Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Behavior/Psychology Page 2 of 27

How to Vaccinate Your Kids Against Racist Misinformation

Raise your hand if you learned about Mendel and his peas in high school biology.

It is a common misconception that this model of simple genetic traits applies for all traits. As a result, many students adhere to the idea of genetic essentialism, which concludes that even complex traits like skin color and intelligence are determined solely by someone’s genetics.

Dr. Brian Donovan

This is a notion that has been widely disproven in the scientific community for the past 20 years. However, there is a clear, historical roadblock in the community’s ability to translate this to the public — in a study to be published next month in Science, this group of scientists thinks they found a way.

Brian Donovan is a senior research scientist at BSCS Science Learning, and the principal investigator for a $1.29 million NSF project studying the effects of changing genetics education in American high schools.

On Wednesday evening, he gave a special talk at Duke to a standing-room-only crowd filled with the Biology and Evolutionary Anthropology departments, as well as about 50 assorted undergrads who were scribbling notes like they were going to be tested (myself included).

This talk is especially salient for the crowd in attendance: Duke has one of the most innovative introductory Biology courses in the nation (as anyone who has taken BIO202 with Dr. Willis will tell you), aimed specifically at combatting prejudice from misconceptions in genetic education.

Biological Sciences, Room 141, packed to the brim.

Donovan’s grandparents were Holocaust survivors from Poland who experienced ethnic persecution at its highest, and he was inspired to combat these prejudices. Many people don’t realize that Nazism borrowed many of their tenets from Jim Crow laws, he discussed in the presentation. Not to mention the basic genetic model used in classrooms across the country — the Punnett Square — was developed in accordance with eugenics.

Donovan’s pitch was simple: a vaccine against racism.

According to numbers calculated in the study based on teenagers’ social media use and content, 13% of high school students in the U.S. could be exposed to racist manifestation during their high school career. And 98% of these kids take high school biology. Combatting racism with proper, well-rounded education on common misconceptions about genetics and race could be part of the solution.

But this doesn’t mean we need to nix Mendel altogether, Donovan says — we just need to restructure the narrative.

Dr. Brian Donovan giving a lecture on Wednesday in the Biological Sciences building.

The new-and-improved curriculum (called “human(e) genetics,” which is very clever, if you ask me) focused on facets of genetics that are commonly considered fact by the scientific community.

  • 0.1% of the human genome is variable between people.
  • There is statistically more genetic variation within human populations than between them.
  • Complex traits, like skin color and height, have very weak association with genetics alone.
  • The relationship between environment and genetics is hard to quantify exactly. Studies in humans would be very unethical.

Height is a complex trait, just like skin color, says Donovan. These traits exist on a continuum. But you don’t make assumptions about people’s background based on their relative heights, yet the continuum of height variety is just as discrete as the continuum of skin color variety.

So, if all of this is such common knowledge, why is it not taught in classrooms already? Take this quote from a 1941 textbook called Biological and Human Affairs:

“There are no studies on how that impacted kids.” Donovan declared. “But I don’t think we need one after reading that. I think we can tell.”

After crunching a lot of numbers, Donovan’s team calculated that, considering the success rate of their humane genetics curriculum in experimental groups (the number of students who changed from agreeing with genetic essentialism to disagreeing with it), 52% of the original 13% exposed to racist ideals online would be protected from following them after this new education model.

Of course, this model can be expanded to address more issues than just racial prejudices. Donovan’s team has also conducted studies on the effects of humane genetics education on gender perception.

These studies have even more relevance today in the age of controversy in history and biology education in Florida and the CRT controversy across the nation. In the question-and-answer session, students critiqued the feasibility of instituting humane genetics education in these states as a result.

The best way to educate adults, Donovan answered, is to educate the masses. “I have to ask you all,” he gestured to the room, “to publish. We need to publish papers that confirm we have a scientific consensus.”

Post by Olivia Ares, Class of 2025

New Blogger Noor Nazir: Mental Health With a Pakistani Twist

My name is Door but replace the ‘D’ with an ‘N’.

Yes, I’m Noor and yes again, that is exactly how I introduced my freshman self to everyone in my year. Before you wonder, it’s an Arabic name and no I’m not from the Middle East! I’m a die-hard Pakistani with an overwhelming – and embarrassing – amount of love for Taylor Swift and Local Pakistani Music (stream Talha Anjum, you’ll be surprised!).

My personality mainly encompasses my thirteen-month-old niece, Alaya. I like to think she’s my mini doppelganger (she is not) and the last eight months of my life have been encapsulated by her cute presence, smelly diapers and charming smile. We spend most of our time listening to Taylor Swift, and – sometimes – the nursery rhyme, One Little Finger.  Other times, we play the guitar and sing for fun (your average Duke freshman).

Although, contrary to the ‘average Duke freshman’ who is sure about the trajectory of their next twenty years, I am not – at all. I find my mind wandering to several distinct fields of interest; whenever a classmate asks me “but where is your mind really at?”, my deliberate and circumspect answer is always “four to be exact: economics, political science, psychology and public policy”’. This answer is invariably met by an overt facial expression screaming their internal thought “oh so she’s really not sure”. But that side eye is beside the point since that uncertainty is precisely what led me to the Duke Research Blog.

In high school, whether it was the debate club or my interest in mental health, I always found a research angle to it. For debate, I’d research different case studies in order to formulate argumentation and rebuttals; for mental health, I’d utilize such case studies and would recreate what worked. My proudest creation, the Safe Space Society (a society in my alma matter, International School Lahore), was nothing short of a camaraderie and a community fostered with love and empathy. In my eyes, such a creation was only made possible because of extensive and life-long research by dedicated professionals.

Not only is research the perfect way to navigate my interests in a fulfilling manner, but it also acts as the tunnel vision to a transfigured world. Since my navigation wishes to find its destination in a declared major, I’m incredibly excited to write and learn about research revolving science, mental health, and anything Duke brings my way.

I am, however, most excited to translate and decode complex and seemingly mundane ideas in a nuanced and amusing way. The blog seems to be on a mission to make potential engineers excited about the next big thing in mental health research; this is a mission I’m excited and honored to take part in.  To sum it up, my goal at Duke Research Blog is to attend the research events you don’t want to and then write about them to make you regret not attending those events!

– A serious warning: you will see me bringing a Pakistani twist to every article I write! It’s just what us Pakistanis do (for a sample look at the sentence above). –

Noor Nazir, Class of 2027
Noor Nazir, Class of 2027

New Blogger Emily Zou: Bound By a Promise

My eyes peered at my mom’s hand, rarely blinking. My ever-bouncing leg had stilled. My mind caught every subtle movement, attempting to decipher the pattern. I watched, entranced, as my mom’s fingers nimbly wove together the pieces of red thread into the bracelet I would wear every day for the rest of my life.

My senior photo, red string bracelet on my left wrist.

Chinese red string bracelets are a symbol of luck, prosperity, health, protection, and courage. In ancient China, the emperor would give his first, therefore most important, wife a red string bracelet. Similarly, red string bracelets are gifted to newlywed couples to commemorate their true love and wish them well in a new stage of their lives. Close relatives also gift a red string bracelet to women and girls on their 本命年 (Year of Birth), in order to protect them from the negative energy they will face that year.

A bracelet serves as a physical representation of a promise. Most obviously, a friendship bracelet shows a promise to love and trust your matching bracelet wearer. But any string on your wrist represents a promise. A W.W.J.D. band serves as a promise of faith and to live like Christ. A 4Ocean beaded bracelet is a promise to care for the Earth’s aquatic life. Even an Apple Watch is a promise to live healthily.

I was given my red string bracelet by my mom in 2016 (the Year of the Monkey). When I wear it, I remember my family’s unconditional love for me and the history of my Chinese heritage. The bracelet serves as a mutual agreement between my family and me: to protect and look after one another.

My name is Emily Zou and I’m a freshman from a suburb outside of Portland, Oregon. The bracelet my mom made 6 years ago sat on my wrist the entire flight from PDX to RDU. Similarly, my parents’ promise is what has landed me here. Throughout the past 18 years of my life, my parents have taken care of me: they cooked me dinner at 9 pm after school board meetings, drove me 4 hours to debate tournaments at 4 a.m., cut endless bowls of fruit for late night study sessions, and of course, are paying my college tuition.

My mom and I at Blue Devils Day, when I committed to Duke. Notice the left wrist 😉

A promise is a unique moral obligation. The obligation isn’t inherent; there’s no biological or evolutionary reason to keep a promise. It’s also not for fear of consequence; simply breaking a promise does not inflict physical or emotional damage on you, but rather the consequence is the act itself. And yet, promises are expected to be kept universally, regardless of scope, culture, or time period. This is because just like a red string bracelet, a promise is made with intentionality. Just like each knot must be precisely made, so must each part of a promise.

Now, it’s my turn to uphold my end of the promise. I’m extremely lucky to attend a university like Duke, and I plan to use every opportunity possible to someday give my parents even half of what they’ve given me throughout my childhood. And not just to my parents, but to the rest of the world, as well. I believe that each one of us wears a metaphorical bracelet symbolizing our promises to society. To protect one another and leave this world better than how we found it.

My bracelet sits perfectly positioned against the pulsing heartbeat in my wrist’s veins, pumping its promise into my veins to accompany the red blood cells to every part of my body. It remains visible as I ride the C1 to my Economics lecture, code an APT, or throw a ceramic piece on the wheel. As long as a bracelet is worn, its wearer swears to keep their promise. However, much like a bracelet worn every day, it’s often easy to forget the various commitments in daily life. Friendship bracelets fray, W.W.J.D. bands become stained, and Apple Watches become simply a way to check text messages.

Our society’s foundation is based on promises: promises to value community, act with integrity, abide by the law, show up to work or school, put our shopping carts away, etc. Some of the most important promises are made by leaders and institutions. If we anthropomorphize the American government, we can imagine the slew of red string bracelets it hands out to its citizens, each representing a different promise. These promises are explicitly laid out in the preamble to the Constitution: to “establish Justice, insure domestic Tranquility, provide for the common defense, promote the general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity.” More specifically, each amendment lays out a specific promise from the government to the people about certain rights and privileges. However, it seems that in its daily wear and tear, the US Government has forgotten about its promise to its people as we experience daily violations of these promises.

My mom and I at graduation; again, you can see my red string bracelet on my left wrist.

This is what I want to discuss at Duke, and more specifically, on the Duke Research Blog. Promises transcend so many different academic and research fields: the promises parents make to their children, promises schools make to their students, promises countries make to their citizens.

When we tie the knot around our wrist for the very first time, the bracelet’s strings taut and secure, it’s simple to uphold its promise for the days following. Hyper aware of its presence, each time we move our arm, we recognize it: I made an effort to improve my Mandarin during the first days of the Year of the Monkey; the recently converted attend church every Sunday; Apple Watch users take their 10,000 steps. However, as our minds become used to the bracelet, or overwhelmed by the fresh new ones, its promises become obsolete. This phenomenon can only be reversed when we ground ourselves in the intentions of our bracelets: to protect one another, the marginalized, and our planet.

At Duke, I’m weaving my bracelets from scratch, which includes the Duke Research Blog. But a lot of my future bracelets are still up in the air. I’m still collecting my strings, and I’m learning that that is okay. And moving forward, not all of my posts will wax so philosophical, actually, probably none of them will. I just figured if I get one opportunity to make a first impression, I might as well share my life philosophy.

Post by Emily Zou, Class of 2027

Neuroscience Shows Why Sex Assault Victims “Freeze.” It’s Not Consent.

Warning: the following article discusses rape and sexual assault. If you or someone you know has been sexually assaulted, help is available.

Image: DreamStudio AI, with prompt “Woman, screaming, sitting on the witness stand in a U.S. court of law, in the style of Edvard Munch’s ‘The Scream’”

“You never screamed for help?”

“Why didn’t you fight back?”

These are questions that lawyers asked E. Jean Carroll in her rape case against former president Donald J. Trump this spring. These kinds of questions reflect a myth about rape: that it’s only rape if the victim puts up a fight.

A recent review of the research, “Neuroscience Evidence Counters a Rape Myth,” aims to set the record straight. It serves as a call to action for those in the scientific and legal professions. Ebani Dhawan completed this work at the University College London with Professor Patrick Haggard. She is now my classmate at Duke University, where she is pursuing an MA in Bioethics & Science Policy.

Ebani Dhawan

Commonly accepted beliefs and myths about rape are a persistent problem in defining and prosecuting sexual assault. The intentions of all actors are examined in the courtroom. If a victim freezes or does not attempt to resist during a sexual assault, perpetrators may claim there was passive acquiescence; that consent was assumed from an absence of resistance.

From the moment a victim reports an assault, the legal process poses “why” questions about the survivor’s behavior. This is problematic because it upholds the idea that survivors can (and should) choose to scream or fight back during an assault.

This new paper presents neuroscientific evidence which counters that misconception. Many survivors of sexual assault report ‘freezing’ during an assault. The researchers argue that this is an involuntary response to a threat which can prevent a victim from actively resisting, and that it occurs throughout biology.

Animal studies have demonstrated that severe, urgent threats, like assault or physical restraint, can trigger a freeze response involving fixed posture (tonic immobility) or loss of muscle tone (collapsed immobility). Self-reports of these states in humans shed light on an important insight into immobility. Namely, that we are unable to make voluntary actions during this freezing response.

An example of this is the “lockup” state displayed by pilots during an aviation emergency. After a plane crash, it’s hard to imagine anyone asking a pilot if they froze because they really wanted to crash the plane.

Yet, quite frequently victims of sexual assault are asked to explain the freeze response, something which is further made difficult by the impaired memory and loss of sense of agency which often accompanies trauma.

The legal process around sexual assault should be updated to reflect this neuroscientific evidence.

THIS MYTH HAS REAL CONSEQUENCES.

The vast majority of sexual assault cases do not result in a conviction. It is estimated that out of every 1,000 sexual assaults in the U.S., only 310 are reported to the police and only 28 lead to felony conviction. That is a conviction rate of less than 3%.

In England and Wales, just 3% of rapes recorded in the previous year resulted in charges. According to RAINN, one of the leading anti-sexual assault organizations, many victims don’t report because they believe the justice system would not do anything to help — a belief that these conviction rates support.

E. Jean Carroll named this in her trial. She said, “Women don’t come forward. One of the reasons they don’t come forward is because they’re always asked, why didn’t you scream? You better have a good excuse if you didn’t scream.”

This research serves as a much-needed call-to-action. By revisiting processes steeped in myth, justice can be better served.

I asked Ebani what she thinks must be done. Here are her recommendations:

  1. The neuroscience community should pursue greater mechanistic understanding of threat processing and involuntary action processes and the interaction between them. 
  2. Activists and legal scholars should advocate for processes reflective of the science behind involuntary responses like freezing, and the inability of victims to explain that behavior.
  3. Neuroscientists should contribute to Police officers’ education regarding involuntary responses to rape and sexual assault.

“I’m telling you: He raped me whether I screamed or not.” – E. Jean Carroll

Post by Victoria Wilson, Class of 2023

New Rankings Place Duke Scholars on Top of the World

L-R: Tomasello, Moffitt, Caspi, Lefkowitz.

We didn’t know we needed another way to rank the importance of Duke’s scientists, but the folks at research.com have gone ahead and developed one anyway. And in its second year of data, several Duke people come out in the top ten nationally and globally. So, okay, maybe we did need a new ranking system!

Duke Psychology and Neuroscience swept the U.S. medals in psychology: Terrie E. Moffitt Ph.D., first, Michael Tomasello, Ph.D. second, and Avshalom Caspi, Ph.D. third. Duke University’s psychology is overall ninth in the world, according to this ranking.

Moffitt, the Nannerl O. Keohane University Distinguished Professor of P&N, and Caspi, the Edward M. Arnett Distinguished Professor of P&N, are frequent co-authors on a lifelong psychology and health study of 1,000 people born in Dunedin, New Zealand. Moffitt ranks fourth in the world in psychology, with 207,903 citations of her 582 works. Caspi’s 159,598 citations of 507 papers were good enough for 10th in the world.

Developmental psychologist Tomasello, the James F. Bonk Distinguished Professor of P&N, has focused his work on cognitive development, social cognition and language acquisition. He has 147,951 citations on an even 800 works, placing him second in the U.S. and ninth in the world.

Nobel laureate Robert Lefkowitz M.D., the chancellor’s distinguished professor of medicine, is ranked second in the nation and third in the world for Biology and Biochemistry with 198,000 citations of his 881 papers. The rankings reflect the importance of Lefkowitz’s discovery and characterization of the 7-transmembrane g-coupled protein receptor (GPCR), a fundamental signaling port on the surface of cells that is targeted by a third to a half of all prescription drugs.

Koenig

Psychiatry and Behavioral Sciences professor and Co-Director of Duke’s Center for Spirituality, Theology and Health, Harold G. Koenig M.D., was ranked seventh in the nation and 10th in the world for Social Sciences and Humanities for his work on spirituality and health. His 703 publications have earned 66,404 citations.

Many other Duke scholars finished in the top 100 worldwide in their respective fields, some even making a mark in multiple fields. Check it out.

Methodology: Research.com’s ranking of the best scholars by discipline relies on data consolidated from various sources including OpenAlex and CrossRef. The bibliometric data for estimating the citation-based metrics were collected on Dec. 21, 2022. Position in the ranking is based on a researcher’s D-index (Discipline H-index), which includes exclusively papers and citation metrics for an examined discipline.

And just to prevent some letters to the editor, we acknowledge that the H-index has its critics, including its inventor. We don’t make the rankings folks, we just share them.

Shifting from Social Comparison to “Social Savoring” Seems to Help

The face of a brown-eyed girl with freckles, bangs and new adult teeth fills most of the frame. Superimposed to the right are the icons of multiple real and imagined social media apps in a semicircular arrangement. Image by geralt, via Pixabay.
Image by geralt, via pixabay.

The literature is clear: there is a dark side to engaging with social media, with linkages to depressive symptoms, a sense of social isolation, and dampened self-esteem recently revealed in the global discourse as alarming potential harms.

Underlying the pitfalls of social media usage is social comparison—the process of evaluating oneself relative to another person—to the extent that those who engage in more social comparison are at a significantly higher risk of negative health outcomes linked to their social media consumption.

Today, 72 percent of Americans use some type of social media, with most engaging daily with at least one platform.(1) Particularly for adolescents and young adults, interactions on social media are an integral part of building and maintaining social networks.(2-5) While the potential risks to psychosocial well-being posed by chronic engagement with these platforms have increasingly come to light within the past several years, mitigating these adverse downstream effects poses a novel and ongoing challenge to researchers and healthcare professionals alike.

The intervention aimed to supplant college students’ habitual social comparison … with social savoring: experiencing joyful emotions about someone else’s experiences.

A team of researchers led by Nancy Zucker, PhD, professor in Psychiatry & Behavioral Sciences and director of graduate studies in psychology and neuroscience at Duke University, recently investigated this issue and found promising results for a brief online intervention targeted at altering young adults’ manner of engagement with social media. The intervention aimed to supplant college students’ habitual social comparison when active on social media with social savoring: experiencing joyful emotions about someone else’s experiences.

A cartoon depicts a small man in a ball cap standing on a table with a smartphone nearby. A larger person on the right with a cat-like nose regards him with tears in her eyes.
Image from Andrade et al

Zucker’s team followed a final cohort of 55 college students (78 percent female, 42 percent White, with an average age of 19.29) over a two-week period, first taking baseline measures of their mental well-being, connectedness, and social media usage before the students returned to daily social media usage. On day 8, a randomized group of students received the experimental intervention: an instructional video on the skill of social savoring. These students were then told to implement this new skill when active on social media throughout days 8 to 14, before being evaluated with the rest of the cohort at the two-week mark.

For those taught how and why to socially savor their daily social media intake, shifting focus from social comparison to social savoring measurably increased their performance self-esteem—their positive evaluation—as compared with the control group, who received no instructional video. Consciously practicing social savoring even seemed to enable students to toggle their self-esteem levels up or down: those in the intervention group reported significantly higher levels of self-esteem on days during which they engaged in more social savoring.

Encouragingly, the students who received the educational intervention on social media engagement also opted to practice more social savoring over time, suggesting they found this mode of digesting their daily social media feeds to be enduringly preferable to that of social comparison. The team’s initial findings suggest a promising future for targeted educational interventions as an effective way to improve facets of young adults’ mental health without changing the quantity or quality of their media consumption.

Of course, the radical alternative—forgoing social media platforms altogether in the name of improved well-being—looms in the distance as an appealing yet often unrealistic option for many; therefore, thoughtfully designed, evidence-based interventions such as this research team’s program seem to offer a more realistic path forward.

Read the full journal article.

References

  1. Auxier B, Anderson M. Social media use in 2021: A majority of Americans say they use YouTube and Facebook, while use of Instagram, Snapchat and TikTok is especially common among adults under 30. 2021.
    2. McKenna KYA, Green AS, Gleason MEJ. Relationship formation on the Internet: What’s the big attraction? J Soc Issues. 2002;58(1):9-31.
    3.Blais JJ, Craig WM, Pepler D, Connolly J. Adolescents online: The importance of Internet activity choices to salient relationships. J Youth Adolesc. 2008;37(5):522-536.
    4. Valkenburg PM, Peter J. Preadolescents’ and adolescents’ online communication and their closeness to friends. Dev Psychol. 2007;43(2):267-277.
    5. Michikyan M, Subrahmanyam K. Social networking sites: Implications for youth. In: Encyclopedia of Cyber Behavior, Vols. I – III. Information Science Reference/IGI Global; 2012:132-147.

Guest Post by Eleanor Robb, Class of 2023

Meet Some of the Teams at the Bass Connections Showcase

If you weren’t outside enjoying the sun on Wednesday, April 19, you were probably milling around Penn Pavilion, a can of LaCroix in hand, taking in the buzz and excited chatter of students presenting at the 2023 Fortin Foundation Bass Connections Showcase.

Open floor presentations at the 2023 Bass Connections Showcase

This annual celebration of Bass Connections research projects featured more than 40 interdisciplinary teams made up of Duke faculty, graduate students, undergraduate students, and even partners from other research institutions.

Research teams presented posters and lightning talks on their findings. You might have heard from students aiming to increase representation of women in philosophy; or perhaps you chatted with teams researching physiotherapy in Uganda or building earthquake warning systems in Nepal. Below, meet three such teams representing a wide variety of academic disciplines at Duke.

Building sustainable university-community partnerships

As Bass Connections team member Joey Rauch described, “this is a poster about all of these other posters.” Rauch, who was presenting on behalf of his team, Equitable University-Community Research Partnerships, is a senior double-majoring in Public Policy and Dance. His interest in non-profit work led him to get involved in the team’s research, which aims to offer a framework for ethical and effective university-community research collaboration – exactly what teams do in Bass Connections. The group looked at complicated factors that can make equitable relationships difficult, such as university incentive structures, power dynamics along racial, socioeconomic, and ethnic lines, and rigid research processes.

Senior Joey Rauch with his team’s 2nd-place poster!

Along the lines of rigid research, when asked about what his favorite part of Bass Connections has been, Rauch remarked that “research is oddly formal, so having a guiding hand through it” was helpful. Bass Connections offers an instructive, inclusive way for people to get involved in research, whether for the first or fourth time. He also said that working with so many people from a variety of departments of Duke gave him “such a wealth of experience” as he looks to his future beyond Duke.

For more information about the team, including a full list of all team members, click here.

Ensuring post-radiation wellness for women

From left to right: seniors Danica Schwartz, Shernice Martin, Kayle Park, and Michelle Huang

Seniors Michelle Huang, Shernice Martin, Kayle Park, and Danica Schwartz (all pictured) were gathered around the poster for their team, Promoting Sexual Function and Pelvic Health in Women’s Healthcare.

The project has been around for three years and this year’s study, which looked at improving female sexual wellness after pelvic radiation procedures, was in fact a sister study to a study done two years prior on reducing anxiety surrounding pelvic exams.

As Huang described, graduate students and faculty conducted in-depth interviews with patients to better understand their lived experiences. This will help the team develop interventions to help women after life events that affect their pelvic and sexual health, such as childbirth or cancer treatment. These interventions are grounded in the biopsychosocial model of pain, which highlights the links between emotional distress, cognition, and pain processing.

For more information about the team, including a full list of all team members, click here.

From dolphins to humans

Sophomores Noelle Fuchs and Jack Nowacek were manning an interactive research display for their team, Learning from Whales: Oxygen, Ecosystems and Human Health. At the center of their research question is the condition of hypoxia, which occurs when tissues are deprived of an adequate oxygen supply.

Sophomores Noelle Fuchs and Jack Nowacek

Hypoxia is implicated in a host of human diseases, such as heart attack, stroke, COVID-19, and cancer. But it is also one of the default settings for deep-diving whales, who have developed a tolerance for hypoxia as they dive into the ocean for hours while foraging.

The project, which has been around for four years, has two sub-teams. Fuchs, an Environmental Science and Policy major, was on the side of the team genetically mapping deep-diving pilot whales, beaked whales, and offshore bottlenose dolphins off the coast of Cape Hatteras  to identify causal genetic variants for hypoxia tolerance within specific genes. Nowacek, a Biology and Statistics double-major, was on the other side of the research, analyzing tissue biopsies of these three cetaceans to conduct experiences on hypoxia pathways.  

The team has compiled a closer, more interactive look into their research on their website.

And when asked about her experience being on this team and doing this research, Fuchs remarked that Bass Connections has been a  “great way to dip my toe into research and figure out what I do and don’t want to do,” moving forward at Duke and beyond.

For more information about the team, including a full list of all team members, click here.

Post by Meghna Datta, Class of 2023

Is The World In Crisis?

According to a recent NPR/Ipsos poll, nearly 70% of Americans believe that U.S. democracy is “in crisis and at risk of failing.” Two out of every three respondents also agree that U.S. democracy is “more at risk” now than it was a year ago. 

These fears are not unfounded. For the past three years, the United Nations Human Development Report has issued increasingly grave warnings for the state of the world. The warnings focus specifically on the Anthropocene, rising inequality, and growing polarization, conveying themes of both uncertainty and hope.

Pictured above: The 2022 Human Development Report.

On March 22nd, the director of the United Nations Human Development Report Office, Dr. Pedro Conceição, discussed his perspective at Duke University. The fireside chat was hosted by the Duke Center for International Development and the South-North Scholars, and was moderated by Dr. Anirudh Krishna.

“People should be able to live their lives at their full potential,” Dr. Conceição began. “When you look at the world and see how people are living their lives compared to how they should be living their lives, you get the need for human development.”

First introduced in 1990, the Human Development Report focuses on improving the quality of human life, rather than just the economy in which human beings live. The report emphasizes three pillars: people, opportunity, and choice. “Living life to your full potential is essentially about human freedom,” Dr. Conceição said. It is these freedoms that are at risk as the conditions in the Human Development Report worsen.

Credit: 2021/22 United Nations Human Development Report.

“We need to dig more deeply into why we aren’t taking action,” Conceição maintains. He explains that current efforts to spark change are too factual. Governments and corporations are focused too heavily on raising awareness and should pivot to trying to take tangible steps.

Political division is also a major source of stagnation, as those who lie on either side of the spectrum tend to be more insecure in their views of the future. Because of these obstacles, it requires a “more complex and unusual way of trying to understand these problems.”

The report has citizens from around the world concerned about potential declines in the quality of well-being. But Dr. Conceição asserts that the reports are meant to communicate hope.

“It’s precisely because we are having this level of uncertainty that this becomes even more relevant,” he said. In fact, it is this uncertainty that the report will build off of for future publications. The literature will dig deeper into novel areas of uncertainty, to figure out the best way forward.

An analysis of the current global uncertainties. Credit: 2021/22 United Nations Human Development Report.

Dr. Conceição urges students to invest in the United Nations and its initiatives, as it is crucial in creating a better outlook on the future. As Abraham Lincoln once expressed, “The most reliable way to predict the future is to create it.”

Want to get involved with the United Nations? Click here!

Written by: Skylar Hughes, Class of 2025

Only Mostly Dead? The Evolving Ethics of Evaluating Death

I recently had the pleasure of attending Professor Janet Malek’s lecture: Only Mostly Dead? The Evolving Ethical Evaluation of Death by Neurologic Criteria, a lecture sponsored by the Trent Center for Bioethics, Humanities & History of Medicine.

Dr. Malek is an associate professor in the Duke Initiative for Science & Society, and at the Baylor College of Medicine Center for Medical Ethics and Health Policy.

Janet Malek Ph.D.

We don’t often talk about death. On the surface, it seems like it would be a straight-forward concept. You’re either dead, or you’re not dead. Right? It turns out that clinically defining death is not so simple.

Popular media has some grasp on the ambiguity of the definition of death. Remember this scene from the popular movie, The Princess Bride? Suspecting that the protagonist is dead, his friends bring him to a miracle-worker and have the following conversation. 

Miracle Max: “Whoo-hoo-hoo, look who knows so much. It just so happens that your friend here is only MOSTLY dead. There’s a big difference between mostly dead and all dead. Mostly dead is slightly alive. With all dead, well, with all dead there’s usually only one thing you can do.

Inigo Montoya: What’s that?

Miracle Max: Go through his clothes and look for loose change.

In real life, death used to be determined by cardiopulmonary criteria – when the heart and lungs stop working.  In recent decades the idea that death can be determined using neurologic criteria – when the brain stops working – has gained acceptance. As neuroscience and technology has evolved, so too have our definitions. Now that we know more about how the brain works, we know that there may be some brain activity even after a person has met the criteria for death by neurologic criteria (DNC). This leads to philosophically rich and practically relevant questions of ethics – for example, when do we stop providing life-sustaining care? In the field of bioethics and beyond, there is high demand for discussion on this topic.

There has been controversy over defining death since the 1650’s — when a woman named Anne Greene woke up after being hanged. It wasn’t until the 1980’s that a consensus definition of death was first identified. Here is a brief history:

1950s

  • Widespread availability of ventilators led to the identification of a state described as death of the neurological system.

1960s

  • Advances in organ transplantation foster discussion on the ethics of defining death.
  • A committee at Harvard Medical School examined the definition of Brain Death. They created a definition of “Irreversible Coma,” which focused on loss of neurological function.

1980s

  • The 1980 Uniform Determination of Death Act (UDDA) provided a legal basis for clinically determining death as: an individual who has sustained either 1) irreversible cessation of circulatory and respiratory functions OR 2) irreversible cessation of functions of the entire brain.
  • 1981: President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research report. Findings are centered on questions of functioning of the organism as a whole and the brain’s role in coordinating it.

1990s-2000s

  • Clinicians arrive at general agreement that a patient in a state of coma or unresponsiveness, without brainstem reflexes and who fails an apnea test is dead by neurologic criteria. Largely it is accepted that “brain death is death” but there is not complete consensus.

2010-late

  • 2013: Case of Jahi McMath. A 13-year old girl was declared “brain dead” in California, and a death certificate was issued. However, the family fought to have her maintained on life support. They moved to New Jersey, the only state which recognized objections to brain death, and the “brain dead” declaration was reversed. Jahi lived there for 4 years before passing away. This famous case caused people to reconsider the concept of brain death.

2020s:

  • Recent innovations in heart transplantation technology will likely challenge the acceptance of the Dead Donor Rule (DDR) which requires that an individual is clinically declared dead before vital organs are removed for transplantation.
  • 2021: Assembly of the Determination of Death Committee, tasked with updating the Uniform Determination of Death Act (UDDA). Duke faculty (and founding director of Science & Society) Nita Farahany, is involved with this process.

What ethical issues and practical questions challenging Death by Neurologic Criteria (DNC) today? Dr. Malek shared the following case.

Following a tragic car accident, Ms. Jones, a 20-year-old college student, was brought to the hospital, having suffered significant anoxic brain injury. The medical team determined that she met criteria for DNC. However, her family refused to allow for further testing. Several days passed. Ms. Jones was maintained on life support, during which she did not show signs of improvement. After several difficult conversations, the family consented for assessment and Ms. Jones was declared dead — using the criteria associated with DNC.

What is the proper amount of time to continue life-sustaining treatment if a physician suspects the patient will never recover?

Although this may sound like an uncommon occurrence, nearly half of neurologists have been asked to continue neurologic support for patients that may meet criteria for DNC.

Obligating life support for patients suspected of meeting DNC, either through the family’s refusal for testing or by direct request, would likely result in ethical harms such as violation of the dignity of decedent, unjustly using scarce resources, or causing moral distress in caregivers.

However, it may be permissible to maintain life support in these situations. Dr. Malek says that we do not yet have a good ethical framework for this. Reasonable accommodations that are in line with professional guidelines probably have minimal impact, and might provide some psychosocial benefits to families.

Is consent required to test for DNC? Should it be?

Legal and professional standards favor the idea that testing for DNC likely falls under the category of implied consent, which assumes that a person would want reasonable medical care in the event of unconsciousness. In fact, 80% of neurologists think that getting consent for these evaluations is unnecessary.

These are extremely difficult questions, and there is continuing controversy over what the correct answers should be. Dr. Malek advises medical experts to work with healthcare administrators to develop clear institutional policies.

Post by Victoria Wilson, 2023 MA student in Bioethics & Science Policy

The Brain Science of Tiny Birds With Amazing Memories

A black-capped chickadee. Dmitriy Aronov, Ph.D., brought wild black-capped chickadees into the lab to study their memories.
Black-Capped Chickadee” by USFWS Mountain Prairie is licensed under CC BY 2.0.

Black-capped chickadees have an incredible ability to remember where they’ve cached food in their environments. They are also small, fast, and able to fly.

So how exactly can a neuroscientist interested in their memories conduct studies on their brains? Dmitriy Aronov, Ph.D., a neuroscientist at the Zuckerman Mind Brain Behavior Institute at Columbia University, visited Duke recently to talk about chickadee memory and the practicalities of studying wild birds in a lab.

Black-capped chickadees, like many other bird species, often store food in hiding places like tree crevices. This behavior is called caching, and the ability to hide food in dozens of places and then relocate it later represents an impressive feat of memory. “The bird doesn’t get to experience this event happening over and over again,” Aronov says. It must instantly form a memory while caching the food, a process that relies on episodic memory. Episodic memory involves recalling specific experiences from the past, and black-capped chickadees are “champions of episodic memory.”

They have to remember not just the location of cached food but also other features of each hiding place, and they often have only moments to memorize all that information before moving on. According to Aronov, individual birds are known to cache up to 5,000 food items per day! But how do they do it?

Chickadees, like humans, rely on the brain’s hippocampus to form episodic memories, and the hippocampus is considerably bigger in food-caching birds than in birds of similar size that aren’t known to cache food. Aronov and his team wanted to investigate how neural activity represents the formation and retrieval of episodic memories in black-capped chickadees.

Step one: find a creative way to study food-caching in a laboratory setting. Marissa Applegate, a graduate student in Aronov’s lab, helped design a caching arena “optimized for chickadee ergonomics,” Aronov says. The arenas included crevices covered by opaque flaps that the chickadees could open with their toes or beaks and cache food in. The chickadees didn’t need any special training to cache food in the arena, Aronov says. They naturally explore crevices and cache surplus food inside.

Once a flap closed over a piece of cached food (sunflower seeds), the bird could no longer see inside—but the floor of each crevice was transparent, and a camera aimed at the arena from below allowed scientists to see exactly where birds were caching seeds. Meanwhile, a microdrive attached to the birds’ tiny heads and connected to a cable enabled live monitoring of their brain activity, down to the scale of individual neurons.

An artistic rendering of one of the cache sites in an arena. “Arenas in my lab have between 64 and 128 of these sites,” Aronov says.
Drawing by Julia Kuhl.

Through a series of experiments, Aronov and his team discovered that “the act of caching has a profound effect on hippocampal activity,” with some neurons becoming more active during caching and others being suppressed. About 35% percent of neurons that are active during caching are consistently either enhanced or suppressed during caching—regardless of which site a bird is visiting. But the remaining 65% of variance is site-specific: “every cache is represented by a unique pattern of this excess activity in the hippocampus,” a pattern that holds true even when two sites are just five centimeters apart—close enough for a bird to reach from one to another.

Chickadees could hide food in any of the sites for retrieval at a future time. The delay period between the caching phase (when chickadees could store surplus food in the cache sites) and the retrieval phase (when chickadees were placed back in the arena and allowed to retrieve food they had cached earlier) ranged from a few minutes to an hour. When a bird returned to a cache to retrieve food, the same barcode-like pattern of neural activity reappeared in its brain. That pattern “represents a particular experience in a bird’s life” that is then “reactivated” at a later time.

Aronov said that in addition to caching and retrieving food, birds often “check” caching sites, both before and after storing food in them. Of course, as soon as a bird opens one of the flaps, it can see whether or not there’s food inside. Therefore, measuring a bird’s brain activity after it has lifted a flap makes it impossible to tell whether any changes in brain activity when it checks a site are due to memory or just vision. So the researchers looked specifically at neural activity when the bird first touched a flap—before it had time to open it and see what was inside. That brain activity, as it turns out, starts changing hundreds of milliseconds before the bird can actually see the food, a finding that provides strong evidence for memory.

What about when the chickadees checked empty caches? Were they making a memory error, or were they intentionally checking an empty site—even knowing it was empty—for their own mysterious reasons? On a trial-by-trial basis, it’s impossible to know, but “statistically, we have to invoke memory in order to explain their behavior,” he said.

A single moment of caching, Aronov says, is enough to create a new, lasting, and site-specific pattern. The implications of that are amazing. Chickadees can store thousands of moments across thousands of locations and then retrieve those memories at will whenever they need extra food.

It’s still unclear how the retrieval process works. From Aronov’s study, we know that chickadees can reactivate site-specific brain activity patterns when they see one of their caches (even when they haven’t yet seen what’s inside). But let’s say a chickadee has stored a seed in the bark of a particular tree. Does it need to see that tree in order to remember its cache site there? Or can it be going about its business on the other side of the forest, suddenly decide that it’s hungry for a seed, and then visualize the location of its nearest cache without actually being there? Scientists aren’t sure.

Post by Sophie Cox, Class of 2025

Page 2 of 27

Powered by WordPress & Theme by Anders Norén