Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Science Communication & Education (Page 2 of 14)

Venturing Out of the Lab to Defend Science

It’s 6 p.m. on a Wednesday and the grad students aren’t at their lab benches. IM softball doesn’t start till next week, what gives?

We’ve snuck out of our labs a bit early to take in a dose of U.S. policy for the evening.

Politics fall far outside our normal areas of expertise. I’m a biology Ph.D. student studying plants — even with my liberal arts education, politics isn’t my bread and butter.

Buz Waitzkin of Science & Society (blue shirt) gave grad students a highly accelerated intro to matters of science policy.

But the current political climate in the U.S. has many scientists taking a more careful look into politics. Being scholars who have a sense of the world around us has become more important than ever.

“Agency regulation, funding, it’s all decided by our branches of government,” says Ceri Weber, a 3rd year Ph.D. candidate in Cell Biology.

Weber, a budding “sci-pol” enthusiast and the general programming chair for the student group INSPIRE, feels passionately about getting scientists informed about policy.

So she organized this event for graduate scientists to talk with the deputy director of Duke Science & Society, Buz Waitzkin, who previously served as special counsel to President Bill Clinton, and now teaches science policy classes cross-listed between Duke’s Biomedical Science programs and the Law School.

Seated with food and drinks—the way to any grad student’s heart—we found ourselves settling in for an open discussion about the current administration and the impact its policies could have on science.

We covered a lot of ground in our 2-hour discussion, though there was plenty more we would love to continue learning.

We discussed: lobbying, executive orders, the balances of power, historical context, tradition, and civil actions, to name a few.

There were a lot of questions, and a lot of things we didn’t know.

Even things as simple as “what exactly is a regulation?” needed to be cleared up. We’ve got our own definition in a biological context, but regulation takes on a whole new meaning in a political one. It was neat having the chance to approach this topic from the place of a beginner.

We were floored by some of the things we learned, and puzzled by others. Importantly, we found some interesting places of kinship between science and policy.

When we discussed the Congressional Review Act, which impacts regulations—the main way science policy is implemented—we learned there is ambiguity in law just like there is in science.

One area on all of our minds was how we fit into the picture. Where can our efforts and knowledge as scientists and students can make a difference?

I was shocked to learn of the lack of scientists in government: only five ever in Congress, and three in the Cabinet.

But luckily, there is space for us as science advisors in different affiliations with the government. There are even Duke graduate students working on a grant to develop science policy fellowships in the NC state legislature.

At the end of the night, we were all eager to learn more and encouraged to participate in politics in the ways that we can. We want to be well-versed in policy and take on an active role to bring about change in our communities and beyond.

Hopefully, as the years go on, we’ll have more opportunities to deepen our knowledge outside of science in the world around us. Hopefully, we’ll have more scientists who dare to step out of the lab.

Guest Post by Graduate Student Ariana Eily

Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.


The Man Who Knew Infinity, and his biggest fan

Ken Ono, a distinguished professor of mathematics at Emory University, was visibly thrilled to be at Duke last Thursday, January 26. Grinning from ear to ear, he announced that he was here to talk about three of his favorite things: math, movies, and “one of the most inspirational figures in my life”: Srinivasa Ramanujan.

Professor Ken Ono of Emory University poses with a bust of Newton and one of Ramanujan’s legendary notebook pages. Source: IFC Films.

Ramanujan, I learned, is one of the giants of mathematics; an incontestable genius, his scrawls in letters and notebooks have spawned whole fields of study, even up to 100 years after his death. His life story continues to inspire mathematicians around the globe—as well as, most recently, a movie which Ono helped produce: The Man Who Knew Infinity, featuring Hollywood stars Dev Patel and Jeremy Irons.

I didn’t realize until much too late that this lecture was essentially one massive spoiler for the movie. Nevertheless, I got to appreciate the brains and the heart behind the operation in hearing Ono express his passion for the man who, at age 16, inspired him to see learning in a new light. Ramanujan’s story follows.

Ramanujan was born in Kambakunam, India in 1887, the son of a cloth merchant and a singer at a local temple. He was visibly gifted from a young age, not only an outstanding student, but also a budding intellectual: by age 13, he had discovered most of modern trigonometry by himself.

Ramanujan’s brilliance earned him scholarships to attend college, only for him to flunk out not once, but twice: he was so engrossed in mathematics that he paid little heed to his actual schoolwork and let his grades suffer. His family and friends, aware of his genius, supported him anyway.

Thus, he spent the daytime in a low-level accounting job that earned him barely enough income to live, and spent the night scribbling groundbreaking mathematics in his notebooks.

A photo portrait of Srinivasa Ramanujan, a brilliant Indian mathematician born in the late 19th century. Source: IFC Films.

Unable to share his discoveries and explain their importance to those around him, Ramanujan finally grew so frustrated that, in desperation, he wrote to dozens of prominent English mathematics professors asking for help. The first of these to respond was G. H. Hardy (for any Biology nerds, this is the Hardy of the Hardy-Weinberg equilibrium), who examined the mathematics Ramanujan included in his letters and was so astounded by what he found that, at first, he thought it was a hoax perpetrated by his friend.

Needless to say, it wasn’t a hoax.

Ramanujan left India to join Hardy in England and publish his discoveries. The meat of the movie, according to Ono, is “the transformation of the relationship between these two characters:” one, a devout Hindu with no formal experience in higher education; the other, a haughty English professor who happened to be an atheist.

The two push past their differences and manage to jointly publish 30 papers based on Ramanujan’s work. Overcoming impossible odds—poverty, World War I, and racism in particular—Ramanujan’s discoveries finally found the light of day.

Sadly, Ramanujan’s story was cut short: a lifelong vegetarian, he fell ill of malnutrition while working in England, returning to India for the last year of his life in the hopes that the warmer climate would improve his health. He died in 1920, at 32 years old.

He continued writing to Hardy from his deathbed, his last letter including revolutionary ideas, which, like much of his work, were so far ahead of his time that mathematicians only began to wrap their minds around them decades after his death.

“Ramanujan was a great anticipator of mathematics, writing formulas that seemed foreign or random at the time but later inspired deep and revolutionary discoveries in math,” Ono said.

Ono’s infatuation with Ramanujan began when he was 16 years old, himself the son of a mathematics professor at Johns Hopkins University. Upon receiving a letter from Ramanujan’s widow, Ono’s father—by Ono’s account, a very stoic, stern man—was brought to tears. Shocked, Ono began to research the origin of the letter, discovering Ramanujan’s story and reaching a turning point in his own life when he realized that there were aspects to learning that were far more important than grades.

That seems to have worked out quite well for Ono, considering his success and expertise in his own area of study—not to mention that he now has “Hollywood producer” under his belt.

Professor Ken Ono chats with actor Dev Patel on the set of The Man Who Knew Infinity. Photo credit: Sam Pressman.


Post by Maya Iskandarani

Creating Technology That Understands Human Emotions

“If you – as a human – want to know how somebody feels, for what might you look?” Professor Shaundra Daily asked the audience during an ECE seminar last week.

“Facial expressions.”
“Body Language.”
“Tone of voice.”
“They could tell you!”

Over 50 students and faculty gathered over cookies and fruits for Dr. Daily’s talk on designing applications to support personal growth. Dr. Daily is an Associate Professor in the Department of Computer and Information Science and Engineering at the University of Florida interested in affective computing and STEM education.

Dr. Daily explaining the various types of devices used to analyze people’s feelings and emotions. For example, pressure sensors on a computer mouse helped measure the frustration of participants as they filled out an online form.

Affective Computing

The visual and auditory cues proposed above give a human clues about the emotions of another human. Can we use technology to better understand our mental state? Is it possible to develop software applications that can play a role in supporting emotional self-awareness and empathy development?

Until recently, technologists have largely ignored emotion in understanding human learning and communication processes, partly because it has been misunderstood and hard to measure. Asking the questions above, affective computing researchers use pattern analysis, signal processing, and machine learning to extract affective information from signals that human beings express. This is integral to restore a proper balance between emotion and cognition in designing technologies to address human needs.

Dr. Daily and her group of researchers used skin conductance as a measure of engagement and memory stimulation. Changes in skin conductance, or the measure of sweat secretion from sweat gland, are triggered by arousal. For example, a nervous person produces more sweat than a sleeping or calm individual, resulting in an increase in skin conductance.

Galvactivators, devices that sense and communicate skin conductivity, are often placed on the palms, which have a high density of the eccrine sweat glands.

Applying this knowledge to the field of education, can we give a teacher physiologically-based information on student engagement during class lectures? Dr. Daily initiated Project EngageMe by placing galvactivators like the one in the picture above on the palms of students in a college classroom. Professors were able to use the results chart to reflect on different parts and types of lectures based on the responses from the class as a whole, as well as analyze specific students to better understand the effects of their teaching methods.

Project EngageMe: Screenshot of digital prototype of the reading from the galvactivator of an individual student.

The project ended up causing quite a bit of controversy, however, due to privacy issues as well our understanding of skin conductance. Skin conductance can increase due to a variety of reasons – a student watching a funny video on Facebook might display similar levels of conductance as an attentive student. Thus, the results on the graph are not necessarily correlated with events in the classroom.

Educational Research

Daily’s research blends computational learning with social and emotional learning. Her projects encourage students to develop computational thinking through reflecting on the community with digital storytelling in MIT’s Scratch, learning to use 3D printers and laser cutters, and expressing ideas using robotics and sensors attached to their body.

VENVI, Dr. Daily’s latest research, uses dance to teach basic computational concepts. By allowing users to program a 3D virtual character that follows dance movements, VENVI reinforces important programming concepts such as step sequences, ‘for’ and ‘while’ loops of repeated moves, and functions with conditions for which the character can do the steps created!



Dr. Daily and her research group observed increased interest from students in pursuing STEM fields as well as a shift in their opinion of computer science. Drawings from Dr. Daily’s Women in STEM camp completed on the first day consisted of computer scientist representations as primarily frazzled males coding in a small office, while those drawn after learning with VENVI included more females and engagement in collaborative activities.

VENVI is a programming software that allows users to program a virtual character to perform a sequence of steps in a 3D virtual environment!

In human-to-human interactions, we are able draw on our experiences to connect and empathize with each other. As robots and virtual machines grow to take increasing roles in our daily lives, it’s time to start designing emotionally intelligent devices that can learn to empathize with us as well.

Post by Anika Radiya-Dixit

Science Meets Policy, and Maybe They Even Understand Each Other!

As we’ve seen many times, when complex scientific problems like stem cells, alternative energy or mental illness meet the policy world, things can get a little messy. Scientists generally don’t know much about law and policy, and very few policymakers are conversant with the specialized dialects of the sciences.

A screenshot of SciPol’s handy news page.

Add the recent rapid emergence of autonomous vehicles, artificial intelligence and gene editing, and you can see things aren’t going to get any easier!

To try to help, Duke’s Science and Society initiative has launched an ambitious policy analysis group called SciPol that hopes to offer great insights into the intersection of scientific knowledge and policymaking. Their goal is to be a key source of non-biased, high-quality information for policymakers, academics, commercial interests, nonprofits and journalists.

“We’re really hoping to bridge the gap and make science and policy accessible,” said Andrew Pericak, a contributor and editor of the service who has a 2016 masters in environmental management from the Nicholas School.

The program also will serve as a practical training ground for students who aspire to live and work in that rarefied space between two realms, and will provide them with published work to help them land internships and jobs, said SciPol director Aubrey Incorvaia, a 2009 masters graduate of the Sanford School of Public Policy.

Aubrey Incorvaia chatted with law professor Jeff Ward (center) and Science and Society fellow Thomas Williams at the kickoff event.

SciPol launched quietly in the fall with a collection of policy development briefs focused on neuroscience, genetics and genomics. Robotics and artificial intelligence coverage began at the start of January. Nanotechnology will launch later this semester and preparations are being made for energy to come online later in the year. Nearly all topics are led by a PhD in that field.

“This might be a different type of writing than you’re used to!” Pericak told a meeting of prospective undergraduate and graduate student authors at an orientation session last week.

Some courses will be making SciPol brief writing a part of their requirements, including law professor Jeff Ward’s section on the frontier of robotics law and ethics. “We’re doing a big technology push in the law school, and this is a part of it,” Ward said.

Because the research and writing is a learning exercise, briefs are published only after a rigorous process of review and editing.

A quick glance at the latest offerings shows in-depth policy analyses of aerial drones, automated vehicles, genetically modified salmon, sports concussions and dietary supplements that claim to boost brain power.

To keep up with the latest developments, the SciPol staff maintains searches on WestLaw, the Federal Register and other sources to see where science policy is happening. “But we are probably missing some things, just because the government does so much,” Pericak said.

Post by Karl Leif Bates

X-mas Under X-ray

If, like me, you just cannot wait until Christmas morning to find out what goodies are hiding in those shiny packages under the tree, we have just the solution for you: stick them in a MicroCT scanner.

A christmas present inside a MicroCT scanner.

Our glittery package gets the X-ray treatment inside Duke’s MicroCT scanner. Credit Justin Gladman.

Micro computed-tomography (CT) scanners use X-ray beams and sophisticated visual reconstruction software to “see” into objects and create 3D images of their insides. In recent years, Duke’s MicroCT has been used to tackle some fascinating research projects, including digitizing fossils, reconstructing towers made of stars, peaking inside of 3D-printed electronic devices, and creating a gorgeous 3D reconstruction of organs and muscle tissue inside this Southeast Asian Tree Shrew.


A 20 minute scan revealed a devilish-looking rubber duck. Credit Justin Gladman.

But when engineer Justin Gladman offered to give us a demo of the machine last week, we both agreed there was only one object we wanted a glimpse inside: a sparkly holiday gift bag.

While securing the gift atop a small, rotating pedestal inside the device, Gladman explained how the device works. Like the big CT scanners you may have encountered at a hospital or clinic, the MicroCT uses X-rays to create a picture of the density of an object at different locations. By taking a series of these scans at different angles, a computer algorithm can then reconstruct a full 3D model of the density, revealing bones inside of animals, individual circuits inside electronics – or a present inside a box.

“Our machine is built to handle a lot of different specimens, from bees to mechanical parts to computer chips, so we have a little bit of a jack-of-all-trades,” Gladman said.

Within a few moments of sticking the package in the beam, a 2D image of the object in the bag appears on the screen. It looks kind of like the Stay Puft Marshmallow Man, but wait – are those horns?

Blue devil ducky in the flesh.

Blue devil ducky in the flesh.

Gladman sets up a full 3D scan of the gift package, and after 20 minutes, the contents of our holiday loot is clear. We have a blue devil rubber ducky on our hands!

Blue ducky is a fun example, but the SMIF lab always welcomes new users, Gladman says, especially students and researchers with creative new applications for the equipment. For more information on how to use Duke’s MicroCT, contact Justin Gladman or visit the Duke SMIF lab at their website, Facebook, Youtube or Instagram pages.

Kara J. Manke, PhD

Post by Kara Manke

When Art Tackles the Invisibly Small

Huddled in a small cinderblock room in the basement of Hudson Hall, visual artist Raewyn Turner and mechatronics engineer Brian Harris watch as Duke postdoc Nick Geitner positions a glass slide under the bulky eyepiece of an optical microscope.

To the naked eye, the slide is completely clean. But after some careful adjustments of the microscope, a field of technicolor spots splashes across the viewfinder. Each point shows light scattering off one of the thousands of silver nanoparticles spread in a thin sheet across the glass.

“It’s beautiful!” Turner said. “They look like a starry sky.”


A field of 10-nanometer diameter silver nanoparticles (blue points) and clusters of 2-4 nanoparticles (other colored points) viewed under a dark-field hyperspectral microscope. The clear orbs are cells of live chlorella vulgaris algae. Image courtesy Nick Geitner.

Turner and Harris, New Zealand natives, have traveled halfway across the globe to meet with researchers at the Center for the Environmental Implications of Nanotechnology (CEINT). Here, they are learning all they can about nanoparticles: how scientists go about detecting these unimaginably small objects, and how these tiny bits of matter interact with humans, with the environment and with each other.


The mesocosms, tucked deep in the Duke Forest, currently lay dormant.

The team hopes the insights they gather will inform the next phases of Steep, an ongoing project with science communicator Maryse de la Giroday which uses visual imagery to explore how humans interact with and “sense” the nanoparticles that are increasingly being used in our electronics, food, medicines, and even clothing.

“The general public, including ourselves, we don’t know anything about nanoparticles. We don’t understand them, we don’t know how to sense them, we don’t know where they are,” Turner said. “What we are trying to do is see how scientists sense nanoparticles, how they take data about them and translate it into sensory data.”

Duke Professor and CEINT member Mark Wiesner, who is Geitner’s postdoctoral advisor, serves as a scientific advisor on the project.

“Imagery is a challenge when talking about something that is too small to see,” Wiesner said. “Our mesocosm work provides an opportunity to visualize how were are investigating the interactions of nanomaterials with living systems, and our microscopy work provides some useful, if not beautiful images. But Raewyn has been brilliant in finding metaphors, cultural references, and accompanying images to get points across.”


Graduate student Amalia Turner describes how she uses the dark-field microscope to characterize gold nanoparticles in soil. From left: Amalia Turner, Nick Geitner, Raewyn Turner, and Brian Harris.

On Tuesday, Geitner led the pair on a soggy tour of the mesocosms, 30 miniature coastal ecosystems tucked into the Duke Forest where researchers are finding out where nanoparticles go when released into the environment. After that, the group retreated to the relative warmth of the laboratory to peek at the particles under a microscope.

Even at 400 times magnification, the silver nanoparticles on the slide can’t really be “seen” in any detail, Geitner explained.

“It is sort of like looking at the stars,” Geitner said. “You can’t tell what is a big star and what is a small star because they are so far away, you just get that point of light.”

But the image still contains loads of information, Geitner added, because each particle scatters a different color of light depending on its size and shape: particles on their own shine a cool blue, while particles that have joined together in clusters appear green, orange or red.

During the week, Harris and Turner saw a number of other techniques for studying nanoparticles, including scanning electron microscopes and molecular dynamics simulations.


An image from the Steep collection, which uses visual imagery to explore how humans interact with the increasingly abundant gold nanoparticles in our environment. Credit: Raewyn Turner and Brian Harris.

“What we have found really, really interesting is that the nanoparticles have different properties,” Turner said. “Each type of nanoparticle is different to each other one, and it also depends on which environment you put them into, just like how a human will behave in different environments in different ways.”

Geitner says the experience has been illuminating for him, too. “I have never in my life thought of nanoparticles from this perspective before,” Geitner said. “A lot of their questions are about really, what is the difference when you get down to atoms, molecules, nanoparticles? They are all really, really small, but what does small mean?”

Kara J. Manke, PhD

Post by Kara Manke

Starting Your Own Business in Social Entrepreneurship? Lessons from Four Founders

Interested in starting your own jazz festival? Or creating hydrogen-rich water to boost your circulation and improve muscle recovery?

These are the accomplishments of Cicely Mitchell and Gail Levy, who were among four inspiring leaders at the evening panel discussion in the Fuqua School of Business this past Wednesday. Excited students and faculty gathered in the Kirby Reading room to learn about the leaders’ unique perspectives as founders of non-profit and for-profit solutions to various social impact and sustainability issues.


Students and faculty gathered for dinner and networking before the panel discussion.

Organized by the Duke Innovation & Entrepreneurship Initiative and the Center for the Advancement of Social Entrepreneurship (CASE), the panel served to enlighten the audience about the challenges the women have faced and the lessons they learned in starting and scaling their social ventures. Panel moderator Erin Worsham, the Executive Director of CASE, opened the discussion with a few statistics.

In the non-profit sector, women make up 75% of the workforce, but in leadership positions, this ratio drops to 45%. As of 2013 in the for-profit sector, only 2.7% of venture capital investments went to fund companies with a female CEO. While black women own 1.5 million businesses in the U.S., they receive only 0.2% of venture funding. Undoubtedly, Worsham concluded, there is a lot of work to do in terms of women getting funded and represented as leaders.

Erin Worsham opened up the panel with statistics about women in the workforce. Worsham is the Executive Director of the award-winning CASE based at Duke University’s Fuqua School of Business

To commence the discussion, Worsham asked the panelists to speak about the gender discrimination they faced while starting their own companies. Gail Levy, founder of H Factor Water, a health-focused company producing hydrogen-infused water in environmentally friendly packaging, answered with a time she was challenged to a drinking match in order to close a deal. “The lesson I learned is to not go and drink your way into making a deal,” Levy joked. “But more importantly, you need to have grit and tenacity. Let our presence be known, because eventually we will be heard.”


Gail Levy was the founder of the White House Millennium Green Committee under the Clinton Administration in 1999. She is passionate about advocating for women worldwide and is also the founder of H Factor Water.

Founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth, Cecily Mitchell remarked that she would be charged significantly more money than a male counterpart to work with the same artist.

Cicely Mitchell is co-founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth

Cicely Mitchell is co-founder of The Art of Cool, a Durham nonprofit promoting music education to Durham-area youth

Rebecca Ballard, lawyer and founder of Maven Women, a sustainability-focused fashion company dedicated to making professional wear for women, noted that “we live in a visual world, but we need to start looking at a person’s character rather than solely focusing on how they look.” Based on her experience with her medical real estate development company ACCESS Medical Development, angel investor Stephanie Wilson expanded on the comment, adding that the best thing to do about the prejudice against women is to know that it’s there and fight for it.


Rebecca Ballard told the audience, “The most challenging thing about being a working woman is that appearance is considered ‘relevant.’” She started her career as a public interest lawyer and was previously the Executive Director of Social Impact 360.

I asked the founders to share their experiences in building a successful customer base. Wilson noted that to institute her company, she “determined who was the top real estate agent in our area and sought them out. I discussed my idea with them and asked for their advice on segueing into the market.” She suggested sending handwritten thank you notes to build relationships with your customers.

Stephanie Wilson founded ACCESS Medical Development and is also the co-founder of MillennialsMovingMillions.org.

Stephanie Wilson founded ACCESS Medical Development and is also the co-founder of MillennialsMovingMillions.org.

Mitchell added that The Art of Cool held the first few concerts for relatives and friends, and later partnered up with other small entrepreneurs. “Make sure what you do connects with people enough that they want to go and tell other people about what you’re doing,” she advised.

Cecily Mitchell talked about her experience with The Art of Cool. She handles the booking, contracts, networking, pitching for sponsorships and assisting in writing grants for the company.

Maven Woman founder Rebecca Ballard commented on the importance getting support from women in other sustainable industries, since “you are all driven by the same mission in the social entrepreneurship space.”


Rebecca Ballard is the founder of Maven Women, a sustainability-focused fashion company dedicated on making professional wear for women.

Worsham’s final question for the panel asked for any last pieces of advice. Ballard concluded the conversation with a reason why she started her company: “Social entrepreneurship exists because the status quo is not okay. There are externalities happening and people being treated badly; the status quo doesn’t have to be the way it is.”

From left to right:

Posing with the panelists! From left to right: Anika Radiya-Dixit (author), Gail Levy, Cecily Mitchell, Rebecca Ballard, and Stephanie Wilson.

By Anika Radiya-Dixit


Girls Get An Eye-Opening Introduction to Photonics


Demonstration of the Relationship between Solar Power and Hydrogen Fuel. Image courtesy of DukeEngineering.

Last week I attended the “Exploring Light Technologies” open house hosted by the Fitzpatrick Institute for Photonics, held to honor International “Introduce a Girl to Photonics” Week. It was amazing!

I was particularly enraptured by a MEDx Wireless Technology presentation and demonstration titled “Using Light to Monitor Health and View Health Information.” There were three “stations” with a presenter at each station.

At the first station, the presenter, Julie, discussed how wearable technologies are used in optical heart rate monitoring. For example, a finger pulse oximeter uses light to measure blood oxygen levels and heart rates, and fitness trackers typically contain LED lights in the band. These lights shine into the skin and the devices use algorithms to read the amount of light scattered by the flow of blood, thus measuring heart rate.

At the second station, the presenter, Jackie, spoke about head-mounted displays and their uses. The Google Glass helped inspire the creation of the Microsoft Hololens, a new holographic piece of technology resembling a hybrid of laboratory goggles and a helmet. According to Jackie, the Microsoft Hololens “uses light to generate 3D objects we can see in our environment.”


Using the Microsoft Hololens. Image courtesy of DukeEngineering.

After viewing a video on how the holographic technology worked, I put on the Microsoft Hololens at the demonstration station. The team had set up 3D images of a cat, a dog and a chimpanzee. “Focus the white point of light on the object and make an L-shape with your fingers,” directed Eric, the overseer. “Snap to make the objects move.” With the heavy Hololens pressing down on my nose, I did as he directed. Moving my head moved the point of light. Using either hand to snap made the dog bark, the cat meow and lick its paws, and the chimpanzee eat. Even more interesting was the fact that I could move around the animals and see every angle, even when the objects were in motion. Throughout the day, I saw visitors of all ages with big smiles on their faces, patting and “snapping” at the air.

Applications of the Microsoft Hololens are promising. In the medical field, they can be used to display patient health information or electronic health records in one’s line of sight. In health education, students can view displays of interactive 3D anatomical animations. Architects can use the Hololens to explore buildings. “Imagine learning about Rome in the classroom. Suddenly, you can actually be in Rome, see the architecture, and explore the streets,” Jackie said. “[The Microsoft Hololens] deepens the educational experience.”


Tour of the Facilities. Image courtesy of DukeEngineering.

Throughout the day, I oo-ed and aw-ed at the three floors-worth of research presentations lining the walls. Interesting questions were posed on easy-to-comprehend posters, even for a non-engineer such as myself. The event organizers truly did make sure that all visitors would find at least one presentation to pique their interest. There were photonic displays and demonstrations with topics ranging from art to medicine to photography to energy conservation…you get my point.

Truly an eye-opening experience!

Post by Meg Shiehmeg_shieh_100hed

Meet the Newbie: Maya Iskandarani


My name is Maya Iskandarani, and I’m a freshman at Duke from Miami, Florida—meaning I’ll probably be in trouble once the temperature in Durham drops below 50°.

Messing around with an electric circuit at the Center for Sustainable Development (CSD) at the Island School. Source: Island School Communications Team

Messing around with an electric circuit in the Center for Sustainable Development (CSD) at The Island School. Source: The Island School Communications Team.

Though I might be poorly prepared for “real” seasons, I’m no less excited to start my adventure at Duke. For now, my academic interests lie in Biology (particularly Genetics and Marine Science), Earth and Ocean Sciences, Neuroscience, Spanish, Arabic, and French. I’m also in the Genetics and Genomics cluster of the Duke Focus Program. As you can see, I have some intense self-reflection to do before I declare a major.

I’m a walk-on to the Duke Women’s Rowing team, and feel very lucky to start fresh in an awesome sport with fantastic coaches and teammates. I also participated in Project WILD this summer, camping for two weeks in Pisgah National Forest without much prior camping, hiking, or backpacking experience. Otherwise, I’ve fought my instinct to jump into a million cool extracurricular clubs and programs, so I can get a handle on this “college” thing before I bite off more than I can chew.

In high school, I was an editor for the school newsmagazine (s/o highlights), president of the International Baccalaureate Honor Society (IBHS), vice president of the environmental club, Gables Earth, and a scooper at Whip ‘n Dip, an ice cream shop down the street from my house. I trained with the club swim team Miami Swimming for six years, and competed for my high school swim team for four.

My first taste of research was volunteering with Dr. Claire Paris of the University of Miami in my junior year of high school. I spent a few weeks helping then-PhD-candidate Dr. Erica Staaterman (a Duke alumna!) complete her dissertation on the relationship between marine soundscapes and biodiversity. My role was small, but fascinating: I used a computer program to manually filter hydrophone recordings from coral reefs in the Florida Keys for boat noise.

Preparing for a boat dive off of Cape Eleuthera, with underwater slate in hand to take notes while observing the coral reef.

Preparing for a boat dive off of Cape Eleuthera, with underwater slate in hand to take notes on coral reef life. Source: The Island School Communications Team.

My experience in Dr. Paris’s lab spurred me to further explore marine science, so I applied to attend The Island School over the summer entering my senior year. I spent a month in the blazing heat of the Bahamas, freediving through the same crystal-clear waters in the mornings that I returned to study on SCUBA in the afternoons. Although I’m not quite set on Marine Science as a course of study at Duke, I absolutely intend to spend a semester or two at the Duke Marine Lab to figure it out.

My curiosity in nearly all academic subjects pulls me in a hundred different directions, a few of which I hope to follow through with as part of the Duke Research Blog team. I can’t wait to meet researchers who are passionate about their work, and, perhaps, discover a research passion of my own.

Page 2 of 14

Powered by WordPress & Theme by Anders Norén