Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Meghna Datta Page 1 of 3

How Research Helped One Pre-med Discover a Love for Statistics and Computer Science

Sticky post

If you’re a doe-eyed first-year at Duke who wants to eventually become a doctor, chances are you are currently, or will soon, take part in a pre-med rite of passage: finding a lab to research in.

Most pre-meds find themselves researching in the fields of biology, chemistry, or neuroscience, with many hoping to make research a part of their future careers as clinicians. Undergraduate student and San Diego native Eden Deng (T’23) also found herself plodding a similar path in a neuroimaging lab her freshman year.

Eden Deng T’23

At the time, she was a prospective neuroscience major on the pre-med track. But as she soon realized, neuroimaging is done through fMRI. And to analyze fMRI data, you need to be able to conduct data analysis.

This initial research experience at Duke in the Martucci Lab, which looks at chronic pain and the role of the central nervous system, sparked a realization for Deng. “Ninety percent of my time was spent thinking about computational and statistical problems,” she explained to me. Analysis was new to her, and as she found herself struggling with it, she thought to herself, “why don’t I spend more time getting better at that academically?”

Deng at the Martucci Lab

This desire to get better at research led Deng to pursue a major in Statistics with a secondary in Computer Science, while still on the pre-med track. Many people might instantly think about how hard it must be to fit in so much challenging coursework that has virtually no overlap. And as Deng confirmed, her academic path not been without challenges.

For one, she’s never really liked math, so she was wary of getting into computation. Additionally, considering that most Statistics and Computer Science students want to pursue jobs in the technology industry, it’s been hard for her to connect with like-minded people who are equally familiar with computers and the human body.

“I never felt like I excelled in my classes,” Deng said. “And that was never my intention.” Deng had to quickly get used to facing what she didn’t know head-on. But as she kept her head down, put in the work, and trusted that eventually she would figure things out, the merits of her unconventional academic path started to become more apparent.

Research at the intersection of data and health

Last summer, Deng landed a summer research experience at Mount Sinai, where she looked at patient-level cancer data. Utilizing her knowledge in both biology and data analytics, she worked on a computational screener that scientists and biologists could use to measure gene expression in diseased versus normal cells. This will ultimately aid efforts in narrowing down the best genes to target in drug development. Deng will be back at Mount Sinai full-time after graduation, to continue her research before applying to medical school.

Deng presenting on her research at Mount Sinai

But in her own words, Deng’s most favorite research experience has been her senior thesis through Duke’s Department of Biostatistics and Bioinformatics. Last year, she reached out to Dr. Xiaofei Wang, who is part of a team conducting a randomized controlled trial to compare the merits of two different lung tumor treatments.

Generally, when faced with lung disease, the conservative approach is to remove the whole lobe. But that can pose challenges to the quality of life of people who are older, with more comorbidities. Recently, there has been a push to focus on removing smaller sections of lung tissue instead. Deng’s thesis looks at patient surgical data over the past 15 years, showing that patient survival rates have improved as more of these segmentectomies – or smaller sections of tissue removal – have become more frequent in select groups of patients.

“I really enjoy working on it every week,” Deng says about her thesis, “which is not something I can usually say about most of the work I do!” According to Deng, a lot of research – hers included – is derived from researchers mulling over what they think would be interesting to look at in a silo, without considering what problems might be most useful for society at large. What’s valuable for Deng about her thesis work is that she’s gotten to work closely with not just statisticians but thoracic surgeons. “Originally my thesis was going to go in a different direction,” she said, but upon consulting with surgeons who directly impacted the data she was using – and would be directly impacted by her results – she changed her research question. 

The merits of an interdisciplinary academic path

Deng’s unique path makes her the perfect person to ask: is pursuing seemingly disparate interests, like being a Statistics and Computer Science double-major on the pre-med, track worth it? And judging by Deng’s insights, the answer is a resounding yes.

At Duke, she says, “I’ve been challenged by many things that I wouldn’t have expected to be able to do myself” – like dealing with the catch-up work of switching majors and pursuing independent research. But over time she’s learned that even if something seems daunting in the moment, if you apply yourself, most, if not all things, can be accomplished. And she’s grateful for the confidence that she’s acquired through pursuing her unique path.

Moreover, as Deng reflects on where she sees herself – and the field of healthcare – a few years from now, she muses that for the first time in the history of healthcare, a third-party player is joining the mix – technology.

While her initial motivation to pursue statistics and computer science was to aid her in research, “I’ve now seen how its beneficial for my long-term goals of going to med school and becoming a physician.” As healthcare evolves and the introduction of algorithms, AI and other technological advancements widens the gap between traditional and contemporary medicine, Deng hopes to deconstruct it all and make healthcare technology more accessible to patients and providers.

“At the end of the day, it’s data that doctors are communicating to patients,” Deng says. So she’s grateful to have gained experience interpreting and modeling data at Duke through her academic coursework.

And as the Statistics major particularly has taught her, complexity is not always a good thing – sometimes, the simpler you can make something, the better. “Some research doesn’t always do this,” she says – she’s encountered her fair share of research that feels performative, prioritizing complexity to appear more intellectual. But by continually asking herself whether her research is explainable and applicable, she hopes to let those two questions be the North Stars that guide her future research endeavors.

At the end of the day, it’s data that doctors are communicating to patients.

Eden Deng

When asked what advice she has for first-years, Deng said that it’s important “to not let your inexperience or perceived lack of knowledge prevent you from diving into what interests you.” Even as a first-year undergrad, know that you can contribute to academia and the world of research.

And for those who might be interested in pursuing an academic path like Deng, there’s some good news. After Deng talked to the Statistics department about the lack of pre-health representation that existed, the Statistics department now has a pre-health listserv that you can join for updates and opportunities pertaining specifically to pre-med Stats majors. And Deng emphasizes that the Stats-CS-pre-med group at Duke is growing. She’s noticed quite a few underclassmen in the Statistics and Computer Science departments who vocalize an interest in medical school.

So if you also want to hone your ability to communicate research that you care about – whether you’re pre-med or not – feel free to jump right into the world of data analysis. As Deng concludes, “everyone has something to say that’s important.”

Post by Meghna Datta, Class of 2023

What is it like to Direct a Large, Externally-Funded Research Center?

What are the trials and tribulations one can expect? And conversely, what are the highlights? To answer these questions, Duke Research & Innovation Week kicked off with a panel discussion on Monday, January 23.

The panel

Moderated by George A. Truskey, Ph.D, the Associate Vice President for Research & Innovation and a professor in the Department of Biomedical Engineering, the panelists included…

  • Claudia K. Gunsch, Ph.D., a professor in the Departments of Civil & Environmental Engineering, Biomedical Engineering, and Environmental Science & Policy. Dr. Gunsch is the director of the NSF Engineering Research Center for Microbiome Engineering (PreMiEr) and is also the Associate Dean for Duke Engineering Research & Infrastructure.
Dr. Claudia Gunsch
  • Yiran Chen, Ph.D., a professor in the Department of Electrical & Computer Engineering. Dr. Chen is the director of the NSF AI Institute for Edge Computing (Athena).
Dr. Yiran Chen
  • Stephen Craig, Ph.D., a professor in the Department of Chemistry. Dr. Craig is the director of the Center for the Chemistry of Molecularly Optimized Networks (MONET).
Dr. Stephen Craig

The centers

As the panelists joked, a catchy acronym for a research center is almost an unspoken requirement. Case in point: PreMiEr, Athena, and MONET were the centers discussed on Monday. As evidenced by the diversity of research explored by the three centers, large externally-funded centers run the gamut of academic fields.

PreMiEr, which is led by Gunsch, is looking to answer the question of microbiome acquisition. Globally, inflammatory diseases are connected to the microbiome, and studies suggest that our built environment is the problem, given that Americans spend on average less than 8% of time outdoors. It’s atypical for an Engineering Research Center (ERC) to be concentrated in one state but uniquely, PreMieR is. The center is a joint venture between Duke University, North Carolina A&T State University, North Carolina State University, the University of North Carolina – Chapel Hill and the University of North Carolina – Charlotte.

PreMiEr – not to be confused with the English Premier League

Dr. Chen’s Athena is the first funded AI institute for edge computing. Edge computing is all about improving a computer’s ability to process data faster and at greater volumes by processing data closer to where it’s being generated. AI is a relatively new branch of research, but it is growing in prevalence and in funding. In 2020, 7 institutes looking at AI were funded by the National Science Foundation (NSF), with total funding equaling 140 million. By 2021, 11 institutes were funded at 220 million – including Athena. All of these institutes span over 48 U.S states.

Athena, or the Greek goddess of wisdom, is a fitting name for a research center

MONET is innovating in polymer chemistry with Stephen Craig leading. Conceptualizing polymers as operating in a network, the center aims to connect the behaviors of a single chemical molecule in that network to the  behavior of the network as a whole. The goal of the center is to transform polymer and materials chemistry by “developing the knowledge and methods to enable molecular-level, chemical control of polymer network properties for the betterment of humankind.” The center has nine partner institutions in the U.S and one internationally.

MONET, like French painter Claude Monet

Key takeaways

Research that matters

Dr. Gunsch talked at length about how PreMiEr aspires to pursue convergent research. She describes this as identifying a large, societal challenge, then determining what individual fields can “converge” to solve the problem.

Because these centers aspire to solve large, societal problems, market research and industry involvement is common and often required in the form of an industry advisory group. At PreMiEr, the advisory group performs market analyses to assess the relevance and importance of their research. Dr. Chen also remarked that there is an advisory group at Athena, and in addition to academic institutions the center also boasts collaborators in the form of companies like Microsoft, Motorola, and AT&T.

Dr. Chen presenting on Athena’s partner institutions at Monday’s talk.

Commonalities in structure

Most research centers, like PreMiEr, Athena, and MONET, organize their work around pillars or “thrusts.” This can help to make research goals understandable to a lay audience but also clarifies the purpose of these centers to the NSF, other funding bodies, host and collaborating institutions, and the researchers themselves.

How exactly these goals are organized and presented is up to the center in question. For example, MONET conceptualizes its vision into three fronts – “fundamental chemical advances,” “conceptual advances,” and “technological advances.”

At Athena, the research is organized into four “thrusts” – “AI for Edge Computing,” “AI-Powered Computer Systems,” “AI-Powered Networking Systems,” and “AI-Enabled Services and Applications.”

Meanwhile, at PreMiEr, the three “thrusts” have a more procedural slant. The first “thrust” is “Measure,” involving the development of tracking tools and the exploration of microbial “dark matter.” Then there’s “Modify,” or the modification of target delivery methods based on measurements. Finally, “Modeling” involves predictive microbiome monitoring to generate models that can help analyze built environment microbiomes.  

A center is about the people  

“Collaborators who change what you can do are a gift. Collaborators who change how you think are a blessing.”

Dr. stephen craig

All three panelists emphasized that their centers would be nowhere without the people that make the work possible. But of course, humans complicate every equation, and when working with a team, it is important to anticipate and address tensions that may arise.

Dr. Craig spoke to the fact that successful people are also busy people, so what may be one person’s highest priority may not necessarily be another person’s priority. This makes it important to assemble a team of researchers that are united in a common vision. But, if you choose wisely, it’s worth it. As Dr. Craig quipped on one of his slides, “Collaborators who change what you can do are a gift. Collaborators who change how you think are a blessing.”

In academia, there is a loud push for diversity, and research centers are no exception. Dr. Chen spoke about Athena’s goals to continue to increase their proportions of female and underrepresented minority (URM) researchers. At PreMiEr, comprised of 42 scholars, the ratio of non-URM to URM researchers is 83-17, and the ratio of male to female researchers is approximately 50-50.

In conclusion, cutting-edge research is often equal parts thrilling and mundane, as the realities of applying for funding, organizing manpower, pushing through failures, and working out tensions with others sets in. But the opportunity to receive funding in order to start and run an externally-funded center is the chance to put together some of the brightest minds to solve some of the most pressing problems the world faces. And this imperative is summarized well by the words of Dr. Craig: “Remember: if you get it, you have to do it!”

Post by Megna Datta, Class of 2023

Truman Scholar Maya Durvasula, T’18, on her Research Journey Through Duke and Beyond

Maya Durvasula, T’18, and a current Ph.D. student at Stanford University, grew up in Albuquerque, New Mexico. “And it’s hard to grow up there without a very keen sense of what it looks like when policy doesn’t work for people,” she remarks.

Maya Durvasula, T’18

After graduating high school with an interest in politics, she decided to take a gap year and bounced around organizations in New Mexico, working for the state legislature, political campaigns, and even a think tank. In hindsight, she says, “Having a block of time where you have time is super helpful.” One thing she learned was that she didn’t really want to do politics. “People were making policy, but debates were heavy on feelings and politics and light on facts.”

A high school mentor suggested that maybe she would get along better with economists than politicians, so once she got to Duke, she took that to heart.

As a first-year, she says, she knew she wanted to be exposed to a lot of things, and she knew she wanted to do research, but she wasn’t really sure what “research” meant for a first-year. In the beginning, she cold-emailed a lot of people and received multiple rejections.

After rejection, though, eventually something clicks, and for Durvasula, what clicked were three main research projects she undertook in her time at Duke.

The instinct is always to start with where you want to end up and then work backward, but you don’t know where you’re going to end up”

Maya Durvasula, T’18

Her first experience in a research group was a joint venture between an academic team in China and at UNC-Chapel Hill. Their group studied behavioral interventions to increase the uptake of health technologies, with a particular focus on sexual health. Usually, as a country industrializes, the rates of sexually transmitted infections will drop, but in China, rates of HIV and syphilis continued to rise as the economy grew. Durvasula and the team looked at different interventions that might make testing for HIV more attractive to patients, such as alternative testing locations, different advertisement design, and compensation.

She also did a project with Duke professor Bob Korstad in the history department and the Samuel DuBois Cook Center on Social Equity, looking at the history of housing in Durham. Finally, she worked with her primary advisor, Duke economics professor Duncan Thomas, in his joint lab with UNC’s Elizabeth Frankenberg, on projects related to household decision-making in Indonesia.

Duke Economics Thesis Symposium in 2018

A notable part of her undergraduate time at Duke was winning the Truman Scholarship. What was most valuable to her about the Truman was the people she met. “Most people I’ve met are defined by picking something they care about and doing a lot with it,” she says. And it’s inspiring to be surrounded by people who love what they do and immerse themselves so wholly in it.

Duke Economics Graduation, 2018

Durvasula graduated Duke with numerous experiences and accolades under her belt. But from there, how did she find her way to doing a Ph.D. at the intersection of law, technology, and economics? As she describes it, the interplay between economics and law is inextricable. Both economic incentive and legal institutions affect the rate and direction of innovation, which affects how quickly technology is developed, and ultimately what products ends up in our hands. A question at the heart of her research is wondering how to make sure the value of this technology is distributed equally across society.

So five to ten years from now, where will we see Durvasula? She sees herself remaining in academia, although at some point she wants to work in public service. “I love learning new things, and I want to take advantage of being in a space where people are always willing to teach you things.”

And in that vein, her advice to a curious Duke student is to explore everything. “The instinct is always to start with where you want to end up and then work backward, but you don’t know where you’re going to end up,” she said.

Pursue the questions that you find exciting, and let that point you in the right direction – clearly, Durvasula is proof that this process will take you places.

Post by Meghna Datta, Class of 2023

Duke Alum Dr. Quinn Wang on Medicine, a Healthcare Startup, and the Senior Thesis That Started it All

As a senior at Duke University in 2010, Dr. Quinn Wang was simply Quinn, an undergraduate English major on the pre-med track, wondering how to combine her love for medicine with her love for English. This is how her senior thesis was conceived – Through the Lens of Medicine: Landscapes of Violence in Cormac McCarthy’s Blood Meridian (1985), All the Pretty Horses (1992), and No Country for Old Men (2005) – which ended up winning the English department’s award for “Most Original Honors Thesis.”

Dr. Quinn Wang

Fast forward 12 years, and Wang can now call herself a double Dukie, having completed medical school here. She went on to complete ophthalmology residency at UCSF and this past Saturday, November 5, came back to her alma mater as part of the Duke Medical Ethics Journal’s Medicine, Humanities, and Business celebration to talk to an eager audience at Schiciano Auditorium about her path from Duke until now.  

She began her story during the infamous year of 2020, when she was forced to stop seeing patients at her private practice in California’s Bay Area due to COVID-19. Restless and anxious about how her patients were doing, she tried to keep up with them as best she could, but of course there were limitations. And then, a few months in, one of her patients went blind.

This tragic moment sparked a frustrating realization by Wang that in the tech capital of the world – San Francisco – there was still no good way to test people’s eyesight from home to prevent what should have been preventable. She decided to put together something herself, guided by the one question she thought was most important to answer until COVID-19 abated and people could come into clinics again – “how do we make sure people don’t go blind?”

Wang took common visual eye-testing tools used in clinics, and with some simple Photoshop editing and a little bit of code, turned them into a series of easy multiple-choice questions that could be answered from home. This simple but powerful transformation turned into Quadrant Eye, a start-up she co-founded with software engineer Kristine Hara.

A common visual tool used to test eyesight is the Snellen chart

The Quadrant Eye journey has taken her from running a private practice as an ophthalmologist to taking the plunge into business by applying to and getting selected for Y Combinator, which calls itself a “graduate school for startups”. YC invests $500,000 into a selection of early-stage startups twice a year. Then, for three intense months, they provide support to get startups off the ground and in good shape to present to investors for funding. At YC, Hara worked on turning Quadrant Eye into an app, and Wang renewed hundreds of prescriptions.

Quadrant Eye

Ultimately, though, the most significant place Quadrant Eye has led Wang to is a journey of self-mastery that applies to any human endeavor, from building a startup to doing research to just getting up every morning.  As she describes, startup life entails always learning new things and always messing up – which, for someone who professes that “I don’t like to do things I’m not good at” – can be challenging. She candidly admitted that she, like everyone, has bad days, when sometimes all she can do is throw in the towel and end work early. “I have more doubts than I care to admit,” Wang says, but at the end of the day, “we’re all climbing our own mountains”. Pushing through requires “superhuman effort” but it’s worth it.

And as for that English thesis? Wang describes how Quadrant Eye’s very first investor – “let’s call him Charlie” – asked her all the requisite questions investors ask early-stage startups (think Shark Tank). But he also asked her for something non-traditional – all fifty or so pages of her undergraduate honors thesis she had written ten years back. Apparently, he had seen a mention of it on LinkedIn and was intrigued. A few weeks later, Wang received a phone call that he was interested in investing – and he admitted that her thesis had played a part. To him, the uniqueness and quality of her thesis showed that Wang could problem-solve, communicate well, and think creatively, and Wang herself agrees. “My English thesis showed me that I can do hard things,” she said, and if Quadrant Eye is any indication, clearly, she can.

Post by Meghna Datta, Class of 2023

Insights on Health Policy Research from Undergraduate Cynthia Dong

“After COVID-19,” senior Cynthia Dong (T’23) remarks, “so much of what was wrong with the medical system became visible.”

Duke undergraduate Cynthia Dong, Class of 2023

This realization sparked an interest in how health policy could be used to shape health outcomes. Dong, who is pursuing a self-designed Program II major in Health Disparities: Causes and Policy Solutions, is a Margolis Scholar in Health Policy and Management. Her main research focus is telehealth and inequitable access to healthcare. Her team looks at patient experiences with telehealth, and where user experience can be improved. In fact, she’s now doing her thesis as an offshoot of this work, researching how telehealth can be used to increase access to healthcare for postpartum depression.

Presenting research on telehealth

In addition to her health policy work, however, Dong also works as a research assistant in the neurobiology lab of Dr. Anne West, and her particular focus is on the transcription mechanism of the protein BDNF, or brain-derived neurotrophic factor.

While lab research can be clearly visualized by most people (think pipettes, rows of benches littered with bottles and plastic tubes, blue rubber gloves everywhere), health policy research is perhaps a little more abstract. When asked what the process of research through Margolis is like, Dong says that “it’s not team-based or individual – it’s a lot of both.” This looks like individual research on specific topics, talking to different stakeholder groups and people with certain expertise, and then convening for weekly team meetings.

With other Margolis Scholars

For Dong, research has been invaluable in teaching her to apply knowledge to something tangible. Doing that, you’re often “forced to understand that not everything is in my control.” But on the flip side, research can also be frustrating for her because so much of it is uncertain. “Will your paper get published? Is what you’re doing relevant to the research community? Will people invest in you?”

In that vein, research has humbled her a lot. “What it means to try to solve a societal problem is that it’s not always easy, you have to break it down into chunks, and even those chunks can be hard to solve.”

After graduation, Dong plans on taking a couple of gap years to be with family and scribe before ultimately pursuing an MD-MPH. Because research can be such a long, arduous process, she says that “It took me a long time to realize that the work we do matters.” In the future, though, she anticipates that her research through Margolis will directly inform her MPH studies, and that “with the skills I’ve learned, I can help create good policy that can address the issues at hand.”

An Interview With Undergraduate Researchers and Labmates Deney Li and Amber Fu (T’23)

What brings seniors Deney Li and Amber Fu together? Aside from a penchant for photoshoots (keep scrolling) and neurobiology, both of them are student research assistants at the lab of Dr. Andrew West, which is researching the mechanisms underlying Parkinson’s in order to develop therapeutics to block disease progression. Ahead lie insights on their lab work, their lab camaraderie, and even some wisdom on life.

(Interview edited for clarity. Author notes in italics.)

What are you guys studying here at Duke? What brought you to the West lab?

DL:  I am a biology and psychology double major, with a pharmacology concentration. I started working at a lab spring semester of freshman year that focused on microbial and environmental science, but that made me realize that microbiology wasn’t really for me. I’ve always known I wanted to try something in pharmaceutics and translational medicine, so I transitioned to a new lab in the middle of COVID, which was the West lab. The focus of the West lab is neurobiology and neuropharmacology, and looking back it feels like fate that my interests lined up so well!

Deney Li

AF: I am majoring in neuroscience with minors in philosophy and chemistry, on the pre-med track. I knew I wanted to get into research at Duke because I had done research in high school and liked it. I started at the same time as Deney – we individually cold-emailed at the same time too, in the fall! I was always interested in neuroscience but wasn’t pre-med at the time. A friend in club basketball said her lab was looking for people, and the lab was focused on neurobiology – which ended up being the West lab!  

Amber Fu

What projects are you working on in lab?

DL: My work mainly involves immunoassays that test for Parkinson’s biomarkers. My postdoc is Yuan Yuan, and we’re looking at four drugs that are kinase inhibitors (kinases are enzymes that phosphorylate other proteins in the body, which turns them either on or off). We administer these drugs to mice and rats, and look at LRRK2, Rab10 and phosphorylated Rab10 protein levels in serum at different time points after administration. These protein levels are important and indicative because more progressive forms of Parkinson’s are related to higher levels of these proteins.

AF: For the past couple of years, I’ve been working under Zhiyong Liu (a postdoc in the lab). There are multiple factors affecting Parkinson’s, and different labs ones study different factors. The West lab largely studies genetic factors, but what we’re doing is unique for the lab. There’s been a lot of research on how nanoplastics can go past the blood-brain barrier, so we are studying how this relates to mechanisms involved in Parkinson’s disease. Nanoplastics can catalyze alpha-synuclein aggregation, which is a hallmark of the disease. Specifically, my project is trying to make our own polystyrene nanoplastics that are realistic to inject into animal models.

What I’m doing is totally different from Deney – I’m studying the mechanisms surrounding Parkinson’s, Deney is more about drug and treatments – but that’s what’s cool about this lab – there are so many different people, all studying different things but coming together to elucidate Parkinson’s.

Another important project

How much time do you spend in lab?

DL: I’m in lab Mondays, Wednesdays, and Fridays from 9 to 6. All my classes are on Tuesdays and Thursdays!

AF: I’m usually in lab Tuesdays and Thursdays from 12 to 4, Fridays from 9 to 11:45, and then whenever else I need to be.

Describe lab life in three words:

DL: Unexpected growth (can I just do two)?

AF: Rewarding, stimulating, eye-opening.

Lab life also entails goats and pumpkins

What’s one thing you like about lab work and one thing you hate?

DL: What I like about lab work is being able to trouble-shoot because it’s so satisfying. If I’m working on a big project, and a problem comes up, that forces me to be flexible and think on my toes. I have to utilize all the soft skills and thinking capabilities I’ve acquired in my 21 years of life and then apply them to what’s happening to the project. The adrenaline rush is fun! Something I don’t like is that there’s lots of uncertainty when it comes to lab work. It’s frustrating to not be able to solve all problems.

AF: I like how I’ve been able to learn so many technical skills, like cryosectioning. At first you think they’re repetitive, but they’re essential to doing experiments. A process may look easy, but there are technical things like how you hold your hand when you pipette that can make a difference in your results. Something I don’t like is how science can sometimes become people-centric and not focused on the quality of research. A lab is like a business – you have to be making money, getting your grants in – and while that’s life it’s also frustrating.

What do you want to do in the future post-Duke? How has research informed that?

DL: I want to do a Ph.D. in neuropharmacology. I’m really interested in research on neurodegeneration but also have been reading a lot about addiction. So I’ll either apply to graduate school this year or next year. My ultimate goal would be to get into the biotech startup sphere, but that’s more of a 30-years-down-the-road goal! Being in this lab has taught me a lot about the pros and cons of research, which I’m thankful for. Lab contradicts with my personality in some ways– I’m very spontaneous and flexible, but lab requires a schedule and regularity, and I like the fact that I’ve grown because of that.

AF: The future is so uncertain! I am currently pre-med, but want to take gap years, and I’m not quite sure what I want to do with them. Best case scenario is I go to London and study bioethics and the philosophy of medicine, which are two things I’m really interested in. They both influence how I think about science, medicine, and research in general. After medical school, though, I have been thinking a lot about doing palliative care. So if London doesn’t work out, I want to maybe work in hospice, and definitely wouldn’t be opposed to doing more research – but eventually, medical school.

What’s one thing about yourself right now that your younger, first-year self would be surprised to know?

DL: How well I take care of myself. I usually sleep eight hours a day, wake up to meditate in the mornings most days, listen to my podcasts… freshman-year-Deney survived on two hours of sleep and Redbull.

AF: Freshman year I had tons of expectations for myself and met them, and now I’m meeting my expectations less and less. Maybe that’s because I’m pushing myself in my expectations, or maybe because I’ve learned not to push myself that much in achieving them. I don’t necessarily sleep eight hours and meditate, but I am a little nicer to myself than I used to be, although I’m still working on it. Also, I didn’t face big failures before freshman year, but I’ve faced more now, and life is still okay. I’ve learned to believe that things work out.

A hard day’s work

Applying the Ways of the Sea to Outer Space: A Conversation Hosted by Duke’s Space Diplomacy Lab

Whether it was Marco Polo traversing the Silk Road (which was more like Silk Routes), Columbus sailing the ocean blue, or even Moana restoring the heart to Te Fiti; oceans have been integral to our way of life as humans for thousands and thousands of years.

The Silk Road, mapped
The (fictional) story of Moana draws from (true) Polynesian history and seafaring lore

But humans have always been bad at sharing – most wars are fought over territory, land especially. And as time has passed, the things we share as humans has evolved – from oceans and land to the Internet and outer space. So how do you keep things diplomatic? Last Friday, Duke’s Space Diplomacy Lab, co-chaired by Dr. Benjamin Schmitt of Harvard University and Duke’s own Dr. Giovanni Zanalda, hosted a webinar on what space diplomacy can learn from ocean diplomacy. Featuring Dr. Clare Fieseler of the Smithsonian Institution and Dr. Alex Kahl of the National Marine Fisheries Service, the conversation covered everything from zoning to equity to even the lessons we can learn from Indigenous communities.

Sharing data and sharing fish

There are multiple challenges to sharing the world’s waterways. Fieseler did not start out her career studying ocean diplomacy. Initially stationed in the Persian Gulf, building a marine mammal monitoring network, she noticed that the fraught state of politic affairs in the region made it hard to share data on the animals that were washing up on the shore.

Dr. Fieseler presenting

Meanwhile, Kahl, who works in Hawaii as the National Resources Manager at the National Marine Fisheries Service, runs into problems not in sharing data but primarily in sharing fish. “How do you focus on the shared exploitation of a natural resource?” he asked.

Two key themes arose in linking the sharing of the ocean to the sharing of outer space.

First, Fieseler pointed out that engaging scientists can help in transcending politics, something that ocean diplomacy does well. She pointed to efforts to establish a Marine Peace Park between North Korea and South Korea, and that if two of the worlds most polarized countries could come to an agreement in the name of science and human betterment, then “surely other countries can too.”

Second, Kahl remarked, unlike in the ocean, the primary resource in space is, well, space. You need fish to eat to survive – do you need space to survive?   

Centering equity

On the topic of whether we really need space in space to survive, Kahl pointed to the significance that many celestial bodies have in cultures here on Earth, such as in Hawaii and the Pacific Islands. Does interfering with these celestial bodies cross a red line for cultures on Earth? It’s worth noting that as Kahl said, with space exploration, “very few people are profiting,” so balancing the interests of people on Earth as well as in space is important.

Dr. Kahl presenting

Fieseler spoke to the need to build equity in space through some sort of formal agreement, similar to the Law of the Sea. But, she says, that might be skipping a few steps. Right now, “many developing countries can’t even afford to go to space.” How can you build equity in a region where not everyone even has a seat at the table? Kahl pointed out that this marginalization impedes discussions on how to share space – something that should be consensus-driven.

Zoning

As Fiesler remarked, zoning of the ocean has been key to a relatively peaceful sharing of this resource for the variety of uses that people have for the sea. A good example of this is the Antarctic Treaty, which zoned different places in Antarctica for scientific use.

Kahl spoke to being a beneficiary of the Antarctic Treaty – “it reduces bureaucratic burdens, and the collective benefits are also increased.” However, he made the point that the slicing and dicing of space, as with anything, could lead to initial tensions.

Science should have a seat at the table

A central theme that ran throughout the conversation was that, as Kahl put it, scientists “rely on each other to level-set the truth” – even in spaces where they might be in the minority, such as in a room of politicians engaging in diplomatic talks.

Fieseler pointed to how in environmental justice work, her Indigenous colleagues were good at taking the initiative – and finding the urgency – to demand a seat at the table. “As scientists, we sit around, thinking that one day the phone will ring and someone will invite me to be a part of the conversation – but that’s not how it works.” Diplomacy will always be a necessity as we aim to navigate sharing the vast resources at our disposal, but many scientists hope that we won’t forget to center the pursuit of the truth as we make decisions.

Post by Meghna Datta, Class of 2023

What’s Up In Space? 3 Experts Weigh In

On Friday, February 25th, 2022 the brand-new Duke Space Diplomacy Lab (SDL) had an exciting launch with its first panel event: hosting journalists Ramin Skibba, Loren Grush, and Jeff Foust for a conversation on challenges in space within the next year. Moderated by Benjamin L. Schmitt of Harvard University, the conversation was in line with the SDL’s goals to convene a multidisciplinary group of individuals for the development of research, policy proposals, and solutions to mitigate risks in space.

In conversation, three key themes arose:

  1. U.S Russia Relations

With the current Russian invasion in Ukraine and the subsequent strain on U.S-Russia relations, the geopolitics of space has been in the limelight. Control of outer space has been a contentious issue for the two countries since the Cold War, out of which an uneasy yet necessary alliance was forged. Faust remarked that he doesn’t see U.S-Russia space relations lasting beyond the end of the International Space Station (ISS) in 2030. Grush added that before then, it will be interesting to see whether U.S-Russia relations will sour in the realm of space, simply because it’s questionable whether the ISS could continue without Russian support. However, Russia and NASA have historically acted symbiotically when it comes to space, and it’s unlikely that either party can afford to break ties.

2. Space debris

Major global players, from the U.S to China to India to Russia, are all guilty of generating space debris. Tons of dead satellites and bits of spacecraft equipment litter the areas around Earth – including an estimated 34,000 pieces of space junk bigger than 10 centimeters – and if this debris hit something, it could be disastrous. Grush paints the picture well by comparing spacecrafts to a car on a road – except we just trust that the satellite will maneuver out of the way in the event of a collision, autonomously, and there are absolutely no rules of the road to regulate movement for any other vehicles.

A computer-generated graphic from NASA showing objects in Earth orbit that are currently being tracked. 95% of the objects in this illustration are orbital debris, i.e., not functional satellites.

Skibba suggests that the best thing to do might be to make sure that more stuff doesn’t enter space, since the invention of technologies to clean up existing space debris will take a while. He also points to efforts to program new spacecrafts with graveyard orbit and deorbit capabilities as a necessary step.

3. Who is in charge of space?

Faust explained that commercial space exploration is moving incredibly fast, and legal regulations are struggling to keep up. Tons of companies are planning to launch mega-constellations in the next few years, for reasons that include things like providing higher-speed Internet access – something that we can all benefit from. Yet with new players in space comes the question of: who is in charge of space? The Artemis Accords are the existing rules that govern space at an international level, but they function as an agreement, not law, and with more players in space comes a need for legally binding terms of conduct. But as Grush puts it, “there’s a tension between the nimble, rapid commercial environment and a regulatory environment that wasn’t quite prepared to respond.”

The eight signees of the Artemis Accords

Beyond who rules over space, there’s also the question of decolonizing space. Skibba brings up that amidst a growing number of mega-constellations of satellites being launched, there are key questions being asked about who has access to space, and how we can level the playing field for more countries and companies to enter space exploration.

Space is uncharted territory, and to understand it is no small feat. While science has come incredibly far in terms of technological capabilities in space, it’s clear that we don’t know what we don’t know. But with a more multilateral, global approach to exploring space, we may just be able to go even farther.

Post by Meghna Datta, Class of 2023

What are Healthcare Researchers Doing to Address Health Equity?

“Community engagement” and “health disparities” are some of the most trending terms in healthcare right now, but what are people actually doing about them? On Wednesday, February 2, panelists in healthcare sat down as part of Duke’s Research Week to talk about ways in which they and their organizations were actively addressing health disparities by focusing on communities. (View the session)

Dr. L. Ebony Boulware, professor at the Duke University School of Medicine and director of the Duke Clinical and Translational Science Institute, set the stage by defining health equity for the vast number of us that might only have read about it in a mission statement or an article but weren’t exactly sure how it was conceptualized. To work towards health equity, she said, means that “everyone has an opportunity to attain their full health potential regardless of any socially defined circumstance.” These circumstances could range from poverty to structural racism, but the main theme was that community engagement is a key player as we think about how best to achieve equity.

Slide taken from Dr. L. Ebony Boulware’s presentation.

COVID-19 is a great example of why health equity matters, as we ponder whether the pandemic could have turned out any different if more people had access to vaccines, personal protective equipment, and the capacity to socially distance. Dr. Michael Cohen-Wolkowiez, a professor of Pediatrics at the Duke University School of Medicine, and Dr. Giselle Corbie-Smith, a professor at the UNC School of Medicine gave a pertinent example of their work addressing the health disparity on our minds right now– access to COVID-19 testing – and the RADx program out of the NIH that is funding work to address this problem.

But even before COVID-19, attaining health equity was a tough goal to address for virtually every country in the world. Health equity isn’t just a nicety, it affects how long we are alive. And while progress in terms of life expectancy differences is improving, much work remains to be done to close the myriad gaps that remain. Dr. Tyson Brown, associate professor of Sociology at Duke, highlighted his research into structural racism to stress the fact that structural racism is toxic for population health and disproportionately affects people of color.

Slide taken from Dr. Tyson Brown’s presentation.

Dr. Schenita Davis Randolph, a registered nurse and professor at the Duke School of Nursing, zoomed in a little to highlight what true community engagement looks like. As part of her lab’s research to improve uptake of pre-exposure prophylaxis (PrEP) treatment to address HIV in Black women, they designed an intervention for beauty salons, known to be trusted venues for health promotion in the Black female community. But “how do we use community engagement so it’s not just a checkmark?” This, among other pressing challenges to community engagement in addressing health disparities, is what Dr. Keisha Bentley-Edwards, developmental psychologist and professor at the Duke University School of Medicine, talked about.

As the panel discussion came to a close, a key message emerged. As Dr. Davis remarked, both disparities and the communities that are hurt by them are complex, and so until we take a multi-faceted approach to understanding them, we continue to grasp for the ultimate goal of health equity.

But while these disparities are complex, they are certainly not unsolvable. Dr. Corbie-Smith emphasized that “we have a clear understanding of of how health disparities work.” All that’s left to do is solve them, and Dr. Bentley-Edwards highlights this move from awareness to solutions as a challenge to achieving health equity. Perhaps most significantly, though, it’s important to move from inertia to action. While there are seemingly thousands of ways in which communities in the U.S and around the world face barriers to health access, it’s important to do something – however small. As Dr. Bentley-Edwards concluded, by everyone working within their sphere of influence to close the health equity gap, that sphere becomes bigger and bigger and the gap becomes smaller and smaller.   

Junior Alec Morlote Pursues a Love for Biology Via Fruit Flies

As Alec Morlote emphasizes, he’s a Biology major because “I’m really interested in it. I’d definitely be a Biology major whether I was pre-med or not.”

Morlote, a Trinity junior from northern New Jersey, works in the lab of Dr. Pelin Volkan studying the neurobiology of fruit flies. Why fruit flies, of all things? Well, Morlote initially signed up for a research fellowship program during the summer following his freshman year.

Of course, in March of that year, COVID-19 happened, so Morlote ended up postponing his work to this past summer. He got paired with the Volkan lab because he didn’t want to work in an area of research that was very familiar to him.

“I wanted to use research as an opportunity to learn something completely new,” he said. The neurobiology of fruit flies hit the nail on the head.

Alec Morlote

The Volkan Lab is a cell biology and neurobiology lab that studies how social behavior, specifically courting, is affected by stimuli, using fruit flies as a model organism. Morlote’s specific project has to do with olfactory stimuli – the things flies smell. In flies, as he explained, one gene is responsible for courtship behavior in male flies. If you take out the olfactory receptor of the fly, however, that gene won’t be active.

Morlote is interested in seeing how the olfactory receptor is critical to the expression of this gene.

To do this, he has been working on imaging the antennae of flies – work he describes as “cool, but tedious.” It’s incredibly detailed work to pick apart the antenna off of such a tiny creature.  Once isolated, neurotransmitters in the antenna that have been tagged with green fluorescent protein (GFP) light up, thus showing the expression pattern of all cells expressing the neurotransmitter.

Humans clearly don’t have as simplistic a courtship behavior as fruit flies, but the simplicity of the fruit fly makes it an incredibly valuable organism for studying neurobiology. All discoveries in humans initially started with some sort of watered-down version of the human anatomy, whether mice or in this case, fruit flies. Discoveries into the neurobiology and neuroplasticity of fruit flies just might yield significant discoveries into the neurobiology and neuroplasticity of the human brain.

When asked about his favorite and least favorite parts about his research, Morlote laughed.

“I don’t like doing work for three months and getting no results at all,” he remarked in reference to the initial work he started on this summer – but alas, such is the nature of scientific research. But he adds that the best part of research is getting results, any at all. And even no results can mean something.

Morlote’s poster from his summer research

Research was a way for Morlote to narrow his post-graduation plans. He knows now that he wants to pursue an MD, or possibly an MD/PhD. But initially, research was a way for him to see whether this was the path for him at all. When asked why he chose to be pre-med, Morlote said that “it just seemed like the most practical way to apply a love for science.” Biology is the science that he loves the most, and so being pre-med seemed like a no-brainer.

It’s also a family business. Both of Morlote’s parents are doctors, so medicine “is not unfamiliar territory to me.” Being Latin American, both his parents have worked extensively with Latin communities in New Jersey, which is work he hopes to emulate in the future.

Whether or not benchwork stays a part of his life, Morlote knows that he wants his career to involve research somehow. The way he sees it, “you’re doing the bare minimum if you’re just a doctor but you’re not trying to better medicine in some way.” 

Contributing to research just might become his way.

Post by Meghna Datta, Class of 2023

Page 1 of 3

Powered by WordPress & Theme by Anders Norén