Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Students Page 29 of 42

An Exploration in Tech: From Altamira to Google

Six countries and eight months later, I’m finally back at Duke after a junior-spring hiatus for a study abroad program in Spain. My experience abroad, while just as colorful as the Spanish

View of Spanish street from Plaza Mayor, Madrid

View of Spanish street from Plaza Mayor, Madrid

stereotype (and equally filled with paella and sangria), extended much deeper than beaches and bullfights. Fulfilling my Trinity requirements of social sciences through my Duke in Madrid courses unveiled challenging perspectives on memory, particularly of the Spanish Civil War, and on the psychology of the Spanish population and its individuals.

One of the greatest themes throughout my experience was the evolution of technology. Our Duke cohort of eight students visited the Cave of Altamira in rainy, northern Spain, which holds some of the world’s most famous, miraculously preserved cave paintings. More than anything, the physicality of the paintings, the oldest of which dated 35,600 years old, shocked me. The sheer passage of time embodied by the paintings eclipsed our human history twenty-fold, and our generation many times over.

In Altamira, I witnessed the evolution of perspective, as the cave artists experimented with foreground and background using raised and lowered ridges of the cave; simultaneously, my perspective on self-importance, at least in comparison to the whole of human history, changed. Not only is a lifespan negligible compared to the age of the world, but it is also only a drop in the bucket of the world’s population. A scientific discovery only makes an impact in the context of the accumulation of the world’s intelligence and knowledge, just as one cave painting gains more meaning from the context of all the paintings, older and newer, around it.

In May, I transitioned to a much more temporal study of technology in the Silicon Valley,

Photo credit: Robert Hahn

Photo credit: Robert Hahn

specifically as a software engineering intern at Google. I worked on the Fonts and Text team under Internationalization, where I sharpened my engineering prowess under a canopy of red, yellow, and blue umbrellas amid a sea of cheerful bike bell rings. While I met a wide range of interns and engineers working on a range of fascinating, impactful projects, I definitely applied my mind in a much more focused, practical manner. A modern day in engineering definitely stands in stark contrast to the lofty speculation I undertook in Spain.

Back in Durham, as I navigate foreign pathways, puzzle at the changed food venues, and double-take at new Duke buildings that seem to have popped up out of nowhere after construction, I’m thoroughly happy to have returned to Duke with a fresh mindset and renewed energy. After time away, the research that occurs here only seems more incredible, and I’m excited to explore it and write about it in the coming year.

Olivia_Zhu_100Post by Olivia Zhu, senior, Biophysics major and Computer Science minor

Four-Fifths of a Banana is Better than Half

Fractions strike fear in the hearts of many grade schoolers – but a new study reveals that they don’t pose a problem for monkeys.

Even as adults, many of us struggle to compute tips, work out our taxes, or perform a slew of other tasks that use proportions or percentages. Where did our teachers and parents go wrong when explaining discounts and portions of pie? Are our brains simply not built to handle quantitative part-whole relationships?

Lauren Brent macaques

Fractions and logical relationships are some of the things a wild macaque might think about while grooming and being groomed. (image copyright Lauren Brent)

To try to answer these questions, my colleagues and I wanted to test whether other species understand fractions. If our fellow primates can reason about proportions, our minds likely evolved to do so too.

In our study, which appears online in the journal Animal Cognition, Marley Rossa (Trinity 2014), Dr. Elizabeth Brannon, and I asked whether rhesus monkeys (Macaca mulatta) are able to compare ratios.

We let the monkeys play on a touch-screen computer for a candy reward. First we trained them to distinguish between two shapes that appeared on the screen: a black circle and a white diamond. When they touched the black circle, they heard a ding sound and received a piece of candy. But when they touched the white diamond, they heard a buzz sound and did not get any candy. The candy-loving monkeys quickly developed a habit of choosing the rewarding black circle.

http://www.free-training-tutorial.com/math-games/fraction-matching-equivalent1.html

Fractions example taken from sheppardsoftware.com

Next we introduced fractions. We showed two arrays on the screen, each with several black circles and white diamonds. The monkeys’ job was to touch the array having a greater ratio of black circles to white diamonds. For example, if there were three black circles and nine white diamonds on the left, and eight black circles and five white diamonds on the right, the monkey needed to touch the right side of the screen to earn her candy (8:5 is better than 3:9).

We didn’t always make it so easy, though. Sometimes both arrays had more black circles than white diamonds, or vice versa. Sometimes the array with the higher black-circle-to-white-diamond ratio actually had fewer black circles overall. They needed to find the largest fraction of black circles. For example, if there were eight black circles and 16 white diamonds on the left (8:16), and five black circles and six white diamonds on the right (5:6), the correct answer would be the latter, even though there were more black circles on the left side. That is how we made sure that monkeys were paying attention to the relative numbers of shapes in both arrays.

The monkeys were able to learn to compare proportions. They chose the array with the higher black-circle-to-white-diamond ratio about three-quarters of the time. Impressively, when we showed them new arrays with number combinations they had never seen before, the monkeys still tended to select the array with the better ratio.

Our results suggest that monkeys understand the magnitude of ratios. They also indicate that monkeys might be able to answer another type of question: analogies. These four-part statements you may have seen on standardized tests take the form “glove is to hand as sock is to foot.”

This kind of reasoning requires not only recognizing the relationship between two items (glove and hand) but also how that relationship compares with the relationship between the other two items (sock and foot). Understanding the relationships between relationships — that is, second-order relationships — was believed to require language, making it possibly a uniquely human ability. But in our study, monkeys successfully determined the relationship between two fractions – each one a relationship between two numbers – to make their choices.

If monkeys can reason about ratios and maybe even analogies, our minds are likely to have been set up with these skills as well.

The next step for this line of research will be to figure out how best to employ these in-born abilities when teaching proportions, percentages, and fractions to human children.

CITATION: “Comparison of discrete ratios by rhesus macaques (Macaca mulatta)” Caroline B. Drucker, Marley A. Rossa, Elizabeth M. Brannon. Animal Cognition, Aug. 19, 2015. DOI: 10.1007/s10071-015-0914-9

SAMSUNG CAMERA PICTURES

Guest post by graduate student Caroline B. Drucker. Caroline is curious about both the evolutionary origins and neural basis of numerical cognition, which she currently studies in lemurs and rhesus monkeys.

Uneasy Lies the Gut That Wears the Crown

Meerkats of the Kalahari Desert are social, and wormy. (all photos by Ed Kabay)

Meerkats of the Kalahari Desert are social, and wormy. (Photo by Ed Kabay)

 

The dominant matriarchs of meerkat society carry a heavy burden.

Not only are these females stressed from having to constantly scold and cajole the rowdy members of the tribe to maintain their perch as the primary breeders and enforcers of the clan, they apparently host more parasites as well.

In a two-year study at the Kuruman River Reserve in South Africa’s Kalahari Desert, Duke graduate student Kendra Smyth sampled the parasite diversity of 83 sexually mature meerkats living in 18 social groups.

Specifically, she gathered 97 freshly deposited poops for later analysis. Such is the glamour of graduate student field work.

After diluting and spinning, the samples were microscopically analyzed for careful counting of the eggs of six species of intestinal worms.

What Smyth found in the end was consistent with similar studies done in male-dominant societies: The boss is more heavily parasitized.

So, why is that? Well, it might be that the matriarch’s stressful job takes some resources away from her immune defenses, or it may be that her close contact with more members of the tribe puts her at greater risk of picking up worms from others.

Meerkats, and graduate students like Kendra Smyth, are often seen scanning the horizon.

Meerkats, and graduate students like Kendra Smyth, are often seen scanning the horizon. (Photo by Ed Kabay)

The bottom line is that the meerkat model of sexual selection carries a cost, which, as in other species, is more heavily borne by the breeders.

Smyth’s findings appeared online this month in Behavioral Ecology and are a part of her dissertation research on immune function in meerkats. In addition to poop, she’s sampling blood and looking at hormone levels and other variables.

“Parasites are a proxy for measuring the immune system,” said Smyth, who is a fourth-year grad student with Christine Drea of Evolutionary Anthropology and the Program in Ecology.

And wild-living meerkats can be a kind of proxy for humans. “Most of what we know about the immune system comes from laboratory mice living in unrealistic conditions,” Smyth said. “They’re housed singly in clean cages and they’re parasite-free. I’m not convinced that that’s how the immune system works when you put them in the natural world.”

“For any kind of species living in groups, like humans, it’s important to understand the dynamics of the spread of disease and which individuals might be susceptible,” she said.

During one meerkat weigh-in, this practical joker put his thumb on the scale.

During one meerkat weigh-in, this practical joker put his thumb on the scale. (Photo by Kendra Smyth)

This work was supported by the National Science Foundation (IOS-1021633) and a dissertation travel grant from the Duke Graduate School. Research at the Kuruman River Reserve is supported by the European Research Council (294494), Cambridge, Duke and Zurich Universities.

Post by Karl Leif Bates

Karl Leif Bates

Pinpointing the Cause of Coughs and Sneezes

Duke students are trying to help doctors find a faster way to pinpoint the cause of their patients’ coughs, sore throats and sniffles.

The goal is to better determine if and when to give antibiotics in order to stem the rise of drug-resistant superbugs, said senior Kelsey Sumner.

For ten weeks this summer, Sumner and fellow Duke student Christopher Hong teamed up with researchers at Duke Medicine to identify blood markers that could be used to tell whether what’s making someone sick is a bacteria, or a virus.

More than half of children who go to the doctor for a sore throat, ear infection, bronchitis or other respiratory illness leave with a prescription for antibiotics, even though the majority of these infections — more than 70% — turn out to be caused by viruses, which antibiotics can’t kill.

The end result is that antibiotics are prescribed roughly twice as often as they should be, to the tune of 11.4 million unnecessary prescriptions a year.

“It’s a big problem,” said Emily Ray Ko, MD, PhD, a physician at Duke Regional Hospital who worked with Sumner and Hong on the project, alongside biostatistician Ashlee Valente and infectious disease researcher Ephraim Tsalik of Duke’s Center for Applied Genomics and Precision Medicine.

Prescribing antibiotics when they aren’t needed can make other infections trickier to treat.

Fast, accurate genetic tests may soon help doctors tell if you really need antibiotics. Photo from the Centers for Disease Control and Prevention.

Fast, accurate genetic tests may soon help doctors tell if you really need antibiotics. Photo from the Centers for Disease Control and Prevention.

That’s because antibiotics wipe out susceptible bacteria, but a few bacteria that are naturally resistant to the drugs survive, which allows them to multiply without other bacteria to keep them in check.

More than two million people develop drug-resistant bacterial infections each year.

A single superbug known as methicillin-resistant Staphylococcus aureus, or MRSA, kills more Americans every year than emphysema, HIV/ AIDS, Parkinson’s disease and homicide combined.

Using antibiotics only when necessary can help, Ko said, but doctors need a quick and easy test that can be performed while the patient is still in the clinic or the emergency room.

“Most doctors need to know within an hour or two whether someone should get antibiotics or not,” Ko said. “Delaying treatment in someone with a bacterial infection could have serious and potentially life threatening consequences, which is one of the main reasons why antibiotics are over-prescribed.”

With help from Sumner and Hong, the team has identified differences in patients’ bloodwork they hope could eventually be detected within a few hours, whereas current tests can take days.

The researchers made use of the fact that bacteria and viruses trigger different responses in the immune system.

They focused on the genetic signature generated by tiny snippets of genetic material called microRNAs, or miRNAs, which play a role in controlling the activity of other genes within the cell.

Using blood samples from 31 people, ten with bacterial pneumonia and 21 with flu virus, they used a technique called RNA sequencing to compare miRNA levels in bacterial versus viral infections.

So far, the researchers have identified several snippets of miRNA that differ between bacterial and viral infections, and could be used to discriminate between the two.

“Hopefully it could be used for a blood test,” Sumner said.

“One goal of these types of assays could be to identify infections before symptoms even appear,” Ko said. “Think early detection of viral infections like Ebola, for example, where it would be helpful to screen people so you know who to quarantine.”

Sumner and Hong were among 40 students selected for a summer research program at Duke called Data+. They presented their work at the Data+ Final Symposium on July 23 in Gross Hall.

Data+ is sponsored by the Information Initiative at Duke, the Social Sciences Research Institute and Bass Connections. Additional funding was provided by the National Science Foundation via a grant to the departments of mathematics and statistical science.

RobinSmith_hed100

 

Writing by Robin Smith; photos and video by Christine Delp and Hannah McCracken

 

 

Brain Camp Makes 'Aha Moments'

Final presentations for the Neuroscience and Neuroethics Camp were held in the new headquarters of the Duke Institute for Brain Sciences.

Final presentations for the Neuroscience and Neuroethics Camp were held in the new headquarters of the Duke Institute for Brain Sciences. (photo by  Jon Lepofsky)

Given just two weeks to formulate a hypothesis about brains, Duke’s Cognitive Neuroscience and Neuroethics Camp students spoke with impressive confidence as they presented at the Duke Institute for Brain Sciences (DIBS) on July 16.

The high school students had designed experiments using the concepts and methods of cognitive neuroscience to demonstrate what is unique about human brains.

“It was good to see the curiosity, energy, and critical thinking that was present throughout the students’ projects,” said Jon Lepofsky, Academic Director for the Cognitive Neuroscience & Neuroethics camp, the Duke Youth Programs summer program of hands-on, applied problem-solving activities and labs was developed in partnership with DIBS.

Campers dissected sheep brains

The campers dissected real sheep brains

Lepofsky said he was pleased to start the first year of the camp with an engaged, diverse, and thoughtful group of 22 students.

Andie Meddaugh, Xi Yu Liu, Emily Lu and Anand Wong were working on a project involving the logic and the emotion of the human brain. Their hypothesis was that the ability to combine logic and emotion to create a subjective logic shows the difference between human brains and other intelligence processing systems, like artificial intelligence.

Meddaugh said she liked thinking about the brain and logic.

“I enjoy thinking about the problem of what makes us special,” said Meddaugh.

Another group of students presented a project involving the social construct and morality of the brain.

Nicolas Douglass, Abigail Efird, Grace Garret and Danielle Dy are using a hypothesis that suggests if organisms are presented with an issue of resource availability how they respond is a matter of survival.  They proposed using birds, humans, and monkeys to test the reactions of each organism as it is placed outside of its comfort zone.

Abigail Efird said teamwork and “aha moments” were the best way to conduct this project.

“It took human ingenuity and scientific development in order for us to come up with different strategies,” said Efird. “It was surprising to see that humans are not as special and are very much similar to other organisms. “

The group's final "class picture" before heading home to High School.

The group’s final “class picture” before heading home to High School.

Lepofsky said at the end of the program, students will leave with a new set of critical thinking tools and a better understanding of decision- making.

“I know the students will walk away with a deeper understanding of how to evaluate news stories celebrating neuroscience,” Lepofsky said. “They will know how to think like scientists and how to ask quality questions.”

Along with developing a hypothesis on the human brain, the students participated in interactive workshops on perception and other forms of non-conscious processing with Duke researchers. They’ve engaged in debates about topics in neuroethics and neurolaw. In addition to that they went on lab tours and visits to the DiVE.

For more information on Duke’s Cognitive Neuroscience and Neuroethics Camp visit http://www.learnmore.duke.edu/youth/neurosciences/ or call (919) 684-6259.

Warren_Shakira_hed100 Guest post by Shakira Warren, NCCU Summer Intern

So You Want to Be a Data Scientist

Ellie Burton’s summer job might be described as “dental detective.”

Using 3-D images of bones, she and teammates Kevin Kuo and GiSeok Choi are teaching a computer to calculate similarities between the fine bumps, grooves and ridges on teeth from dozens of lemurs, chimps and other animals.

They were among more than 50 students — majoring in everything from political science to engineering — who gathered on the third floor of Gross Hall this week for a lunch to share status updates on some unusual summer jobs.

The budding data scientists included 40 students selected for a summer research program at Duke called Data+. For ten weeks from mid-May to late July, students work in small teams on projects using real-world data.

Another group of students is working as high-tech weather forecasters.

Using a method called “topological data analysis,” Joy Patel and Hans Riess are trying to predict the trajectory and intensity of tropical cyclones based on data from Hurricane Isabel, a deadly hurricane that struck the eastern U.S. in 2003.

The student teams are finding that extracting useful information from noisy and complex data is no simple feat.

Some of the datasets are so large and sprawling that just loading them onto their computers is a challenge.

“Each of our hurricane datasets is a whopping five gigabytes,” said Patel, pointing to an ominous cloud of points representing things like wind speed and pressure.

They encounter other challenges along the way, such as how to deal with missing data.

Andy Cooper, Haoyang Gu and Yijun Li are analyzing data from Duke’s massive open online courses (MOOCs), not-for-credit courses available for free on the Internet.

Duke has offered dozens of MOOCs since launching the online education initiative in 2012. But when the students started sifting through the data there was just one problem: “A lot of people drop out,” Li said. “They log on and never do anything again.”

Some of the datasets also contain sensitive information, such as salaries or student grades. These require the students to apply special privacy or security measures to their code, or to use a special data repository called the SSRI Protected Research Data Network (PRDN).

Lucy Lu and Luke Raskopf are working on a project to gauge the success of job development programs in North Carolina.

One of the things they want to know is whether counties that receive financial incentives to help businesses relocate or expand in their area experience bigger wage boosts than those that don’t.

To find out, they’re analyzing data on more than 450 grants awarded between 2002 and 2012 to hundreds of companies, from Time Warner Cable to Ann’s House of Nuts.

Another group of students is analyzing people’s charitable giving behavior.

By looking at past giving history, YunChu Huang, Mike Gao and Army Tunjaicon are developing algorithms similar to those used by Netflix to help donors identify other nonprofits that might interest them (i.e., “If you care about Habitat for Humanity, you might also be interested in supporting Heifer International.”)

One of the cool things about the experience is if the students get stuck, they already know other students using the same programming language who they can turn to for help, said Duke mathematician Paul Bendich, who coordinates the program.

The other students in the 2015 Data+ program are Sachet Bangia, Nicholas Branson, David Clancy, Arjun Devarajan, Christine Delp, Bridget Dou, Spenser Easterbrook, Manchen (Mercy) Fang, Sophie Guo, Tess Harper, Brandon Ho, Alex Hong, Christopher Hong, Ethan Levine, Yanmin (Mike) Ma, Sharrin Manor, Hannah McCracken, Tianyi Mu , Kang Ni, Jeffrey Perkins, Molly Rosenstein, Raghav Saboo, Kelsey Sumner, Annie Tang, Aharon Walker, Kehan Zhang and Wuming Zhang.

Data+ is sponsored by the Information Initiative at Duke, the Social Sciences Research Institute and Bass Connections. Additional funding was provided by the National Science Foundation via a grant to the departments of mathematics and statistical science.

Writing by Robin Smith; video by Christine Delp and Hannah McCracken

 

A Gutsy Approach to Lemur Science

By Sheena Faherty, biology Ph.D. candidate

Can the microorganisms living in a baby lemur’s gut help it grow up to be a vegetarian or an omnivore?

A new study appearing May 13 in Plos One shows that baby lemurs’ gut bacteria have different, diet-dependent strategies for reaching adult mixtures of microbes.  This, in turn, might contribute to why some lemurs are strictly leaf-eaters, while some nosh on just about everything.

lemur eating flowers

A black and white ruffed lemur (Varecia variegata) finds North Carolina’s vegetation as delicious as it is beautiful. (Duke Lemur Center, David Haring)

Erin McKenney, lead author on the study and a Ph.D. candidate in the Biology department, is looking at the patterns of how the bacteria colonize the gut of their lemur host and why this is essential for helping the adult lemurs navigate their environment — and their diets.

“This study is important because all mammals are born with basically sterile guts,” McKenney said. “But by the time we’re adult mammals, there are 20 trillion bacteria living in the gut. (The bugs are an) adaptive super organ that has co-evolved with the host and dictated the host’s evolution. We want to know more about how that happens.”

This “microbiome” of the gut is a jack-of-all-trades, performing jobs like protecting the host’s body from pathogens and helping it digest food. When the gut’s microbes digest foods that are high in fiber — like plant matter — some of the digestion by-products are absorbed by the intestine, which provides nutrition for the body. Humans get up to 10 percent of our daily nutritional requirements from fiber breakdown by bacteria.

Erin McKenney

Erin McKenney scooping lemur poop for SCIENCE!

“Mammals don’t secrete the enzymes that are necessary, so no mammal can digest fiber on its own,” McKenney said. “These microbes are performing an incredibly important life process for us.”

At the Duke Lemur Center, McKenney collected fecal samples from three different species of lemur that evolved to eat different foods—a strict leaf-eater, and two omnivores. Using DNA sequencing, she determined the communities of bacteria that are living in their guts at different life stages from birth to adulthood.

Watching microbiomes through time may enable her to answer the question of how the microbiome of each species becomes teeming with 20 trillion bacteria, and if the patterns differ based on diet.

lemur eating pokeweed

Vegetarian lemurs can eat a surprising variety of stuff we’d find nasty, like pokeweed and even poison ivy. (Duke Lemur Center, David Haring)

The results suggest that all species of baby lemurs, when they are born and nursing from their mothers have similar microbiome profiles that are much less complex than adult profiles. But leaf-eaters that eat the most fiber show adult microbiome profiles as soon as solid foods are introduced, which is in contrast to the other two species that take longer to reach adult microbiome profiles. Additionally, leaf-eaters have more complex microbial communities, which allows them to digest fiber-rich foods.

“So when you start to think about the really big picture, beyond everything the gut microbes do for the hosts they live inside of, we find the microbes have done an incredible service to mammalian speciation. The only way that we have leaf-eaters is because of these gut microbes,” McKenney said.

Geeky Goggles Let You Take a Field Trip Without Leaving Class

by Robin A. Smith

Kun Li of the Center for Instructional Technology and senior physics major Nicole Gagnon try out a virtual reality headset called Oculus Rift. Photo by Jeannine Sato.

Kun Li of the Center for Instructional Technology and senior physics major Nicole Gagnon try out a virtual reality headset called Oculus Rift. Photo by Jeannine Sato.

On the last day of class, just a few yards from students playing Twister and donning sumo suits, about two dozen people try on futuristic goggles in a windowless conference room.

Behind the clunky headgear, they are immersed in their own virtual worlds.

One woman peers inside a viewer and finds herself underwater, taking a virtual scuba tour.

The sound of breathing fills her headphones and bubbles float past her field of view.

When she looks left or right the image on the screen moves too, thanks to a tiny device called an accelerometer chip — the same gadget built into most smartphones that automatically changes the screen layout from landscape to portrait as the phone moves or tilts.

She turns her head to “swim” past corals and schools of fish. Suddenly a shark lunges at her and bares its razor teeth. “Whoa!” she yelps, taking a half-step back into a table.

A few feet away, virtual reality enthusiast Elliott Miller from Raleigh straps on something that looks like a pair of ski goggles and takes a hyperrealistic roller coaster ride.

He swivels in his office chair for a 100-degree view of the other passengers and the coaster’s corkscrews, twists and turns as he zips along at more than 60 miles per hour, in HD resolution.

“It feels pretty real. Especially when you’re going up a big drop,” Miller said.

Elliott Miller uses a virtual reality headset to take a ride on a real-life roller coaster in Sweden called the Helix. Photo by Jeannine Sato.

Elliott Miller uses a virtual reality headset to take a ride on a real-life roller coaster in Sweden called the Helix. Photo by Jeannine Sato.

Duke senior Nicole Gagnon declines a ride. “I get motion sick,” she said.

Virtual reality headsets like these aren’t in use in Duke classrooms — at least not yet.

Since its beginnings in the mid-1980s, the technology has mostly been developed for the gaming industry.

“[But] with virtual reality becoming more widespread, it won’t be long before it makes it to the classroom,” said Seth Anderson from Duke’s Center for Instructional Technology.

Duke chemistry professor Amanda Hargrove and postdoc Gary Kapral have been testing out ways to use the devices in their chemistry courses.

Thanks to funding from the Duke Digital Initiative, they designed a program that shrinks students down to the size of a molecule and lets them explore proteins and nucleic acids in 3-D.

“We call this demo the ‘Molecular Jungle Gym,’” Kapral said. “You can actually go inside, say, a strand of RNA, and stand in the middle and look around.”

The pilot version uses a standard Xbox-style controller to help students understand how proteins and nucleic acids interact with each other and with other kinds of molecules — key concepts for things like drug design.

Kapral has found that students who use virtual reality show better understanding and retention than students who view the same molecules on a standard computer screen.

“The Duke immersive Virtual Environment (DiVE) facility has been doing this for a long time, but you have to physically go there,” said Elizabeth Evans of the Duke Digital Initiative. “What makes virtual reality headsets like these different is they make virtual reality not only portable but also affordable.”

Duke student Nicole Gagnon peers through a cardboard viewer that turns any smartphone into a virtual reality headset. Photo by Jeannine Sato.

Duke student Nicole Gagnon peers through a cardboard viewer that turns any smartphone into a virtual reality headset. Photo by Jeannine Sato.

Of course, “affordable” is relative. The devices Kapral and Hargrove are using cost more than $300 per headset. But for less than 20 dollars, anyone can turn a smartphone into a virtual reality headset using a simple kit from makers like Google Cardboard, which designs viewers made of folded cardboard.

Critics of virtual reality technology say it’s just another form of escapism, after TV, the Internet and smartphones.

But educational technology advocates see it as a way to help students see and hear and interact with things that would be impossible otherwise, or only available to a lucky few:  to travel back in time and take virtual field trips to historic battlefields as cannon fire fills the air, to visit archeological sites and examine one-of-a-kind cultural artifacts from different angles, or experience different climate change scenarios predicted for the future.

“It’s hard to imagine what one inch versus one foot of sea level rise means unless you stand on a beach and experience it,” Evans said. “Virtual reality could let us give students experiences that are too expensive, too dangerous, or too rare to give them in real life.”

Kapral agrees: “One day students could even do chemistry experiments without worrying about blowing things up.”

Join the mailing list for virtual reality at Duke: https://lists.duke.edu/sympa/subscribe/vr2learn

In a free mobile app called SeaWorld VR, the screen displays two images side by side that the viewer’s brain turns into a 3-D image:

https://www.youtube.com/watch?v=bAlLSGVXLOE

Geometry of Harmony in Impressionist Music

by Anika Radiya-Dixit

Like impressionist art – such as Monet’s work Sunset – impressionist music does not have fixed structures. Both artforms use the art of abstraction to give a sense of the theme of the work.

On the other hand, classical music, such as sonatas, flows with a rhythmic beat with a clear beginning, middle, and end to the work.

Since there is little theoretical study on the compositional patterns of the contemporary style of music, Duke senior Rowena Gan finds the mathematical exploration of impressionist music quite exciting, as she expressed in her senior thesis presentation April 17.

Sunset: Impressionist art by Claude Monet

Sunset: Impressionist art by Claude Monet

Classical music is well known for its characteristic chord progressions, which can be geometrically represented with a torus – or a product of circles – as shown in the figure below.

Torus depicting C major in orange highlight and D minor in blue highlight

Torus depicting C major in orange highlight and D minor in blue highlight

By numbering each note, the Neo-Riemannian theory can be used to explain chord progressions in classical music by finding mathematical operations to describe the transitions between the chords.

Expressing chord progressions as mathematical operations

Expressing chord progressions as mathematical operations

asic transformations between chords described by the Neo-Riemannian theory.

Basic transformations between chords described by the Neo-Riemannian theory.

Similar to a chord, a scale is also a collection of notes. In classical music, scales typically played have seven notes, such as the C major scale below:

C Major Scale.

C Major Scale.

Impressionist music, however, is marked by the use of exotic scales with different numbers of notes that tend to start at notes off the key center. In that case, how do we represent scales in Impressionist music? One of the ways of representation that Gan explored is by determining the distance between the scales – called interscalar distance – by depicting each scale as a point, and comparing this value to the modulation frequency.

Essentially, the modulation frequency is determined by varying the frequency of the audio wave in order to carry information; a wider range of frequencies corresponds to a higher modulation frequency. For example, the modulation frequency is the same for the pair of notes of D and E as well as F and G, which both have lower modulation frequencies than between notes D and G.

Gan calculated the correlation between modulation frequency and interscalar distance for various musical pieces and found the value to be higher for classical music than for impressionist music. This means that impressionist music is less homogenous and contains a greater variety of non-traditional scale forms.

Gan explores more detailed findings in her paper, which will be completed this year.

Rowena Gan is a senior at Duke in Mathematics. She conducted her research under Professor Ezra Miller, who can be contacted via email here.

World's Largest Atom Smasher Gets a Reboot

by Robin Ann Smith

Buried 300 feet beneath the Franco-Swiss border in a 17-mile circular tunnel, the world’s biggest scientific instrument is revving back to life after a two-year overhaul.

Duke researchers are ready here in Durham and at the CERN physics laboratory near Geneva as the Large Hadron Collider gears up for its second three-year run.

Duke physics students Chen Zhou and Elena Villhauer pose next to one of the thousands of enormous magnets that send proton beams hurtling around the Large Hadron Collider's 17-mile circumference more than 10,000 times a second.

Duke physics students Chen Zhou and Elena Villhauer pose next to one of the thousands of enormous magnets that send proton beams hurtling around the Large Hadron Collider’s 17-mile circumference more than 10,000 times a second.

By mid-summer, the largest and most powerful particle accelerator in the world will use its superconducting magnets to send beams of protons — invisible particles in the center of every atom — hurtling around the giant circular track at nearly the speed of light.

The reboot will ramp up to almost twice the energy of its first run, smashing protons together with a collision energy of 13 trillion electron volts.

One trillion electron volts is roughly the energy of a flying mosquito. While this isn’t much for a mosquito, it’s a huge amount of energy for something as tiny as a proton, which packs that energy into a space a million million times smaller than a mosquito.

Duke physics graduate student Lei Li takes a shift in the ATLAS control room.

Duke physics graduate student Lei Li takes a shift in the ATLAS control room.

By sifting through the debris that results from these collisions, researchers hope to figure out what particles may have existed in the first trillionths of a second after the “Big Bang” of the early Universe.

For the Duke scientists who have been involved in analyzing the data from the LHC’s first run from 2010 to 2013 — millions of gigabytes of data a year — the work never stopped.

That includes people like physics graduate student David Bjergaard, who studies an elusive, short-lived particle charmingly named the charm quark.

Bjergaard and other Duke scientists will be on-site this summer to continue their experiments at ATLAS, one of the four massive detectors that record the collisions.

The highlight of the LHC’s first run was the end of the 50-year hunt for a particle called the Higgs boson, the missing piece in a theory called the Standard Model of particle physics.

Now researchers are hoping to make more Higgs particles and study them more closely. But they’re also on the lookout for surprises.

“Maybe we’ll see something completely unexpected that doesn’t fit into any of our current models,” said Duke physics professor Mark Kruse, who from 2007 to 2009 led one of the teams that searched for the Higgs boson at Fermilab near Chicago.

“I am excited about the possibility,” said Duke graduate student Chen Zhou, who has been working with Kruse on a way to search for so-called ”new physics” by looking for events that show up in the ATLAS detector as a high-energy electron together with a similar but heavier particle called a muon.

1209198_02-A5-at-72-dpi

The 7,000-ton ATLAS detector at the Large Hadron Collider weighs as much as the Eiffel Tower and records about 20 million proton-proton collisions every second.

If new particles are lurking just around the corner, then they should be detected fairly quickly, Kruse said.

Duke student researcher Elena Villhauer will be scouring the data for hints of “quantum” black holes. These aren’t the black holes of space horror films — collapsed stars from which nothing, not even light, can escape — but harmless black holes that are smaller than a proton and evaporate instantly. If found, they would support the existence of extra dimensions in space beyond the three that we see.

“It’s science fiction possibly coming to life,” said Villhauer, who has been based at CERN since July 2014.

Other Duke students will be looking for the invisible substance called “dark matter,” which makes up most of the mass of the universe but has never been produced in the lab. “We know that dark matter exists. The only question is, can we produce it and detect it at the Large Hadron Collider? It could manifest itself in ways that we might not expect,” Kruse said.

The Duke researchers are among 10,000 scientists from 113 countries who collaborate on experiments at Large Hadron Collider.

For Lei Li, a Duke graduate student in physics who moved to CERN last year, the best part about living on-site is the opportunity to mingle with world experts in her field, face-to-face, on a daily basis.

Before, if she wanted to talk to someone working on the supercollider she had to connect remotely online, and deal with a six-hour time difference.

“[Now] If I come across a problem, I just invite an expert to grab a coffee,” she said.

CERN_Aerial_View

Bird’s-eye view of the CERN physics lab near Geneva, Switzerland.

 

Page 29 of 42

Powered by WordPress & Theme by Anders Norén