaker Stacy Bilbo, Duke professor of Psychology and Neuroscience. 

Staci Bilbo

Bilbo explained that her work centers around microglial cells, a type of brain cell. A series of slides about her journey into a science career sparked awe, especially as she remarked that microglial cells are significant players in our immune system, but scientists used to know nearly nothing about them. Perhaps most impactful, however, was a particular slide depicting microglial cells as macrophages, because they literally eat cellular debris and dead neurons.

A cartoon depiction of this phenomenon generated a variety of reactions from the young audience, including but not limited to: “I’m NEVER being a doctor!”, “I wish I was a microglial cell!”, “Ew, why are brains so gross?”, and “I’m so glad I’m not a brain because that’s SO weird.”

Even in 2020, while fields like medicine and veterinary science see more women than men, only 20% of students that earn bachelor’s degrees in physical sciences, math, and engineering disciplines are female. What accounts for the dramatic lack of female participation in STEM disciplines? The reasons are nuanced and varied. For example, according to a 2010 research report by the American Association of University Women, girls tend to have more difficulty acquiring spatial thinking and reasoning skills – all because of the type of play young female children are more likely to engage in. 

Durham area students learned how to perform a blood pressure check during a FEMMES session taught by Duke EMS, an all-volunteer, student-run division of the police department and Duke Life Flight. Duke senior Kayla Corredera-Wells (center) put the blood pressure cuff on sophomore Pallavi Avasarala. (Jared Lazarus)

This creates a chicken-and-egg story: girls don’t enter STEM at the same rate as their male counterparts, and as a result, future generations of girls are discouraged from pursuing STEM because they don’t see as many accomplished, visibly female scientists to look up to. Spaces like Capstone which encourage hands-on activity are key to exposing girls to the same activities that their male counterparts engage in on a regular basis – and to exposing girls to a world of incredible science and discovery led by other females. 

After Bilbo’s talk, it was off to the activities, led by distinguished female professors at Duke — a nod to the importance of representation when encouraging female participation in science. For example, one of the computer science activities, led by Susan Rodger, taught girls how to use basic CS skills to create 3-D interactive animation.

An introduction to categorizing different minerals based on appearance was led by Emily Klein, while one of the medicine-centered activities involved Duke EMS imparting first aid skills onto the students. 

For one of the biology-themed activities, Nina Sherwood and Emily Ozdowski (dubbed “The Fly Ladies”) showed students fruit flies under a microscope. The activity clearly split the group: girls who stared in glee at unconscious flies, shrieking “It’s SO BIG, look at it!” and girls who exchanged disgusted looks, edging their swivel chairs as far as physically possible from the lab benches. Elizabeth Bucholz, a Biomedical Engineering professor, led one of the engineering activities, showing students how CT scans generate images using paper, a keychain light and a block (meant to represent the body). In math, meanwhile, Shira Viel used the activity of jump-roping to show how fractions can untangle the inevitable and ensuing snarls.

The day definitely wasn’t all science. During lunch in LSRC’s Love Auditorium, most groups spread out after scarfing down pizza and spent intense focus over learning (and recording) TikTok dances, and when walking down Science Drive under blue and sunny skies, conversations ranged from the sequins on someone’s Ugg boots to how to properly bathe one’s dog, to yelling erupting over someone confidently proclaiming that they were a die-hard Tar Heel.

Nina Sherwood, Associate Professor of Biology, showed Emma Zhang, 9, some fruit flies, which we study because they share 75% of their genes with humans. (Jared Lazarus)

A raffle at the end of the day for the chance to win Duke merchandise inspired many closed eyes and crossed fingers (“I want a waterbottle so bad, you have no idea!”) And as newfound friends said goodbye to each other and wistfully bonded over how much fun they had at the end of the day, one thing was clear: events like Capstone are crucial to instilling confidence and a love of STEM in girls. 

By Meghna Datta

Traveling Back in Time Through Smart Archaeology

The British explorer George Dennis once wrote, “Vulci is a city whose very name … was scarcely remembered, but which now, for the enormous treasures of antiquity it has yielded, is exalted above every other city of the ancient world.” He’s correct in assuming that most people do not know where or what Vulci is, but for explorers and historians – including Duke’s Bass Connections team Smart Archaeology – Vulci is a site of enormous potential.

Vulci, Italy, was an ancient Etruscan city, the remains of which are situated about an hour outside of Rome. The Etruscan civilization originated in the area roughly around Tuscany, western Umbria, northern Lazio, and in the north of Po Valley, the current Emilia-Romagna region, south-eastern Lombarty, southern Veneto, and some areas of Campania. The Etruscan culture is thought to have emerged in Italy around 900 BC and endured through the Roman-Etruscan Wars and coming to an end with the establishment of the Roman Empire. 

As a dig site, Vulci is extremely valuable for the information it can give us about the Etruscan and Roman civilizations – especially since the ruins found at Vulci date back beyond the 8th century B.C.E. On November 20th, Professor Maurizio Forte, of the Art, Art History and Visual Studies departments at Duke as well as Duke’s Dig@Lab, led a talk and interactive session. He summarized the Smart Archaeology teams’ experience this past summer in Italy as well as allowing audience members to learn about and try the various technologies used by the team. With Duke being the first university with a permit of excavation for Vulci in the last 60 years, the Bass Connections team set out to explore the region, with their primary concerns being data collection, data interpretation, and the use of virtual technology. 

Trying out some of the team’s technologies on November 20th (photo by Renate Kwon

The team, lead by Professor Maurizio Forte, Professor Michael Zavlanos, David Zalinsky, and Todd Barrett, sought to be as diverse as possible. With 32 participants ranging from undergraduate and graduate students to professionals, as well as Italian faculty and student members, the team flew into Italy at the beginning of the summer with a research model focused on an educational approach of practice and experimentation for everyone involved. With a naturally interdisciplinary focus ranging from classical studies to mechanical engineering, the team was divided, with people focusing on excavation in Vulci, remote sensing, haptics, virtual reality, robotics, and digital media. 

Professor Maurizio Forte

So what did the team accomplish? Well, technology was a huge driving force in most of the data collected. For example, with the use of drones, photos taken from an aerial view were patched together to create bigger layout pictures of the area that would have been the city of Vulci. The computer graphics created by the drone pictures were also used to create a video and aided in the process of creating a virtual reality simulation of Vulci. VR can be an important documentation tool, especially in a field as ever-changing as archaeology. And as Professor Forte remarked, it’s possible for anyone to see exactly what the researchers saw over the summer – and “if you’re afraid of the darkness of a cistern, you can go through virtual reality instead.” 

An example of one of the maps created by the team
The team at work in Vulci

In addition, the team used sensor technology to get around the labor and time it would take to dissect the entire site – which by the team’s estimate would take 300 years! Sensors in the soil, in particular, can sense the remnants of buildings and archaeological features up to five meters below ground, allowing researchers to imagine what monuments and buildings might have looked like. 

One of the biggest takeaways from the data the team collected based on discovering remnants of infrastructure and layout of the city was of the Etruscan mastery of water, developing techniques that the Romans also used. More work was also done on classification of Etruscan pottery, tools, and materials based on earlier work done by previous researchers. Discovering decorative and religious artifacts was also impactful for the team, because as Professor Forte emphasized, these objects are the “primary documentation of history.” 

But the discoveries won’t stop there. The Smart Archaeology team is launching their 2019-2020 Bass Connections project on a second phase of their research – specifically focusing on identifying new archaeological sites, analyzing the landscape’s transformation and testing new methods of data capturing, simulation and visualization. With two more years of work on site, the team is hopeful that research will be able to explain in even greater depth how the people of Vulci lived, which will certainly help to shine a light on the significance of the Etruscan civilization in global history.

By Meghna Datta

Meet the New Blogger: Meghna Datta

Hi! My name is Meghna Datta, and I’m a freshman. I’m from Madison, Wisconsin, so North Carolina weather has been quite the adjustment. Apart from the humidity, though, I’m so excited to be at Duke! I’m an aspiring pre-med student with absolutely no idea what I want to major in. And it’s funny that I’ve grown to love science as much as I do. Up until tenth grade, I was sure that I would never, ever work in STEM.

My first love was the humanities. As a child I was hooked on books (still am!) and went through four or five a week. In high school, I channeled my love for words into joining my school’s speech and debate team and throwing myself into English and history classes, until being forced to take AP Biology my sophomore year completely changed my trajectory.

Science had always bored me with its seemingly pointless intricacies. Why would I want to plod through tedious research when I could be covering a groundbreaking story or defending justice in a courtroom instead? But the lure of biology for me was in its societal impact. Through research, we’ve been able to cure previously incurable diseases and revolutionize treatment plans to affect quality of life.

Meghna Datta repping the Devils

In AP Bio, understanding the mechanisms of the human body seemed so powerful to me. Slowly, I began to entertain the notion of a career in medicine, one of many scientific fields that works to improve lives every day.

Now, the research going on at Duke doesn’t cease to amaze me. Specifically, I’m interested in science for social good. Be it sustainable engineering, global health, or data-driven solutions to problems, I love to see the ways in which science intersects with social issues. As I have learned, science does not need to be done in isolation behind pipettes. Science is exciting and indicative of society’s shared sense of humanity. At Duke, there’s no shortage of this environment.

As a blogger I’m so excited to see the inspiring ways that peers and faculty are working to solve problems. And because science isn’t a traditionally “showy” field, I am looking forward to shining the spotlight on people at Duke who tirelessly research behind the scenes to impact those at Duke and beyond. The research community at Duke has so much to celebrate, and through blogging I’m excited to do just that!

From Jails to Detention Centers: a Disconcerting Immigration History

The political climate for the past ten years has been anything but calm, and central to political struggles in D.C. and elsewhere has been the ethical issues surrounding immigrant detention. But for Brianna Nofil (T ‘12), there has never been a better time to research the questions that intrigue her the most.  

A native of South Florida, Nofil has felt the undercurrent of immigration tensions throughout her life as a resident of a region with a large population of immigrants. Central to this tension was Krome Detention Center — a looming, overpowering presence in her community. Krome, which was a missile testing facility for most of 20th century, has only recently been converted to an institution to house detained immigrants. Krome had always been there, but exactly what its existence meant in her hometown was not usually acknowledged, and as Nofil remarked, “There was a reason people living there had a hazy understanding of what was going on.” 

While at Duke, Nofil, who double majored in history and public policy studies with a minor in education, let her experiences growing up lead her to a senior thesis on the history and privatization of U.S. immigration detention — which, according to Duke history professor Gunther Peck, was nothing less than “stunning.” In a round-table forum on October 1, Nofil delved deeper into her central academic interests — of which she has written about in publications such as Time and Atlas Obscura — as well as her current studies as a doctoral candidate at Columbia University.

Jose A. Iglesias for the Miami Herald

Coming to Duke, Nofil used the resources and classes in the history department to answer two chief questions: what power structures were in place to confirm an institution like Krome’s significance in the community? And where exactly did this power come from?  

These questions lead her to her current focus at Columbia, which is the history of immigrant detention centers in the 20th century. Her main argument? “U.S immigration has always really relied on jails.” 

By the early 1900s, immigration was taking hold as a major historical event in the U.S and the federal government took its chances on what it saw as the perfect solution — let local communities handle immigration, and thus control what could (and eventually would become) a growing problem. This led to a network of contracts in the 20th century that paid sheriffs of small, lower-income towns all over America a nightly rate to “board” immigrants in jails. 

One case study, as Nofil points out, centered around Chinese immigrants in the early 1900s who came to northern New York from Canada. They were held in local jails all throughout the county while their cases were processed, and communities see the booming immigrant detention business as net-positive for the community. Within mere months, these Chinese jails had created an arms race of sorts. Communities competed and clamored for more contracts from the federal government as they saw incomes in their town continue to grow. 

It’s easy to see the moral dilemma of profiting off of detaining immigrants, but what is even more concerning is why the federal government pawned off a federal responsibility to communities, thus ensuring a lack of standardization in immigrant treatment across the country. So while there was relative support surrounding the business, unease soon began to emerge. As quota laws and anti-trafficking measures were created, Canadian and European immigrants also made their way over to the U.S, prompting foreign countries to finally notice  — and ask — whether communities utilizing prisons as detention centers was ethically sound. Newspapers around this time started publishing op-eds and editorials, and soon a resistance against profiting off of jailing immigrants cropped up — something Nofil adds is “inspiring” to see, especially in the context of our own times. 

The perpetual failure of jails has allowed immigration in the modern day to position big detention centers as a humane alternative. But what does that mean for immigration detention today? As Nofil posits, early forms of resistance are inspiring because it assures us that jailing immigrants was always questioned by communities, even at that time. Communities were capable of distinguishing right from wrong, even amidst the issue of immigration where the makeup and economy of their communities were at risk of changing. As the conversation concluded, one central theme seemed to stand out — that to understand the consequences of immigration detention centers, we must look to the past to see how detention started, and only by understanding the origins can we work toward a better solution. 

By Meghna Datta
By Meghna Datta

Powered by WordPress & Theme by Anders Norén