Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Field Research Page 2 of 16

Recovery, Resilience, and Coexistence: Nature-based Solutions on the Coast

When it comes to balancing the needs of humans and the needs of nature, “Historically it was ‘develop or conserve’ or ‘develop or restore,’” says Carter Smith, Ph.D., a Lecturing Fellow in the Division of Marine Science & Conservation who researches coastal restoration.

However, according to Brian Silliman, Ph.D., Rachel Carson Distinguished Professor of Marine Conservation Biology, “We are having a new paradigm shift where it’s not just… ‘nature over here’ and ‘humans over here.’”

Instead, conservation initiatives are increasingly focusing on coexistence with nature and ecological resilience, according to this panel discussion of marine science experts during Duke Research and Innovation Week 2023.

Nature-based solutions — protecting and restoring natural shoreline habitats — have a proven role in protecting and restoring coastal ecosystems. According to the International Union for Conservation of Nature (IUCN), “Nature-based solutions… address societal challenges effectively and adaptively, simultaneously benefiting people and nature.”

The panel, moderated by Andrew J. Read, Ph.D., Stephen A. Toth Distinguished Professor of Marine Biology and Professor of Marine Conservation Biology, also included Brian Silliman, Carter Smith, and Stephanie Valdez, a Ph.D. Student in Marine Science & Conservation.

Living shorelines can help protect coastal ecosystems from storms while also offering benefits for climate and conservation. Photos by Carter Smith.

According to Smith, nature-based solutions can “leverage nature and the power of healthy ecosystems to protect people” while also preserving biodiversity and mitigating climate change. She spoke about living shorelines as an effective and ecologically responsible way to protect coastal ecosystems.

“The traditional paradigm in coastal protection is that you build some kind of hard, fixed structure” like a seawall, Smith said, but conventional seawalls can have negative effects on biodiversity, habitats, nutrient cycling, and the environment at large. “In this case, coastal protection and biodiversity really are at odds.”

After multiple hurricanes, living shorelines had significantly less visible damage or erosion than sites with conventional hardscape protection, like seawalls.

Nicholas Lecturing Fellow Carter Smith

That’s where living shorelines come in. Living shorelines incorporate plants and natural materials like sand and rock to stabilize coastal areas and protect them from storms while also creating more natural habitats and minimizing environmental destruction. But “if these structures are actually going to replace conventional infrastructure,” Smith says, it’s important to show that they’re effective.

Smith and colleagues have studied how living shorelines fared during multiple hurricanes and have found that living shorelines had significantly less “visible damage or erosion” compared to sites with conventional storm protection infrastructure.

After Hurricane Matthew in 2016, for instance, both natural marshes and conventional infrastructure (like seawalls) lost elevation due to the storm. Living shorelines, on the other hand, experienced almost no change in elevation.

Smith is also investigating how living shorelines may support “community and psychosocial resilience” along with their benefits to biodiversity and climate. She envisions future community fishing days or birdwatching trips to bring people together, encourage environmental education, and foster a sense of place.

PhD student Stephanie Valdez then spoke about the importance of coastal ecosystems.

Blue carbon ecosystems,” which include sea grasses, marshes, and mangroves, provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon, she said. These ecosystems can bury carbon much faster than terrestrial ecosystems, which has important implications when it comes to climate change.

In the atmosphere, carbon dioxide and other greenhouse gasses contribute to global warming, but plants pull carbon dioxide out of the air during photosynthesis and convert it to carbohydrates, releasing oxygen as a byproduct. Therefore, ecosystems rich in fast-growing plants can serve as carbon sinks, reducing the amount of atmospheric carbon, Valdez explained.

Unfortunately, blue carbon ecosystems have suffered significant loss from human activities and development. We’ve replaced these wild areas with farms and buildings, polluted them with toxins and waste, and decimated habitats that so many other creatures rely on. But given the chance, these places can sometimes grow back. Valdez discussed a 2013 study which found that seagrass restoration led to a significantly higher carbon burial rate within just a few years.

Sea grasses, marshes, and mangroves provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon.

PhD Student Stephanie Valde

Valdez also talked about the importance of recognizing and encouraging natural ecological partnerships within and between species. Humans have taken advantage of such partnerships before, she says. Consider the “Three Sisters:” beans, corn, and squash, which Native Americans planted close proximity so the three crops would benefit each other. Large squash leaves could provide shade to young seedlings, beans added nitrogen to the soil, and cornstalks served as a natural beanpole.

Recognizing that mutualistic relationships exist in natural ecosystems can help us preserve habitats like salt marshes. Valdez points to studies showing that the presence of oysters and clams can positively impact seagrasses and marshes. In restoration, it’s important “that we’re not focusing on one species alone but looking at the ecosystem as a whole”—from top predators to “foundation species.”

“There is hope for successful restoration of these vital ecosystems and their potential to aid in climate change mitigation,” Valdez said.

Finally, Prof. Brian Silliman discussed the role of predators in wider ecosystem restoration projects. Prioritizing the protection, restoration, and sometimes reintroduction of top predators isn’t always popular, but Silliman says predators play important roles in ecosystems around the world.

“One of the best examples we have of top predators facilitating ecosystems and climate change mitigation are tiger sharks in Australia,” he says. When the sharks are around, sea turtles eat fewer aquatic plants. “Not because [the sharks] eat a lot of sea turtles but because they scare them toward the shoreline,” reducing herbivory.

However, Silliman said it’s unclear sometimes whether the existence of a predator is actually responsible for a given benefit. Other times, though, experiments provide evidence that predators really are making a difference. Silliman referenced a study showing that sea otters can help protect plants, like seagrasses, in their habitats.

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

And crucially, “Predators increase stress resistance.” When physical stressors reach a certain point in a given ecosystem, wildlife can rapidly decline. But wildlife that’s used to coexisting with a top predator may have a higher stress threshold. In our ever-changing world, the ability to adapt is as important as ever.

“I think there is great optimism and opportunity here,” Silliman says. The other speakers agree. “Right now,” Valdez says, “as far as restoration and protection goes, we are at the very beginnings. We’re just at the forefront of figuring out how to restore feasibly and at a level of success that makes it worth our time.”

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

Brian Silliman

Smith emphasized the important role that nature-based solutions can play. Even in areas where we aren’t achieving the “full benefit of conserving or restoring a habitat,” we can still get “some benefit in areas where if we don’t use nature-based solutions,” conservation and restoration might not take place at all.

According to Valdez, “Previously we would see restoration or… conservation really at odds with academia itself as well as the community as a whole.” But we’re reaching a point where “People know what restoration is. People know what these habitats are. And I feel like twenty or thirty years ago that was not the case.” She sees “a lot of hope in what we are doing, a lot of hope in what is coming.”

“There’s so much that we can learn from nature… and these processes and functions that have evolved over millions and millions of years,” Smith adds. “The more we can learn to coexist and to integrate our society with thriving ecosystems, the better it will be for everyone.”

Post by Sophie Cox, Class of 2025

Rewilding the Gut

Processed foods and overuse of antibiotics can wreak havoc on the trillions of bacteria and other microbes that inhabit the gut. A new study of the gut microbiomes of lemurs looks at whether reconnecting with nature can help restore this internal ecosystem to a more natural state. Credit: Sally Bornbusch.

Modern life messes with the microbiome -– the trillions of bacteria and other microbes that live inside the body. Could reconnecting with nature bring this internal ecosystem back into balance?

A new study suggests it can, at least in lemurs. Led by Duke Ph.D. alumnus Sally Bornbusch and her graduate advisor Christine Drea, the research team collected fecal samples from more than 170 ring-tailed lemurs living in various conditions in Madagascar: some were living in the wild, some were kept as pets, and some were rescued from the pet and tourism industries and then relocated to a rescue center in southwestern Madagascar where they ate a more natural diet and had less exposure to people.

Collecting fecal samples in Madagascar

Then the researchers sequenced DNA from the fecal samples to identify their microbial makeup. They found that the longer lemurs lived at the rescue center, the more similar their gut microbes were to those of their wild counterparts. Former pet lemurs with more time at the rescue center also showed fewer signs of antibiotic resistance.

By “rewilding” the guts of captive animals, researchers say we may be able to better prime them for success, whether after rescue or before translocation or reintroduction into the wild.

This research was supported by grants from the National Science Foundation (1945776, 1749465), the Triangle Center for Evolutionary Medicine, Duke’s Kenan Institute for Ethics, the Margot Marsh Biodiversity Fund and Lemur Love.

CITATION: “Microbial Rewilding in the Gut Microbiomes of Captive Ring-Tailed Lemurs (Lemur catta) in Madagascar,” Sally L. Bornbusch, Tara A. Clarke, Sylvia Hobilalaina, Honore Soatata Reseva, Marni LaFleur & Christine M. Drea. Scientific Reports, Dec. 27, 2022. DOI: 10.1038/s41598-022-26861-0.

Robin Smith
By Robin Smith

Cancer Stigma, Contraceptives, Covid-19: 2022 Global Health Research Showcase

Last Monday, Oct. 17, Duke University students who had conducted global health research had the opportunity to present their work. From North Carolina to Sub-Saharan Africa, the 2022 Global Health Research Showcase featured works that tackle some of the world’s most pressing health issues. Over 40 undergraduate, Masters, and PhD student projects examined a broad range of issues, determinants, and phenomena in countries from almost every continent. Here’s a few project highlights, in case you missed it:

Maeve Salm, pursuing her Master of Science in Global Health, went to Tanzania to study contraceptive use. Tanzania’s youth are highly impacted by teen pregnancy, and Salm wanted to understand desires for contraceptive use among adolescents affected by HIV. She learned that, much like in the U.S., stigma influences access to sexual healthcare for adolescents. This qualitative study aimed to support young people in achieving their desired health outcomes and reducing HIV transmission by examining barriers and facilitators to family planning. Findings indicate that youth agency in reproductive health is of utmost importance.

Maeve Salm presenting her poster at the 2022 Global Health Research Symposium.

Wondering about the Covid-19 response in other countries? Master of Science in Global Health Candidate Stephanie Stan explored the barriers and enablers to the pandemic response in Peru. Per capita, Peru experienced the highest mortality rate form the disease compared to any other country. Due to several challenging factors, they were slow to receive COVID-19 vaccines. However, they implemented highly successful vaccination campaigns once vaccines were obtained. What can be learned from Peru’s pandemic response? Prolonged and proactive collaborations between sectors (healthcare, academics, and government) enable swift public health responses in a crisis. It’s important to have elected officials who are empowered to make decisions promoting science.

“Definitely meeting all the incredible people that I interviewed and learning about their work and involvement in Peru’s pandemic response. Learning about what happens moving forward from their point of view.”

Stephanie Stan, when asked about her global health research experience

Winning the first-place Graduate Student Research Award, Judith Mwobobia’s project examined the stigma of cancer in sub-Saharan Africa. Stigma is a huge barrier to receiving treatment, which is a problem considering that 70% of global cancer deaths originate from Africa. Perceptions of financial stress, misconceptions about cancer, and fear of death were common attitudes driving cancer stigma. Proposed interventions included education and policy recommendations for low-resourced communities. Mwobobia is pursuing her Master of Science in Global Health. Clearly a supportive group, her classmates erupted in cheers when the award was announced.

By Victoria Wilson, Class of 2023

Do Snakes Have Tails? and Other Slithery Questions

Dhruv Rungta, a member of the Wild Ones club, with a ring-necked snake during a herpetology walk with Dr. Nicki Cagle in the Duke Forest.
Upper left: Dr. Nicki Cagle holding a ring-necked snake. Photo by Montana Lee, another Wild Ones member.

On a sunny Friday in September, Dr. Nicki Cagle led a herpetology walk in the Duke Forest with the Wild Ones. The Wild Ones is an undergraduate club focused on increasing appreciation for the natural world through professor-led outings. Herpetology is the study of reptiles and amphibians.

Dr. Cagle is a senior lecturer in the Nicholas School of the Environment at Duke and the Associate Dean of Diversity, Equity, and Inclusion. Along with teaching courses on environmental education and natural history, she is also the science advisor for a citizen science project focused on reptiles and amphibians, or herpetofauna, in the Duke Forest. Volunteers monitor predetermined sites in the Duke Forest and collect data on the reptiles and amphibians they find.

“We get a sense of abundance, seasonality… and how the landscape is affecting what we’re seeing,” Dr. Cagle says. There is evidence that herp populations in the Duke Forest and elsewhere are decreasing.

Dr. Nicki Cagle flipping over a cover board with members of the Wild Ones. The cover boards are used to monitor reptiles and amphibians for a citizen science project in the Duke Forest.

The project relies on transects, “a sampling design… where you have a sampling spot at various intervals” along a line of a predetermined length. In this case, the sampling spots are “traps” meant to attract reptiles and amphibians without harming them. Each site has a large board lying on the ground. “Different herps are more likely to be found under different objects,” Dr. Cagle explains, so the project uses both wooden and metal cover boards.

But why would snakes and other herps want to hide under cover boards, anyway? Reptiles and amphibians are “cold-blooded” animals, or ectotherms. They can’t regulate their own body temperature, so they have to rely on their environment for thermoregulation. Snakes might sun themselves on a rock on cold days, for instance, or hide under a conveniently placed wooden board to escape the heat.

Salamanders that use the cover boards might be attracted to the moist environment, while “snakes will tend to go under cover boards either to hide — like if they’re about to molt and they’re more vulnerable — to look for prey, or just to maintain the proper temperature,” Dr. Cagle says.

Citizen scientists typically check the boards once a week and not more than twice a week. Volunteers have to avoid checking the traps too often because of a phenomenon called “trap shyness,” where animals might start avoiding the traps because they’ve learned to associate them with pesky humans flipping the boards over and exposing their otherwise cozy resting places. By checking the traps less frequently, scientists can reduce the likelihood of that and minimize disturbance to the animals they’re studying.

The first snake we saw was a redbelly snake (Storeria occipitomaculata), dark above with a pink stomach.

Dr. Cagle gave the Wild Ones a behind-the-scenes tour of some of the cover boards. Using a special, hooked tool conveniently stashed in a PVC pipe next to the first cover board, we flipped each board over and looked carefully underneath it for slithery movements. We didn’t find any under the first several cover boards.

But then, under a large sheet of metal, we saw a tiny snake squirming around in the leaf litter. There was a collective intake of breath and exclamations of “snake!”

Dr. Cagle captured it and held it carefully in her hands. Snakes, especially snakes as young as this one, can be all too easily crushed. We gathered around to look more closely at the baby snake, a species with the adorable name “worm snake.” It was dark above with a strikingly pink underside. The pink belly is a key field mark of worm snakes. Earth snakes are also found around here and look similar, but they tend to have tan bellies.

After a minute or two, the worm snake made a successful bid for freedom and wriggled back under the board, disappearing from sight almost immediately.

Crossing over a dry “intermittent stream,” which Dr. Cagle describes as “the running-water equivalent of a vernal pool.” A vernal pool is a temporary wetland that is dry for much of the year.

Some of the cover boards revealed other animals as well. We found a caterpillar chrysalis attached to one and several holes — probably made by small mammals — under another.

Whatever made the holes, we can safely assume it wasn’t a snake. According to Dr. Cagle, the term “snakehole” is misleading. Most snakes don’t make their own holes, though some of them do use existing holes made by other animals. One exception is the bull snake, which is known for digging.

We found a young five-lined skink sunning itself on top of one of the metal cover boards. (Thermoregulation!) Juvenile five-lined skinks are colloquially known as blue-tailed skinks, but the name is somewhat misleading — the adults don’t have blue tails at all.

The snakes we were looking for, meanwhile, were often elusive. Some vanished under the leaf litter before we could catch them. Sometimes it was hard to tell whether we were even looking at a snake at all.

“What are you?” Dr. Cagle muttered at one point, crouching down to get a better look at what was either a stick-esque snake or a snake-esque stick. “Are you an animal? Or are you just a wet something?” (Just a wet something, it turned out.)

The Duke Forest is a valuable community resource with a complicated history. “We know that slavery was practiced on at least four properties” in the Duke Forest, Dr. Cagle says, and the forest is located on the traditional hunting grounds of several indigenous peoples. Today, the Duke Forest is used for research, recreation, timber management, and wildlife management and conservation.

Later on, we found at least three young ring-necked snakes (Diadophis punctatus) under different cover boards. One of them was particularly cooperative, so we passed it around the group. (“All snakes can bite,” Dr. Cagle reminded us, but “some have the tendency to bite less,” and this species “has the tendency not to bite.”) Its small, lithe body was surprisingly strong. The little snake wrapped tightly around one of my fingers and seemed content to chill there. A living, breathing, reptilian ring. That was definitely a highlight of my day.

The faint, dark line on this ring-necked snake’s underside (on the bottom of the loop) is the anal vent. Everything below that point (farther from the head) is considered the official tail of a snake.

If you’ve ever wondered if snakes have tails, the answer is yes. The official cut-off point, Dr. Cagle says, is the anal vent. Everything below that is tail. In between flipping over cover boards and admiring young snakes, we learned about other herps. Near the beginning of our walk, someone asked what the difference is between a newt and a salamander.

“A newt is a type of salamander,” Dr. Cagle says, “but newts have an unusual life cycle where they spend part of their life cycle on land… and that is called their eft phase.” As adults, they return to the water to breed.

We learned that copperheads “tend to be fatter-bodied for their length” and that spotted salamanders cross forest roads in large numbers on warm, rainy nights in early spring when they return to wetlands to breed.

Students holding a ring-necked snake. Above: Kelsey Goldwein holding a ring-necked snake. Below: Emily Courson (left) and Barron Brothers.

Perhaps the most interesting herp fact of the day came near the end of our walk when one of the students asked how you can tell the sex of a snake. Apparently there are two ways. You can measure a snake’s tail (males usually have longer tails), or you can insert a metal probe, blunted at the end, into a snake’s anal vent. Scientists can determine the sex of the snake by how deep the probe goes. It goes farther into the anal vent if the snake is a male. Why is that? Because male snakes have hemipenes — not two penises, exactly, but “an analogous structure that allows the probe to slide between the two and go farther” than it would in a female snake. The more you know…

Looking for snakes on a herpetology outing with Dr. Cagle and the Wild Ones. Photograph by Wild Ones exec.

Disclaimer: Handling wild snakes may result in snake bites. It can also be stressful to the snakes. Furthermore, some snakes in this area are venomous, and it’s probably best to familiarize yourself with those before getting close to snakes rather than afterward. Snakes are amazing, but please observe wildlife safely and responsibly.

Bonus snake! I saw this adorable fellow on the Duke Campus and thought it was an earthworm at first. Dr. Cagle thinks it might be a rough earth snake. I did not check to see if it had a tan belly.
Post by Sophie Cox, Class of 2025

What Are Lichens, and Why Does Duke Have 160,000 of Them?

Saxicolous lichens (lichens that grow on stones) from the Namib Desert, and finger lichen, Dactylina arctica (bottom left insert), common in the Arctic, on display in Dr. Jolanta Miadlikowska’s office. The orange color on some of the lichen comes from metabolites, or secondary chemicals produced by different lichen species. The finger lichen is hollow.

Lichens are everywhere—grayish-green patches on tree bark on the Duke campus, rough orange crusts on desert rocks, even in the Antarctic tundra. They are “pioneer species,” often the first living things to return to barren, desolate places after an extreme disturbance like a lava flow. They can withstand extreme conditions and survive where nearly nothing else can. But what exactly are lichens, and why does Duke have 160,000 of them in little envelopes? I reached out to Dr. Jolanta Miadlikowska and Dr. Scott LaGreca, two lichen researchers at Duke, to learn more.

Dr. Jolanta Miadlikowska looking at lichen specimens under a dissecting microscope. The pale, stringy lichen on the brown bag is whiteworm lichen (Thamnolia vermicularis), used to make “snow tea” in parts of China.

According to Miadlikowska, a senior researcher, lab manager, and lichenologist in the Lutzoni Lab (and one of the Instructors B for the Bio201 Gateway course) at Duke, lichens are “obligate symbiotic associations,” meaning they are composed of two or more organisms that need each other. All lichens represent a symbiotic relationship between a fungus (the “mycobiont”) and either an alga or a cyanobacterium or both (the “photobiont”). They aren’t just cohabiting; they rely on each other for survival. The mycobiont builds the thallus, which gives lichen its structure. The photobiont, on the other hand, isn’t visible—but it is important: it provides “food” for the lichen and can sometimes affect the lichen’s color. The name of a lichen species refers to its fungal partner, whereas the photobiont has its own name.

Lichen viewed through a dissecting microscope. The black speckles visible on some of the orange lichen lobes are a “lichenicolous” fungus that can grow on top of lichen. There are also “endolichenic fungi… very complex fungal communities that live inside lichen,” Miadlikowska says. “We don’t see them, but they are there. And they are very interesting.”

Unlike plants, fungi can’t perform photosynthesis, so they have to find other ways to feed themselves. Many fungi, like mushrooms and bread mold, are saprotrophs, meaning they get nutrients from organic matter in their environment. (The word “saprotroph” comes from Greek and literally means “rotten nourishment.”) But the fungi in lichens, Miadlikowska says, “found another way of getting the sugar—because it’s all about the sugar—by associating with an organism that can do photosynthesis.” More often than not, that organism is a type of green algae, but it can also be a photosynthetic bacterium (cyanobacteria, also called blue-green algae). It is still unclear how the mycobiont finds the matching photobiont if both partners are not dispersed together. Maybe the fungal spores (very small fungal reproductive unit) “will just sit and wait” until the right photobiont partner comes along. (How romantic.) Some mycobionts are specialists that “can only associate with a few or a single partner—a ‘species’ of Nostoc [a cyanobacterium; we still don’t know how many species of symbiotic and free-living Nostoc are out there and how to recognize them], for example,” but many are generalists with more flexible preferences. 

Two species of foliose (leaf-like) lichens from the genus Peltigera. In the species on the left (P. canina), the only photobiont is a cyanobacterium from the genus Nostoc, making it an example of bi-membered symbiosis. In the species on the right (P. aphthosa), on the other hand, the primary photobiont is a green alga (which is why the thallus is so green when wet). In this case, Nostoc is a secondary photobiont contained only in the cephalodia—the dark, wart-like structures on the surface. With two photobionts plus the mycobiont, this is an example of tri-membered symbiosis.

Lichens are classified based on their overall thallus shape. They can be foliose (leaf-like), fruticose (shrubby), or crustose (forming a crust on rocks or other surfaces). Lichens that grow on trees are epiphytic, while those that live on rocks are saxicolous; lichens that live on top of mosses are muscicolous, and ground-dwelling lichens are terricolous. Much of Miadlikowska’s research is on a group of cyanolichens (lichens with cyanobacteria partners) from the genus Peltigera. She works on the systematics and evolution of this group using morphology-, anatomy-, and chemistry-based methods and molecular phylogenetic tools. She is also part of a team exploring biodiversity, ecological rules, and biogeographical patterns in cryptic fungal communities associated with lichens and plants (endolichenic and endophytic fungi). She has been involved in multiple ongoing NSF-funded projects and also helping graduate students Ian, Carlos, Shannon, and Diego in their dissertation research. She spent last summer collecting lichens with Carlos and Shannon and collaborators in Alberta, Canada and Alaska. If you walk in the sub basement of the Bio Sciences building where Bio201 and Bio202 labs are located, check out the amazing photos of lichens (taken by Thomas Barlow, former Duke undergraduate) displayed along the walls! Notice Peltigera species, including some new to science, described by the Duke lichen team.

Lichens have value beyond the realm of research, too. “In traditional medicine, lichens have a lot of use,” Miadlikowska says. Aside from medicinal uses, they have also been used to dye fabric and kill wolves. Some are edible. Miadlikowska herself has eaten them several times. She had salad in China that was made with leafy lichens (the taste, she says, came mostly from soy sauce and rice vinegar, but “the texture was coming from the lichen.”). In Quebec, she drank tea made with native plants and lichens, and in Scandinavia, she tried candied Cetraria islandica lichen (she mostly tasted the sugar and a bit of bitterness, but once again, the lichen’s texture was apparent).

In today’s changing world, lichens have another use as well, as “bioindicators to monitor the quality of the air.” Most lichens can’t tolerate air pollution, which is why “in big cities… when you look at the trees, there are almost no lichens. The bark is just naked.” Lichen-covered trees, then, can be a very good sign, though the type of lichen matters, too. “The most sensitive lichens are the shrubby ones… like Usnea,” Miadlikowska says. Some lichens, on the other hand, “are able to survive in anthropogenic places, and they just take over.” Even on “artificial substrates like concrete, you often see lichens.” Along with being very sensitive to poor air quality, lichens also accumulate pollutants, which makes them useful for monitoring deposition of metals and radioactive materials in the environment.

Dr. Scott LaGreca with some of the 160,000 lichen specimens in Duke’s herbarium.

LaGreca, like Miadlikoska, is a lichenologist. His research primarily concerns systematics, evolution and chemistry of the genus Ramalina. He’s particularly interested in “species-level relationships.” While he specializes in lichens now, LaGreca was a botany major in college. He’d always been interested in plants, in part because they’re so different from animals—a whole different “way of being,” as he puts it. He used to take himself on botany walks in high school, and he never lost his passion for learning the names of different species. “Everything has a name,” he says. “Everything out there has a name.” Those names aren’t always well-known. “Some people are plant-blind, as they call it…. They don’t know maples from oaks.” In college he also became interested in other organisms traditionally studied by botanists—like fungi. When he took a class on fungi, he became intrigued by lichens he saw on field trips. His professor was more interested in mushrooms, but LaGreca wanted to learn more, so he specialized in lichens during grad school at Duke, and now lichens are central to his job. He researches them, offers help with identification to other scientists, and is the collections manager for the lichens in the W.L. and C.F. Culberson Lichen Herbarium—all 160,000 of them.

The Duke Herbarium was founded in 1921 by Dr. Hugo Blomquist. It contains more than 825,000 specimens of vascular and nonvascular plants, algae, fungi, and, of course, lichens. Some of those specimens are “type” specimens, meaning they represent species new to science. A type specimen essentially becomes the prototype for its species and “the ultimate arbiter of whether something is species X or not.” But how are lichens identified, anyway?

Lichenologists can consider morphology, habitat, and other traits, but thanks to Dr. Chicita Culberson, who was a chemist and adjunct professor at Duke before her retirement, they have another crucial tool available as well. Culbertson created a game-changing technique to identify lichens using their chemicals, or metabolites, which are often species-specific and thus diagnostic for identification purposes. That technique, still used over fifty years later, is a form of thin-layer chromatography. The process, as LaGreca explains, involves putting extracts from lichen specimens—both the specimens you’re trying to identify and “controls,” or known samples of probable species matches—on silica-backed glass plates. The plates are then immersed in solvents, and the chemicals in the lichens travel up the paper. After the plates have dried, you can look at them under UV light to see if any spots are fluorescing. Then you spray the plates with acid and “bake it for a couple hours.” By the end of the process, the spots of lichen chemicals should be visible even without UV light. If a lichen sample has traveled the same distance up the paper as the control specimen, and if it has a similar color, it’s a match. If not, you can repeat the process with other possible matches until you establish your specimen’s chemistry and, from there, its identity. Culberson’s method helped standardize lichen identification. Her husband also worked with lichens and was a director of the Duke Gardens.

Thin-layer chromatography plates in Dr. LaGreca’s office. The technique, created by Dr. Chicita Culberson, helps scientists identify lichens by comparing their chemical composition to samples of known identity. Each plate was spotted with extracts from different lichen specimens, and then each was immersed in a different solvent, after which the chemicals in the extracts travel up the plate . Each lichen chemical travels a characteristic distance (called the “Rf value”) in each solvent. Here, the sample in column 1 on the rightmost panel matches the control sample in column 2 in terms of distance traveled up the page, indicating that they’re the same species. The sample in column 4, on the other hand, didn’t travel as far as the one in column 5 and has a different color. Therefore, those chemicals (and species) do not match.

LaGreca shows me a workroom devoted to organisms that are cryptogamic, a word meaning “hidden gametes, or hidden sex.” It’s a catch-all term for non-flowering organisms that “zoologists didn’t want to study,” like non-flowering plants, algae, and fungi. It’s here that new lichen samples are processed. The walls of the workroom are adorned with brightly colored lichen posters, plus an ominous sign warning that “Unattended children will be given an espresso and a free puppy.” Tucked away on a shelf, hiding between binders of official-looking documents, is a thin science fiction novel called “Trouble with Lichen” by John Wyndham.

The Culberson Lichen Herbarium itself is a large room lined with rows of cabinets filled with stacks upon stacks of folders and boxes of meticulously organized lichen samples. A few shelves are devoted to lichen-themed books with titles like Lichens De France and Natural History of the Danish Lichens.

Each lichen specimen is stored in an archival (acid-free) paper packet, with a label that says who collected it, where, and on what date. (“They’re very forgiving,” says LaGreca. “You can put them in a paper bag in the field, and then prepare the specimen and its label years later.”) Each voucher is “a record of a particular species growing in a particular place at a particular time.” Information about each specimen is also uploaded to an online database, which makes Duke’s collection widely accessible. Sometimes, scientists from other institutions find themselves in need of physical specimens. They’re in luck, because Duke’s lichen collection is “like a library.” The herbarium fields loan requests and trades samples with herbaria at museums and universities across the globe. (“It’s kind of like exchanging Christmas presents,” says LaGreca. “The herbarium community is a very generous community.”)

Duke’s lichen collection functions like a library in some ways, loaning specimens to other scientists and trading specimens with institutions around the world.

Meticulous records of species, whether in databases of lichens or birds or “pickled fish,” are invaluable. They’re useful for investigating trends over time, like tracking the spread of invasive species or changes in species’ geographic distributions due to climate change. For example, some lichen species that were historically recorded on high peaks in North Carolina and elsewhere are “no longer there” thanks to global warming—mountain summits aren’t as cold as they used to be. Similarly, Henry David Thoreau collected flowering plants at Walden Pond more than 150 years ago, and his samples are still providing valuable information. By comparing them to present-day plants in the same location, scientists can see that flowering times have shifted earlier due to global warming. So why does Duke have tens of thousands of dried lichen samples? “It comes down to the reproducibility of science,” LaGreca says. “A big part of the scientific method is being able to reproduce another researcher’s results by following their methodology. By depositing voucher specimens generated from research projects in herbaria like ours, future workers can verify the results” of such research projects. For example, scientists at other institutions will sometimes borrow Duke’s herbarium specimens to verify that “the species identification is what the label says it is.” Online databases and physical species collections like the herbarium at Duke aren’t just useful for scientists today. They’re preserving data that will still be valuable hundreds of years from now.

Meet New Blogger Jakaiyah, an infectious disease enthusiast

Hello, my name is Jakaiyah Franklin, and I am a sophomore here at Duke University. In terms of my major, I am undecided, but I do know my passion lies in biology, science communication, and environmental science.

Outside of classes, I am the treasurer for the Duke Chapter of the NAACP and LLC leader for the Stem Pathways for Inclusion, Readiness, and Excellence (SPIRE) program. Last year I was the stage manager for two Hoof n Horn productions.

This is the Rocky Horror Picture Show company after finishing our last show.

This year, I will start a research position along with this research blogging position.

In a more personal sense, I am the youngest of three and a proud aunt. Right now, I say I am from Texas, even though I have lived in Georgia, South Carolina, Germany, and presently North Carolina. If someone ever asked me, I would say that Germany holds my most memorable memories; however, I have grown into a better version of myself in each place I have lived. Other than school, I like to read and watch House of the Dragon and the earlier seasons of The Game of Thrones. I prefer to study outside or in a place where natural light is abundant. I also love learning new things pertaining to science, specifically infectious diseases.

My view of Muhuru Bay, Kenya, where I spent the summer after my first year at Duke. That’s Lake Victoria in the distance.

I find diseases fascinating, and I believe they are our natural predators. I want to be able to not only understand them, but also, I want to help prevent them. If one were to have a favorite type of disease to study, mine would be zoonotic diseases. They are interesting because the act of a virus being able to jump from a host like a rat to a human is captivating to me.

After graduating from Duke, I want to earn a master’s in public health or a Ph.D. in epidemiology, virology, or infectious disease to feed my curiosity about diseases. However, before I can even decide what Ph.D. or master’s I want to earn, my current goal is to decide on my major.

Jakaiyah Franklin

I do like to think ahead, so, for my very distant career, I know I want to be able to see infectious diseases in both the lab and in the places where they are infecting populations. I want my research to be digestible for the general population because, as seen with both COVID and Monkeypox, science can be easily misinterpreted if not delivered appropriately. I want to prevent this occurrence from happening to me by learning more about science communication and actively improving my communication skills.

I hope this blogging position will expose me to infectious disease research or general public health research. With this new understanding of the research, I hope this position will also educate me on how to inform others so that they can enjoy and understand the science.

Post by Jakaiyah Franklin, Class of 2025

Benefits of Childhood Mental Health Intervention ‘Ripple Across Generations’

Even before the COVID-19 pandemic, mental health challenges were the leading cause of poor life outcomes in young people. As many as 1 in 5 U.S. children aged 3 to 17 have a mental, emotional, developmental or behavioral disorder, according to the Centers for Disease Control and Prevention.

Now, that crisis has been exacerbated. Symptoms of depression and anxiety for children and adolescents have doubled during the pandemic.

Seventy percent of U.S. public schools reported an increase in the number of children seeking mental health services during the pandemic and many have struggled to meet the needs of those students, according to the latest federal data.

As the Biden administration and Congress consider policies and programs that could help curb these mental health challenges that children face, a group of Duke researchers may already have one answer.

Eighteen years after administering an intensive childhood intervention program called Fast Track, a group of Sanford School of Public Policy scholars has found that it not only proved effective at reducing conduct problems and juvenile arrests in childhood, it also improved family outcomes when the original children grow up and become parents themselves.

Their followup findings, which appeared in June in the Journal of Child Psychology and Psychiatry, show that girls who received the Fast Track intervention during first through 10th grades had improvements in several aspects of their family environments 18 years later.

Specifically, Fast Track reduced food insecurity in the mothers’ family environments, and lessened the mothers’ depression, alcohol and drug problems, and their use of corporal punishment.

“We knew the Fast Track early childhood intervention was successful at reducing aggressive behavior in childhood and criminal arrests in young adulthood,” said Drew Rothenberg, research scientist at the Duke Center for Child and Family Policy and lead author on the study.

“This research demonstrates that the early intervention doesn’t just benefit the children receiving the services,” he added. “It also improves the family environments those child form as adults, benefiting their own children. In other words, it looks like the effects of early intervention can ripple across generations.”

Drew Rothenberg

According to Rothenberg, the beneficial effects of Fast Track are just as large as those seen in prevention programs that only affect a single generation.

“Impressively, these beneficial effects were also almost as big as those seen immediately after the end of the Fast Track intervention 18 years earlier,” Rothenberg said. “Therefore, for mothers, Fast Track’s effects appear powerful across two generations of homes and are much longer-lasting than previous research suggested.”

“Surprisingly, the benefits of the Fast Track intervention on family environments formed as adults found for mothers did not extend to fathers,” said study co-author Jennifer Lansford, research professor at the Duke Sanford School of Public Policy and director of the Duke Center for Child and Family Policy.

Jennifer Lansford, Director of Duke Center for Child and Family Policy

“Even in contemporary society, women are still tasked with a greater proportion of child-rearing responsibility, and still more often called to create family routines and climate,” Lansford said. “Therefore, the beneficial Fast Track effects on reducing corporal punishment and increasing family food security may emerge only in mothers because mothers are still primarily responsible for the provision of parenting and procurement of resources for family meals, and consequently more likely to benefit from such intervention.”

Rothenberg said the findings suggest childhood mental health interventions can break maladaptive cycles and promote the development of healthy family environments when those children grow up and start their own families.

 “With this evidence, we also demonstrate that investing in early childhood interventions won’t just pay off for today’s children but also for generations of children to come,” Rothenberg said.

Researchers surveyed 400 Fast Track participants who were now parents at age 34 about aspects of their current family environment. They wanted to assess whether parent substance use problems, depression, romantic partner violence, parent warmth, parent use of physical aggression and corporal punishment, family chaos, and food insecurity were better for adults who had participated in Fast Track as children than for adults who had been in the control group.

“We designed the Fast Track program to improve emotional awareness and interpersonal competence among children at high risk for peer conflict, antisocial and delinquent behaviors and life-course failure,” said study co-author Kenneth Dodge, the William McDougall Distinguished Professor of Public Policy Studies at the Duke Sanford School of Public Policy. Dodge is a member of the Conduct Problems Prevention Research Group that created the Fast Track program.

Participants had been drawn from high-risk elementary schools in Durham, North Carolina, Nashville, Tennessee, rural Pennsylvania and Seattle, Washington. Starting in first grade, students were randomly assigned to either receive Fast Track or be followed as a control group. Students who received the Fast Track intervention received social skills training, tutoring, and a social-emotional learning curriculum taught by teachers. Their parents received training in techniques to help the students manage their behavior. 

The Fast Track project has been supported since 1991 by National Institute of Mental Health (NIMH) Grants R18MH48043, R18MH50951, R18MH50952, R18MH50953, R01MH062988, K05MH00797, and K05MH01027; National Institute on Drug Abuse (NIDA) Grants R01DA016903, K05DA15226, RC1DA028248, and P30DA023026; National Institute of Child Health and Human Development Grant R01HD093651; and Department of Education Grant S184U30002.

CITATION: “Intergenerational Effects Of The Fast Track Intervention on the Home Environment: A Randomized Control Trial,” William Andrew Rothenberg, Jennifer E. Lansford, Jennifer Godwin, Kenneth A. Dodge, William E. Copeland, Candice L. Odgers, Robert J. McMahon, Natalie Goluter, and Conduct Problems Prevention Research Group. Journal of Child Psychology and Psychiatry, June 15, 2022. DOI: 10.1111/jcpp.13648

Post by Sarah Brantley, communications director for Duke’s Center for Child and Family Policy

Vernal, Ephemeral, Spring Beauty by Any Other Name

Nicki Cagle, Ph.D., with perfoliate bellwort, an ephemeral forest plant also known as wild oats (Uvularia perfoliata).

“Ephemeral” is one of my favorite words. It conjures up images of vernal pools and fireflies and flowers in spring. It comes from ephēmeros, a Greek word meaning “lasting a day.” English initially used it in a scientific sense, to refer to fevers and then in reference to short-lived organisms like flowers or insects. Today “ephemeral” is most often used to describe anything fleeting or short-lived.

The term “spring ephemeral,” for instance, refers to flowers that are visible for only a short time each spring before they disappear.

Nicki Cagle, Ph.D, a senior lecturer in the Nicholas School of the Environment, led a spring ephemeral workshop in the Korstian Division of Duke Forest on a Friday afternoon in late March. The workshop was hosted by DSER, the Duke student chapter of the Society for Ecological Restoration. We focused on identifying herbaceous plant species and families, particularly spring ephemerals.

“Spring ephemerals are perennials that emerge early in the spring and then grow, reproduce, and disappear from the surface of the forest floor in just a few short weeks,” Cagle explains. We also found several species that aren’t technically ephemerals but still bloom in early spring — before the tree canopy emerges and plunges the floor into shade.

Oxalis violacea, a species of wood sorrel.

The first plant Cagle points out is Oxalis violacea, a type of wood sorrel. “This particular species will have purple flowers,” she says. The genus name, Oxalis, refers to the plant’s oxalic acid content. “You can nibble on it,” but “you don’t want to nibble on it too much.” Oxalic acid, which is also found in common foods like spinach, gives the leaves a pleasant, lemony taste, but it can cause problems if eaten in excess.

Common bluet (Houstonia caerulea).

When we come across a patch of lovely, pale violet flowers with yellow centers, Cagle challenges the workshop participants to determine which family it belongs to. She offers two options: Rubiaceae, a large family that often has either opposite or whorled leaves and four to five petals and which includes familiar plants like coffee, or Violaceae, a very small plant family whose members “tend to have everything in fives” (like petals, stamens, and sepals) and often have basal leaves. Answer: Rubiaceae. This particular species is Houstonia caerulea, the common bluet. Its yellow centers help distinguish it from related species like the summer bluet, tiny bluet, and purple bluet. If anything, Cagle says, the plant’s presence is “an indicator of disturbance,” but it’s still good to have around.

Here’s the little brown jug (Hexastylis arifolia).

Next we come across two species in the Hexastylis genus. They are sometimes called wild ginger, but the name is misleading. Hexastylis species are not related to the ginger you buy in the store, which is in a completely different family. Hexastylis is, however, in the same family as the Asarum genus, which Cagle thinks of as “proper” wild ginger. Asarum and Hexastylis have traditionally been used as food and medicine, but they also contain toxins. According to Cagle, they belong to “one of the few plant families that have fossilized remains in the United States,” even dating back to the late Cretaceous Period.

The two species we see are Hexastylis arifolia, the little brown jug, and Hexastylis minor which looks similar but “tends to have a much more rounded form.” Like many spring ephemerals, Hexastylis is often dispersed by ants. The seeds have elaiosomes, fatty deposits that ants find attractive.

“We have a lot of different violets of varying origins” in this area. According to Cagle, this one is likely to be a common blue violet, Viola sororia.

There’s a patch of violets near the Hexastylis plants. “We have a lot of different violets… of varying origins” around here, Cagle says. Many of the native species have both a purple form and a variety that’s white with purple striping. Other species in the violet family come in different colors altogether, and Cagle says many of those are of European origin.

The Johnny-jump-up pansy, for instance, can have “funkier colors,” like yellow or pinkish purple and is native to Europe and Asia. Violets can be hard to identify. Some species are distinguished mainly by characteristics like the lobes (projections in leaves with gaps between them) or the hairiness of the leaves. The bird’s foot violet and wood violet, for example, “tend to have really deep lobes.”

Cagle says the violet we’re looking at is likely the common blue violet, characterized by smooth leaves and petals, purple or purple-and-white flowers, and rounded or slightly arrow-shaped leaves.

The Cranefly orchid (Tipularia discolor) reproduces later in the year. The purple on the bottom of the leaves, and sometimes on the top as well (see right), helps protect the plant from sunlight and herbivores.

The orchid family, Orchidaceae, is one of the largest families of flowering plants in the world. Many of its members are tropical, including the Vanilla genus, but “we do have a number of native orchids” here as well, including yellow and pink lady’s slipper orchids, putty-root, and the cranefly orchid.

The cranefly orchid, Tipularia discolor, isn’t yet in bloom, but we come across the leaves several times on our walk. According to Cagle, Tipularia discolor “isn’t actually a spring ephemeral” because it reproduces later in the year. However, “it’s ephemeral in its own way,” the leaves disappear by the time it flowers. Cagle says the plant’s scientific name can remind you what to look for: “‘Tip-’ because you’re going to tip this leaf over” to look at the underside and “discolor” because the leaves are a striking purple underneath. Some of the ones we see are purple on top as well. Cagle explains that the purple coloration serves as sunscreen and protection from critters that eat plants.

The plant gets its common name (and its scientific genus name, interestingly) from its delicate flowers, which are supposed to resemble craneflies. When the plant blooms, “the flowers are so delicate and so subtle that most of the time you miss them.” Pollinators like Noctuid moths, on the other hand, find the flowers easily and often. Cranefly orchids even have “specialized seed structures” that “get fused onto insects [such as the moths]… and carried off.”

Rue anemone (Thalictrum thalictroides or Anemonella thalictroides).
Cagle with giant chickweed (Stellaria pubera).

The rue anemone, unlike the cranefly orchid, is a true spring ephemeral. It belongs to a more “primitive” family and has lots of petals in a spiral arrangement. The species is also known as windflower “because they flutter and dance as the breeze comes through.” Cagle mentions that the plant is “usually pollinated by flies and little bees” and serves as an important food source for insects in early spring. But “how do these even exist” in a forest with so many plant-eating deer? Many spring ephemerals, Cagle explains, have “some really potent toxins” that protect them from large herbivores.

We stop briefly to examine perfoliate bellwort, also known as wild oats (Uvularia perfoliata), and giant (or star) chickweed. Chickweed is in the pink family, named not for the color but because “the petals… [look] as if they’re cut by ‘pinking shears,’” which have saw-toothed blades that leave notches in fabric.

Trout lily (Erythronium umbilicatum). According to Cagle, “No spring ephemeral walk is actually complete without finding some trout lilies.”

Near the end of our walk, we find several trout lilies. That’s fortunate. “No spring ephemeral walk is actually complete without finding some trout lilies,” Cagle says.

Unsurprisingly, trout lilies belong to the lily family. “Their flower structure,” Cagle says, “is very symmetrical” with three petals and three sepals. In trout lilies, the sepals resemble petals, too. This particular species is Erythronium umbilicatum. The species name, umbilicatum, refers to its “really long peduncle,” or flower stalk, which “allows the seed to actually touch the ground.” The seed is dimpled, Cagle says, “like a little belly button.” The name “trout lily,” meanwhile, refers to the mottled pattern on the leaves.

Spring beauty (Claytonia virginica), “a quintessential spring ephemeral.”

At the base of a tree near a small river, Cagle points out a flower called spring beauty (Claytonia virginica), “a quintessential spring ephemeral.” Some flowers, like the common bluet we saw earlier, thrive in disturbed areas, but plants like the spring beauty need rich, undisturbed habitat. That makes them good indicator species, species that can help scientists gauge environmental conditions and habitat quality. When a natural area is being restored, for example, scientists can measure restoration progress by comparing the “restoration site” to an undisturbed “reference site.”

According to Cagle, the spring beauty is pollinated by “bee flies… flies that kind of look like bees.” After pollination, the flowers turn pink. Cagle says this is common among ephemerals. One theory is that the color change signifies which flowers have already been pollinated, but others think it’s just a result of senescence, or aging.

Spring beauties are also “photonastic,” meaning they open and close in response to changing light conditions. “There is some evidence that the Iroquois would eat this plant in order to prevent conception,” Cagle says, but today the plant—like many spring ephemerals—is under protection in some areas. Human activities, sadly, have contributed to the decline of too many spring ephemerals.

Alum root (Heuchera americana) near the end of the walk. According to Cagle, its roots can be used “to form mordant for dyes.” Members of the Saxifrage family, which includes alum root, often have five petals, five sepals, and five stamens.

Not all of the plants we saw are spring ephemerals. Some, although they bloom in early spring, “wouldn’t technically be considered ephemeral because their leaves stick around even if their blooms don’t last long.” True ephemerals, on the other hand, “are plants that just seem to disappear off the face of the planet (or the forest floor) after a few weeks,” Cagle says. Only three of the species we found during the workshop are true ephemerals: the windflower, trout lily, and spring beauty. However, these aren’t the only spring ephemerals found in the area. Cagle’s personal favorite is bloodroot, with its “bright white petals” and pollen “that looks like it’s glowing.”

Next time you’re in the woods, keep your eyes out for ephemerals and other early spring flowers, but look quickly. They won’t be here for long.

By Sophie Cox

Post and Photos by Sophie Cox, Class of 2025

Kinsie Huggins: the Future Doctor Who Could Shot-Put

From shot-putting, to helping conduct two research studies, to being selected for a cardiology conference, meet: Kinsie Huggins. She is from Houston, Texas, currently majoring in Biology and minoring in Psychology with a Pre-Med track here at Duke. With such a simple description, one can already see how bright her future is!

“I want to be a pediatrician and work with kids,” Huggins says. “When I was younger, I lived in Kansas, and in my area, there were no black pediatricians. My mother decided to go far to find one and I really bonded with my pediatrician. One day, I made a pact with her in that I would become a pediatrician too so that I can also inspire other little girls like me of my color and other minority groups.”

Having such a passion to let African-American and minority voices be heard, Huggins is also part of the United Black Athletes, using her shot-put platform to make sure these voices are heard in the athletics department.

And while she may be a top-notch sportswoman, she is also just as impressive when it comes to her studies and research. One of her projects focuses on the field of nephrology – the study of kidneys and kidney disease. She and a pediatric nephrologist are currently working on studying rare kidney diseases and the differences in DNA correlating to these diseases.

Kinsie is also a researcher at GRID (Genomics Race Identity Difference), which studies the sickle cell trait in the NCAA. With the sudden deaths of college athletes from periods of over-exhaustion during conditioning, there has been a rise in attention of sickle cell trait and its impact on athletes. At first, the NCAA implemented a policy that made it mandatory for college athletes to get tested for sickle cell in 2010, but some were wary about the lack of scientific validity in such claims. Now, the NCAA has funded GRID to conduct such research.

The difference of Normal red blood cell and sickle cell (CDC).

 “We are analyzing the policy (athletes need to be tested for sickle cell), interviewing athletes in check-ups, and looking at data to see if the policy is working out for athletes and their performance/health,” Huggins explains.

With such an impressive profile, it doesn’t go without saying that Huggins didn’t go unnoticed. The American College of Cardiology (ACC) select high school and college students interested in the field of medicine and have them attend a conference in Washington D.C. to hear about research presentations, groundbreaking results of late-breaking clinical trials, and lectures in the field. Having worked hard, Huggins was selected to be part of the Youth Scholars program from the ACC and was invited to the conference on April 2-4. 

Let’s wish Kinsie the best of luck at the conference and on her future research!

Post by Camila Cordero, Class of 2025

Measuring What Climate Change Does, Not Just Whether It’s Happening

Duke has a goal of being a “climate university,” Nicholas School of Environment Dean Toddi Steelman said in introducing a panel discussion on Climate Change Science during Research Week. She said it’s a vision in which the university’s focus on climate informs every aspect of its mission, from education and operations to community partnerships – and, of course, research.

Five Duke climate scientists spoke on the Feb. 1 panel, all remotely. (View the Discussion.)

Jim Clark, professor of statistical science at the Nicholas School, described our planet’s climate as a “moving target” when it comes to understanding its impact on biodiversity. Complex connections exist between species, like a “system of interactions” between each other, that responds to climate change.

Our understanding of this system is limited by population data collection like the Breeding Bird Survey and the USDA Forest Inventory & Analysis — projects that lack “co-located monitoring of multiple species groups,” Clark said. Such measures fail to capture the relationships between species.

Professor James Clark

Instead, Clark advocates moving away from static models like these population measurements and towards the question of “How does change in the whole community respond to the environment and other species?” In order to understand our dynamic climate, we need an equally dynamic conception of biodiversity, he argued.

Marc Jeuland, associate professor of public policy and global health, and leader of the Sustainable Energy Researchers Initiative (SETI), talked about the “deep inequities” in energy access across rural parts of developing regions and the prospect of accomplishing “a just and sustainable energy transition” of their energy sources.

He thinks the transition can be accomplished with existing sustainable energy technologies like wind and solar.

The problem has two main parts, he said. First is the lack of clean cooking energy, with 2.6 billion humans dependent on solid fuels (wood and charcoal) and polluting stoves. The second is the lack of electricity and electrical services, with 760 million people going without and millions more lacking reliable service, he said.

Professor Marc Jeuland

Jeuland said there is an urgent need to reallocate resources to spread climate solution technologies in these parts of the world.

Jeuland and his SETI team tirelessly investigate how to overcome energy poverty and the populations they affect most – primarily in Africa and Southern Asia – to understand the feasibility and tradeoffs with the adoption of increased access to alternative fuels.

Emily Bernhardt, the James B. Duke distinguished professor of biogeochemistry in the Nicholas School and chair of Duke Biology, addressed the question of how climate change and sea level rise will impact coastal communities and ecosystems.

She said we don’t really have to wait to see what will happen: predominantly low-income communities along the coast are already suffering the consequences of sea water and extreme weather events. But she said the regions’ struggles remain unsolved and underrepresented because they lack the economic and political power to affect change.

Professor Emily Bernhardt

Whenever an event like a hurricane occurs, coastal plain communities are susceptible to storm surges that introduce salt into freshwater environment – leading to sometimes catastrophic, often long-lasting impacts on existing ecosystems, Bernhardt said.

Bernhardt and hundreds of other scientists along the United States coast are working together on something she called “convergence research” that seeks solutions for coastal and other vulnerable communities. It’s called the Saltwater Intrusion and Sea Level Rise (SWISLR) Research Coordinating Network. 

Betsy Albright, associate professor of environmental science and policy, and Brian McAdoo, associate professor of earth and climate science, shared their zoom-hosting duties.

They talked about social justice and social science in mitigating the impact of climate change. Their work examines the role of local communities and governments in disaster recovery and how they can work to create systems to manage aid and other resources as extreme weather events become more common.

As with most climate issues, marginalized communities are disproportionately impacted by these events, they said. Albright and McAdoo are searching for ways to help these regions create the capacity to respond and become more resilient to future events.

Professor Elizabeth Albright
Professor Brian McAdoo

The climate crisis is arguably the greatest challenge of this generation, but this esteemed panel brought much-needed attention to the obstacles facing every aspect of the world of climate science research and how their research is working to overcome them.

Post by Nhu Bui, Class of 2024

Page 2 of 16

Powered by WordPress & Theme by Anders Norén