Following the people and events that make up the research community at Duke

Author: Meghna Datta Page 1 of 3

Truman Scholar Maya Durvasula, T’18, on her Research Journey Through Duke and Beyond

Sticky post

Maya Durvasula, T’18, and a current Ph.D. student at Stanford University, grew up in Albuquerque, New Mexico. “And it’s hard to grow up there without a very keen sense of what it looks like when policy doesn’t work for people,” she remarks.

Maya Durvasula, T’18

After graduating high school with an interest in politics, she decided to take a gap year and bounced around organizations in New Mexico, working for the state legislature, political campaigns, and even a think tank. In hindsight, she says, “Having a block of time where you have time is super helpful.” One thing she learned was that she didn’t really want to do politics. “People were making policy, but debates were heavy on feelings and politics and light on facts.”

A high school mentor suggested that maybe she would get along better with economists than politicians, so once she got to Duke, she took that to heart.

As a first-year, she says, she knew she wanted to be exposed to a lot of things, and she knew she wanted to do research, but she wasn’t really sure what “research” meant for a first-year. In the beginning, she cold-emailed a lot of people and received multiple rejections.

After rejection, though, eventually something clicks, and for Durvasula, what clicked were three main research projects she undertook in her time at Duke.

The instinct is always to start with where you want to end up and then work backward, but you don’t know where you’re going to end up”

Maya Durvasula, T’18

Her first experience in a research group was a joint venture between an academic team in China and at UNC-Chapel Hill. Their group studied behavioral interventions to increase the uptake of health technologies, with a particular focus on sexual health. Usually, as a country industrializes, the rates of sexually transmitted infections will drop, but in China, rates of HIV and syphilis continued to rise as the economy grew. Durvasula and the team looked at different interventions that might make testing for HIV more attractive to patients, such as alternative testing locations, different advertisement design, and compensation.

She also did a project with Duke professor Bob Korstad in the history department and the Samuel DuBois Cook Center on Social Equity, looking at the history of housing in Durham. Finally, she worked with her primary advisor, Duke economics professor Duncan Thomas, in his joint lab with UNC’s Elizabeth Frankenberg, on projects related to household decision-making in Indonesia.

Duke Economics Thesis Symposium in 2018

A notable part of her undergraduate time at Duke was winning the Truman Scholarship. What was most valuable to her about the Truman was the people she met. “Most people I’ve met are defined by picking something they care about and doing a lot with it,” she says. And it’s inspiring to be surrounded by people who love what they do and immerse themselves so wholly in it.

Duke Economics Graduation, 2018

Durvasula graduated Duke with numerous experiences and accolades under her belt. But from there, how did she find her way to doing a Ph.D. at the intersection of law, technology, and economics? As she describes it, the interplay between economics and law is inextricable. Both economic incentive and legal institutions affect the rate and direction of innovation, which affects how quickly technology is developed, and ultimately what products ends up in our hands. A question at the heart of her research is wondering how to make sure the value of this technology is distributed equally across society.

So five to ten years from now, where will we see Durvasula? She sees herself remaining in academia, although at some point she wants to work in public service. “I love learning new things, and I want to take advantage of being in a space where people are always willing to teach you things.”

And in that vein, her advice to a curious Duke student is to explore everything. “The instinct is always to start with where you want to end up and then work backward, but you don’t know where you’re going to end up,” she said.

Pursue the questions that you find exciting, and let that point you in the right direction – clearly, Durvasula is proof that this process will take you places.

Post by Meghna Datta, Class of 2023

Duke Alum Dr. Quinn Wang on Medicine, a Healthcare Startup, and the Senior Thesis That Started it All

As a senior at Duke University in 2010, Dr. Quinn Wang was simply Quinn, an undergraduate English major on the pre-med track, wondering how to combine her love for medicine with her love for English. This is how her senior thesis was conceived – Through the Lens of Medicine: Landscapes of Violence in Cormac McCarthy’s Blood Meridian (1985), All the Pretty Horses (1992), and No Country for Old Men (2005) – which ended up winning the English department’s award for “Most Original Honors Thesis.”

Dr. Quinn Wang

Fast forward 12 years, and Wang can now call herself a double Dukie, having completed medical school here. She went on to complete ophthalmology residency at UCSF and this past Saturday, November 5, came back to her alma mater as part of the Duke Medical Ethics Journal’s Medicine, Humanities, and Business celebration to talk to an eager audience at Schiciano Auditorium about her path from Duke until now.  

She began her story during the infamous year of 2020, when she was forced to stop seeing patients at her private practice in California’s Bay Area due to COVID-19. Restless and anxious about how her patients were doing, she tried to keep up with them as best she could, but of course there were limitations. And then, a few months in, one of her patients went blind.

This tragic moment sparked a frustrating realization by Wang that in the tech capital of the world – San Francisco – there was still no good way to test people’s eyesight from home to prevent what should have been preventable. She decided to put together something herself, guided by the one question she thought was most important to answer until COVID-19 abated and people could come into clinics again – “how do we make sure people don’t go blind?”

Wang took common visual eye-testing tools used in clinics, and with some simple Photoshop editing and a little bit of code, turned them into a series of easy multiple-choice questions that could be answered from home. This simple but powerful transformation turned into Quadrant Eye, a start-up she co-founded with software engineer Kristine Hara.

A common visual tool used to test eyesight is the Snellen chart

The Quadrant Eye journey has taken her from running a private practice as an ophthalmologist to taking the plunge into business by applying to and getting selected for Y Combinator, which calls itself a “graduate school for startups”. YC invests $500,000 into a selection of early-stage startups twice a year. Then, for three intense months, they provide support to get startups off the ground and in good shape to present to investors for funding. At YC, Hara worked on turning Quadrant Eye into an app, and Wang renewed hundreds of prescriptions.

Quadrant Eye

Ultimately, though, the most significant place Quadrant Eye has led Wang to is a journey of self-mastery that applies to any human endeavor, from building a startup to doing research to just getting up every morning.  As she describes, startup life entails always learning new things and always messing up – which, for someone who professes that “I don’t like to do things I’m not good at” – can be challenging. She candidly admitted that she, like everyone, has bad days, when sometimes all she can do is throw in the towel and end work early. “I have more doubts than I care to admit,” Wang says, but at the end of the day, “we’re all climbing our own mountains”. Pushing through requires “superhuman effort” but it’s worth it.

And as for that English thesis? Wang describes how Quadrant Eye’s very first investor – “let’s call him Charlie” – asked her all the requisite questions investors ask early-stage startups (think Shark Tank). But he also asked her for something non-traditional – all fifty or so pages of her undergraduate honors thesis she had written ten years back. Apparently, he had seen a mention of it on LinkedIn and was intrigued. A few weeks later, Wang received a phone call that he was interested in investing – and he admitted that her thesis had played a part. To him, the uniqueness and quality of her thesis showed that Wang could problem-solve, communicate well, and think creatively, and Wang herself agrees. “My English thesis showed me that I can do hard things,” she said, and if Quadrant Eye is any indication, clearly, she can.

Post by Meghna Datta, Class of 2023

Insights on Health Policy Research from Undergraduate Cynthia Dong

“After COVID-19,” senior Cynthia Dong (T’23) remarks, “so much of what was wrong with the medical system became visible.”

Duke undergraduate Cynthia Dong, Class of 2023

This realization sparked an interest in how health policy could be used to shape health outcomes. Dong, who is pursuing a self-designed Program II major in Health Disparities: Causes and Policy Solutions, is a Margolis Scholar in Health Policy and Management. Her main research focus is telehealth and inequitable access to healthcare. Her team looks at patient experiences with telehealth, and where user experience can be improved. In fact, she’s now doing her thesis as an offshoot of this work, researching how telehealth can be used to increase access to healthcare for postpartum depression.

Presenting research on telehealth

In addition to her health policy work, however, Dong also works as a research assistant in the neurobiology lab of Dr. Anne West, and her particular focus is on the transcription mechanism of the protein BDNF, or brain-derived neurotrophic factor.

While lab research can be clearly visualized by most people (think pipettes, rows of benches littered with bottles and plastic tubes, blue rubber gloves everywhere), health policy research is perhaps a little more abstract. When asked what the process of research through Margolis is like, Dong says that “it’s not team-based or individual – it’s a lot of both.” This looks like individual research on specific topics, talking to different stakeholder groups and people with certain expertise, and then convening for weekly team meetings.

With other Margolis Scholars

For Dong, research has been invaluable in teaching her to apply knowledge to something tangible. Doing that, you’re often “forced to understand that not everything is in my control.” But on the flip side, research can also be frustrating for her because so much of it is uncertain. “Will your paper get published? Is what you’re doing relevant to the research community? Will people invest in you?”

In that vein, research has humbled her a lot. “What it means to try to solve a societal problem is that it’s not always easy, you have to break it down into chunks, and even those chunks can be hard to solve.”

After graduation, Dong plans on taking a couple of gap years to be with family and scribe before ultimately pursuing an MD-MPH. Because research can be such a long, arduous process, she says that “It took me a long time to realize that the work we do matters.” In the future, though, she anticipates that her research through Margolis will directly inform her MPH studies, and that “with the skills I’ve learned, I can help create good policy that can address the issues at hand.”

An Interview With Undergraduate Researchers and Labmates Deney Li and Amber Fu (T’23)

What brings seniors Deney Li and Amber Fu together? Aside from a penchant for photoshoots (keep scrolling) and neurobiology, both of them are student research assistants at the lab of Dr. Andrew West, which is researching the mechanisms underlying Parkinson’s in order to develop therapeutics to block disease progression. Ahead lie insights on their lab work, their lab camaraderie, and even some wisdom on life.

(Interview edited for clarity. Author notes in italics.)

What are you guys studying here at Duke? What brought you to the West lab?

DL:  I am a biology and psychology double major, with a pharmacology concentration. I started working at a lab spring semester of freshman year that focused on microbial and environmental science, but that made me realize that microbiology wasn’t really for me. I’ve always known I wanted to try something in pharmaceutics and translational medicine, so I transitioned to a new lab in the middle of COVID, which was the West lab. The focus of the West lab is neurobiology and neuropharmacology, and looking back it feels like fate that my interests lined up so well!

Deney Li

AF: I am majoring in neuroscience with minors in philosophy and chemistry, on the pre-med track. I knew I wanted to get into research at Duke because I had done research in high school and liked it. I started at the same time as Deney – we individually cold-emailed at the same time too, in the fall! I was always interested in neuroscience but wasn’t pre-med at the time. A friend in club basketball said her lab was looking for people, and the lab was focused on neurobiology – which ended up being the West lab!  

Amber Fu

What projects are you working on in lab?

DL: My work mainly involves immunoassays that test for Parkinson’s biomarkers. My postdoc is Yuan Yuan, and we’re looking at four drugs that are kinase inhibitors (kinases are enzymes that phosphorylate other proteins in the body, which turns them either on or off). We administer these drugs to mice and rats, and look at LRRK2, Rab10 and phosphorylated Rab10 protein levels in serum at different time points after administration. These protein levels are important and indicative because more progressive forms of Parkinson’s are related to higher levels of these proteins.

AF: For the past couple of years, I’ve been working under Zhiyong Liu (a postdoc in the lab). There are multiple factors affecting Parkinson’s, and different labs ones study different factors. The West lab largely studies genetic factors, but what we’re doing is unique for the lab. There’s been a lot of research on how nanoplastics can go past the blood-brain barrier, so we are studying how this relates to mechanisms involved in Parkinson’s disease. Nanoplastics can catalyze alpha-synuclein aggregation, which is a hallmark of the disease. Specifically, my project is trying to make our own polystyrene nanoplastics that are realistic to inject into animal models.

What I’m doing is totally different from Deney – I’m studying the mechanisms surrounding Parkinson’s, Deney is more about drug and treatments – but that’s what’s cool about this lab – there are so many different people, all studying different things but coming together to elucidate Parkinson’s.

Another important project

How much time do you spend in lab?

DL: I’m in lab Mondays, Wednesdays, and Fridays from 9 to 6. All my classes are on Tuesdays and Thursdays!

AF: I’m usually in lab Tuesdays and Thursdays from 12 to 4, Fridays from 9 to 11:45, and then whenever else I need to be.

Describe lab life in three words:

DL: Unexpected growth (can I just do two)?

AF: Rewarding, stimulating, eye-opening.

Lab life also entails goats and pumpkins

What’s one thing you like about lab work and one thing you hate?

DL: What I like about lab work is being able to trouble-shoot because it’s so satisfying. If I’m working on a big project, and a problem comes up, that forces me to be flexible and think on my toes. I have to utilize all the soft skills and thinking capabilities I’ve acquired in my 21 years of life and then apply them to what’s happening to the project. The adrenaline rush is fun! Something I don’t like is that there’s lots of uncertainty when it comes to lab work. It’s frustrating to not be able to solve all problems.

AF: I like how I’ve been able to learn so many technical skills, like cryosectioning. At first you think they’re repetitive, but they’re essential to doing experiments. A process may look easy, but there are technical things like how you hold your hand when you pipette that can make a difference in your results. Something I don’t like is how science can sometimes become people-centric and not focused on the quality of research. A lab is like a business – you have to be making money, getting your grants in – and while that’s life it’s also frustrating.

What do you want to do in the future post-Duke? How has research informed that?

DL: I want to do a Ph.D. in neuropharmacology. I’m really interested in research on neurodegeneration but also have been reading a lot about addiction. So I’ll either apply to graduate school this year or next year. My ultimate goal would be to get into the biotech startup sphere, but that’s more of a 30-years-down-the-road goal! Being in this lab has taught me a lot about the pros and cons of research, which I’m thankful for. Lab contradicts with my personality in some ways– I’m very spontaneous and flexible, but lab requires a schedule and regularity, and I like the fact that I’ve grown because of that.

AF: The future is so uncertain! I am currently pre-med, but want to take gap years, and I’m not quite sure what I want to do with them. Best case scenario is I go to London and study bioethics and the philosophy of medicine, which are two things I’m really interested in. They both influence how I think about science, medicine, and research in general. After medical school, though, I have been thinking a lot about doing palliative care. So if London doesn’t work out, I want to maybe work in hospice, and definitely wouldn’t be opposed to doing more research – but eventually, medical school.

What’s one thing about yourself right now that your younger, first-year self would be surprised to know?

DL: How well I take care of myself. I usually sleep eight hours a day, wake up to meditate in the mornings most days, listen to my podcasts… freshman-year-Deney survived on two hours of sleep and Redbull.

AF: Freshman year I had tons of expectations for myself and met them, and now I’m meeting my expectations less and less. Maybe that’s because I’m pushing myself in my expectations, or maybe because I’ve learned not to push myself that much in achieving them. I don’t necessarily sleep eight hours and meditate, but I am a little nicer to myself than I used to be, although I’m still working on it. Also, I didn’t face big failures before freshman year, but I’ve faced more now, and life is still okay. I’ve learned to believe that things work out.

A hard day’s work

Applying the Ways of the Sea to Outer Space: A Conversation Hosted by Duke’s Space Diplomacy Lab

Whether it was Marco Polo traversing the Silk Road (which was more like Silk Routes), Columbus sailing the ocean blue, or even Moana restoring the heart to Te Fiti; oceans have been integral to our way of life as humans for thousands and thousands of years.

The Silk Road, mapped
The (fictional) story of Moana draws from (true) Polynesian history and seafaring lore

But humans have always been bad at sharing – most wars are fought over territory, land especially. And as time has passed, the things we share as humans has evolved – from oceans and land to the Internet and outer space. So how do you keep things diplomatic? Last Friday, Duke’s Space Diplomacy Lab, co-chaired by Dr. Benjamin Schmitt of Harvard University and Duke’s own Dr. Giovanni Zanalda, hosted a webinar on what space diplomacy can learn from ocean diplomacy. Featuring Dr. Clare Fieseler of the Smithsonian Institution and Dr. Alex Kahl of the National Marine Fisheries Service, the conversation covered everything from zoning to equity to even the lessons we can learn from Indigenous communities.

Sharing data and sharing fish

There are multiple challenges to sharing the world’s waterways. Fieseler did not start out her career studying ocean diplomacy. Initially stationed in the Persian Gulf, building a marine mammal monitoring network, she noticed that the fraught state of politic affairs in the region made it hard to share data on the animals that were washing up on the shore.

Dr. Fieseler presenting

Meanwhile, Kahl, who works in Hawaii as the National Resources Manager at the National Marine Fisheries Service, runs into problems not in sharing data but primarily in sharing fish. “How do you focus on the shared exploitation of a natural resource?” he asked.

Two key themes arose in linking the sharing of the ocean to the sharing of outer space.

First, Fieseler pointed out that engaging scientists can help in transcending politics, something that ocean diplomacy does well. She pointed to efforts to establish a Marine Peace Park between North Korea and South Korea, and that if two of the worlds most polarized countries could come to an agreement in the name of science and human betterment, then “surely other countries can too.”

Second, Kahl remarked, unlike in the ocean, the primary resource in space is, well, space. You need fish to eat to survive – do you need space to survive?   

Centering equity

On the topic of whether we really need space in space to survive, Kahl pointed to the significance that many celestial bodies have in cultures here on Earth, such as in Hawaii and the Pacific Islands. Does interfering with these celestial bodies cross a red line for cultures on Earth? It’s worth noting that as Kahl said, with space exploration, “very few people are profiting,” so balancing the interests of people on Earth as well as in space is important.

Dr. Kahl presenting

Fieseler spoke to the need to build equity in space through some sort of formal agreement, similar to the Law of the Sea. But, she says, that might be skipping a few steps. Right now, “many developing countries can’t even afford to go to space.” How can you build equity in a region where not everyone even has a seat at the table? Kahl pointed out that this marginalization impedes discussions on how to share space – something that should be consensus-driven.

Zoning

As Fiesler remarked, zoning of the ocean has been key to a relatively peaceful sharing of this resource for the variety of uses that people have for the sea. A good example of this is the Antarctic Treaty, which zoned different places in Antarctica for scientific use.

Kahl spoke to being a beneficiary of the Antarctic Treaty – “it reduces bureaucratic burdens, and the collective benefits are also increased.” However, he made the point that the slicing and dicing of space, as with anything, could lead to initial tensions.

Science should have a seat at the table

A central theme that ran throughout the conversation was that, as Kahl put it, scientists “rely on each other to level-set the truth” – even in spaces where they might be in the minority, such as in a room of politicians engaging in diplomatic talks.

Fieseler pointed to how in environmental justice work, her Indigenous colleagues were good at taking the initiative – and finding the urgency – to demand a seat at the table. “As scientists, we sit around, thinking that one day the phone will ring and someone will invite me to be a part of the conversation – but that’s not how it works.” Diplomacy will always be a necessity as we aim to navigate sharing the vast resources at our disposal, but many scientists hope that we won’t forget to center the pursuit of the truth as we make decisions.

Post by Meghna Datta, Class of 2023

What’s Up In Space? 3 Experts Weigh In

On Friday, February 25th, 2022 the brand-new Duke Space Diplomacy Lab (SDL) had an exciting launch with its first panel event: hosting journalists Ramin Skibba, Loren Grush, and Jeff Foust for a conversation on challenges in space within the next year. Moderated by Benjamin L. Schmitt of Harvard University, the conversation was in line with the SDL’s goals to convene a multidisciplinary group of individuals for the development of research, policy proposals, and solutions to mitigate risks in space.

In conversation, three key themes arose:

  1. U.S Russia Relations

With the current Russian invasion in Ukraine and the subsequent strain on U.S-Russia relations, the geopolitics of space has been in the limelight. Control of outer space has been a contentious issue for the two countries since the Cold War, out of which an uneasy yet necessary alliance was forged. Faust remarked that he doesn’t see U.S-Russia space relations lasting beyond the end of the International Space Station (ISS) in 2030. Grush added that before then, it will be interesting to see whether U.S-Russia relations will sour in the realm of space, simply because it’s questionable whether the ISS could continue without Russian support. However, Russia and NASA have historically acted symbiotically when it comes to space, and it’s unlikely that either party can afford to break ties.

2. Space debris

Major global players, from the U.S to China to India to Russia, are all guilty of generating space debris. Tons of dead satellites and bits of spacecraft equipment litter the areas around Earth – including an estimated 34,000 pieces of space junk bigger than 10 centimeters – and if this debris hit something, it could be disastrous. Grush paints the picture well by comparing spacecrafts to a car on a road – except we just trust that the satellite will maneuver out of the way in the event of a collision, autonomously, and there are absolutely no rules of the road to regulate movement for any other vehicles.

A computer-generated graphic from NASA showing objects in Earth orbit that are currently being tracked. 95% of the objects in this illustration are orbital debris, i.e., not functional satellites.

Skibba suggests that the best thing to do might be to make sure that more stuff doesn’t enter space, since the invention of technologies to clean up existing space debris will take a while. He also points to efforts to program new spacecrafts with graveyard orbit and deorbit capabilities as a necessary step.

3. Who is in charge of space?

Faust explained that commercial space exploration is moving incredibly fast, and legal regulations are struggling to keep up. Tons of companies are planning to launch mega-constellations in the next few years, for reasons that include things like providing higher-speed Internet access – something that we can all benefit from. Yet with new players in space comes the question of: who is in charge of space? The Artemis Accords are the existing rules that govern space at an international level, but they function as an agreement, not law, and with more players in space comes a need for legally binding terms of conduct. But as Grush puts it, “there’s a tension between the nimble, rapid commercial environment and a regulatory environment that wasn’t quite prepared to respond.”

The eight signees of the Artemis Accords

Beyond who rules over space, there’s also the question of decolonizing space. Skibba brings up that amidst a growing number of mega-constellations of satellites being launched, there are key questions being asked about who has access to space, and how we can level the playing field for more countries and companies to enter space exploration.

Space is uncharted territory, and to understand it is no small feat. While science has come incredibly far in terms of technological capabilities in space, it’s clear that we don’t know what we don’t know. But with a more multilateral, global approach to exploring space, we may just be able to go even farther.

Post by Meghna Datta, Class of 2023

What are Healthcare Researchers Doing to Address Health Equity?

“Community engagement” and “health disparities” are some of the most trending terms in healthcare right now, but what are people actually doing about them? On Wednesday, February 2, panelists in healthcare sat down as part of Duke’s Research Week to talk about ways in which they and their organizations were actively addressing health disparities by focusing on communities. (View the session)

Dr. L. Ebony Boulware, professor at the Duke University School of Medicine and director of the Duke Clinical and Translational Science Institute, set the stage by defining health equity for the vast number of us that might only have read about it in a mission statement or an article but weren’t exactly sure how it was conceptualized. To work towards health equity, she said, means that “everyone has an opportunity to attain their full health potential regardless of any socially defined circumstance.” These circumstances could range from poverty to structural racism, but the main theme was that community engagement is a key player as we think about how best to achieve equity.

Slide taken from Dr. L. Ebony Boulware’s presentation.

COVID-19 is a great example of why health equity matters, as we ponder whether the pandemic could have turned out any different if more people had access to vaccines, personal protective equipment, and the capacity to socially distance. Dr. Michael Cohen-Wolkowiez, a professor of Pediatrics at the Duke University School of Medicine, and Dr. Giselle Corbie-Smith, a professor at the UNC School of Medicine gave a pertinent example of their work addressing the health disparity on our minds right now– access to COVID-19 testing – and the RADx program out of the NIH that is funding work to address this problem.

But even before COVID-19, attaining health equity was a tough goal to address for virtually every country in the world. Health equity isn’t just a nicety, it affects how long we are alive. And while progress in terms of life expectancy differences is improving, much work remains to be done to close the myriad gaps that remain. Dr. Tyson Brown, associate professor of Sociology at Duke, highlighted his research into structural racism to stress the fact that structural racism is toxic for population health and disproportionately affects people of color.

Slide taken from Dr. Tyson Brown’s presentation.

Dr. Schenita Davis Randolph, a registered nurse and professor at the Duke School of Nursing, zoomed in a little to highlight what true community engagement looks like. As part of her lab’s research to improve uptake of pre-exposure prophylaxis (PrEP) treatment to address HIV in Black women, they designed an intervention for beauty salons, known to be trusted venues for health promotion in the Black female community. But “how do we use community engagement so it’s not just a checkmark?” This, among other pressing challenges to community engagement in addressing health disparities, is what Dr. Keisha Bentley-Edwards, developmental psychologist and professor at the Duke University School of Medicine, talked about.

As the panel discussion came to a close, a key message emerged. As Dr. Davis remarked, both disparities and the communities that are hurt by them are complex, and so until we take a multi-faceted approach to understanding them, we continue to grasp for the ultimate goal of health equity.

But while these disparities are complex, they are certainly not unsolvable. Dr. Corbie-Smith emphasized that “we have a clear understanding of of how health disparities work.” All that’s left to do is solve them, and Dr. Bentley-Edwards highlights this move from awareness to solutions as a challenge to achieving health equity. Perhaps most significantly, though, it’s important to move from inertia to action. While there are seemingly thousands of ways in which communities in the U.S and around the world face barriers to health access, it’s important to do something – however small. As Dr. Bentley-Edwards concluded, by everyone working within their sphere of influence to close the health equity gap, that sphere becomes bigger and bigger and the gap becomes smaller and smaller.   

Junior Alec Morlote Pursues a Love for Biology Via Fruit Flies

As Alec Morlote emphasizes, he’s a Biology major because “I’m really interested in it. I’d definitely be a Biology major whether I was pre-med or not.”

Morlote, a Trinity junior from northern New Jersey, works in the lab of Dr. Pelin Volkan studying the neurobiology of fruit flies. Why fruit flies, of all things? Well, Morlote initially signed up for a research fellowship program during the summer following his freshman year.

Of course, in March of that year, COVID-19 happened, so Morlote ended up postponing his work to this past summer. He got paired with the Volkan lab because he didn’t want to work in an area of research that was very familiar to him.

“I wanted to use research as an opportunity to learn something completely new,” he said. The neurobiology of fruit flies hit the nail on the head.

Alec Morlote

The Volkan Lab is a cell biology and neurobiology lab that studies how social behavior, specifically courting, is affected by stimuli, using fruit flies as a model organism. Morlote’s specific project has to do with olfactory stimuli – the things flies smell. In flies, as he explained, one gene is responsible for courtship behavior in male flies. If you take out the olfactory receptor of the fly, however, that gene won’t be active.

Morlote is interested in seeing how the olfactory receptor is critical to the expression of this gene.

To do this, he has been working on imaging the antennae of flies – work he describes as “cool, but tedious.” It’s incredibly detailed work to pick apart the antenna off of such a tiny creature.  Once isolated, neurotransmitters in the antenna that have been tagged with green fluorescent protein (GFP) light up, thus showing the expression pattern of all cells expressing the neurotransmitter.

Humans clearly don’t have as simplistic a courtship behavior as fruit flies, but the simplicity of the fruit fly makes it an incredibly valuable organism for studying neurobiology. All discoveries in humans initially started with some sort of watered-down version of the human anatomy, whether mice or in this case, fruit flies. Discoveries into the neurobiology and neuroplasticity of fruit flies just might yield significant discoveries into the neurobiology and neuroplasticity of the human brain.

When asked about his favorite and least favorite parts about his research, Morlote laughed.

“I don’t like doing work for three months and getting no results at all,” he remarked in reference to the initial work he started on this summer – but alas, such is the nature of scientific research. But he adds that the best part of research is getting results, any at all. And even no results can mean something.

Morlote’s poster from his summer research

Research was a way for Morlote to narrow his post-graduation plans. He knows now that he wants to pursue an MD, or possibly an MD/PhD. But initially, research was a way for him to see whether this was the path for him at all. When asked why he chose to be pre-med, Morlote said that “it just seemed like the most practical way to apply a love for science.” Biology is the science that he loves the most, and so being pre-med seemed like a no-brainer.

It’s also a family business. Both of Morlote’s parents are doctors, so medicine “is not unfamiliar territory to me.” Being Latin American, both his parents have worked extensively with Latin communities in New Jersey, which is work he hopes to emulate in the future.

Whether or not benchwork stays a part of his life, Morlote knows that he wants his career to involve research somehow. The way he sees it, “you’re doing the bare minimum if you’re just a doctor but you’re not trying to better medicine in some way.” 

Contributing to research just might become his way.

Post by Meghna Datta, Class of 2023

Undergraduate Researchers William He and Annie Wang Dig Deeper into Hypergraphs

Like most things during the height of the pandemic, research that could be conducted virtually was conducted virtually. And that’s why, although juniors William He and Annie Wang have been working together on a research project since last September, they’ve never actually met in person.

He, a Math major from Houston, and Wang, a Computer Science and Math double-major from Raleigh, both work in the lab of Professor Debmalya Panigrahi, where the focus is on research in theoretical computer science, particularly graph algorithms. Wang and He did work on hypergraphs, and, after I asked them to explain what hypergraphs were in the most elementary terms (I am not a Math major), they went back and forth on how exactly to relay hypergraphs to a lay audience.

Annie Wang

Here is what they landed on: hypergraphs are essentially generalizations of normal graphs. In a normal graph, there are edges –each edge connects two points. There are also vertices – each point is a vertex. But in a hypergraph, each edge connects multiple points.

He and Wang were looking at a generalization of graph reliability – if all edges disconnect at a certain probability, what is the probability that the graph itself will break down because crucial edges are disconnecting?

William He

Their research adds to existing research on maximum flow problems, which Wikipedia tells us “entail finding a feasible flow through a flow network to obtain the maximum possible flow rate.” In a landmark paper written by T.E. Harris and F.S. Ross in 1955, the two researchers formulated the maximum flow problem using an example of the Soviet railroad and considering what cuts in the railroad would disconnect the nation entirely – and what cuts could be made with little impact to railway traffic flow. 

Maximum flow problems are a core tenet of optimization theory, used widely in disciplines from math to computer science to engineering. You may not know what mathematical optimization is, but you’ve seen it in action before: in electronic circuitry, in economics, or unsurprisingly, used by civil engineers in traffic management.

It’s expected to be incredibly difficult to exactly calculate the target value of He and Wang’s question. They landed on an approximation that they know is far from the exact calculation, but still brings them closer to understanding hypergraph connectivity more fully.

The process

So what draws them to research? For He, it’s like an itch. He describes that “sometimes I’ll be watching a movie, and then thirty minutes in I’m thinking about a possible solution to a math problem and then I can’t focus on the movie anymore.” You can’t get on with things until you scratch the itch, but the best part to him is when things finally start to make sense. For Wang, research is just plain fun. She enjoys learning about algorithms and theorems, and she loves the opportunity to work with professors who are at the forefront of their field.

After Duke, He wants to pursue a PhD, likely in theoretical computer science, while Wang is still weighing her options – whether she wants to go into academia or industry. While He came into Duke as a prospective Economics major, in quarantine especially he realized just how much he enjoyed math for the sake of itself.

Wang, similarly, thought she would want to pursue software engineering, but she’s slowly realizing that she likes “solving the problems within the field – problems that I need a PhD to solve.” The magic of research, for her, is that “you’re solving problems that no one has answers to yet.” And wherever the future takes both of them, she says that in doing research, even at the undergraduate level, “you feel like you’re pushing the boundary a tiny bit, and that’s a cool feeling.”

Post by Meghna Datta, Class of 2023

For Undergraduate Student Tiffany Yen, Sustainability is More Than Just a Buzzword

Tiffany Yen, a Duke junior majoring in chemistry, grew up in the sunny suburbs of Los Angeles, never too far from the coastline. She’s always loved being outside, especially in California where there is no shortage of trails to hike and beaches to go to. Friends know her as a Patagonia aficionado, going so far as to buy her a book profiling the company’s business model for her birthday. In fact, from Yen, I learned that every Patagonia store gives out city-specific stickers, so if you feel so inclined, you can collect them (as Yen obviously does). All this is to say: Tiffany Yen has always been interested in sustainability.

“I never understood why what we do has to come at the cost of the planet,” Yen said, in discussing how her years in school learning about climate change fueled her passion for sustainable science. “The environment is so important. Without it, we wouldn’t be here.”

Tiffany Yen

Unsure of what she wanted to study at Duke and where she wanted to go post-graduation, she decided to take her two interests – sustainability and chemistry, particularly polymer chemistry – and see what she could do to combine them. She knew coming into college that she wanted to do research, so that landed her at the Becker Lab for Functional Materials.

The Becker Lab is a multidisciplinary organic materials lab focused on biomedical applications – specifically, things like adhesives and drug delivery. Yen works on improvements to intercranial pressure sensors. Traditionally, after head trauma, doctors need to measure the intercranial space to see if the brain is damaged. The sensor that is used is wired and tends to be a very invasive procedure – the probe is connected to a machine outside, and there’s a high risk of infection.

Collaborators at Northwestern developed a biodegradable wireless device that, after implantation, doesn’t require a secondary procedure to take out. The problem is that it degrades a little too fast – and so measurements can’t be taken. Yen, with her mentor, is working on building a film encapsulation to make it possible for the device to take good measurements.

Right now, they’re trying out azelaic acid instead of succinic acid. Azelaic acid has favorable anti-inflammatory properties and is commonly used in acne medications. It could also potentially increase the bioresorbability of the polymer. Their hope is that the film not only helps the body metabolize more of the polymer, but actually helps in healing.

Snapshots from Yen’s life at the lab

So why medical research? Yen explains that while her work may not seem obviously linked to sustainability, the push for finding materials that can degrade is extremely relevant. And while she’s not all that interested in medicine specifically, she likes things that are practical and applicable.

“When I did research in the past,” Yen said, “there wasn’t always an application. It sometimes was about synthesizing something, just for the sake of science.” And while there’s certainly value in strengthening science fundamentals, she admits that research in that vein doesn’t really appeal to her. “I want to work on things that I directly see adding value to society.”

After college, Yen sees herself going to graduate school and working towards a PhD in “some physical science related to chemistry.”  Ultimately, her goal is to work at the interface of venture capital and scientific research, using her science background to find and fund promising innovations in sustainability. “There are so many incredible things being researched out there,” Yen says, “but the biggest problem in research is funding and commercializing.” She continues, “I think there are other people out there who can do better research than I can, so I want to go out there, find the stuff, and fund it.”

Yen has come to believe that just because she dedicated her time at Duke to science, it doesn’t mean she needs to stay in science forever. There’s value in scientific knowledge no matter where you go. And as businesses realize that public interest in sustainability is growing, she’s crossing her fingers that her skillset will poise her to be a valuable asset in seeking out new innovations. 

Snapshots from Yen’s life at the lab

She said that when she came into college, she felt a pressure to pursue a more traditional path, like being pre-med. “I value stability, and I’m very risk-averse,” she laughs.

But when she asked herself what she’d be happiest doing, she knew it would be trying to save the planet in some way. But she clarifies: “At this point, I can’t save the planet. I think that’s a very far-fetched thing for one person to do.” Instead, “I’d rather try and maybe fail than not try at all.”

Post by Meghna Datta, Class of 2023

Page 1 of 3

Powered by WordPress & Theme by Anders Norén