Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Engineering Page 1 of 14

Nature On the Brain: Green Space, Cities and Depression 

Sticky post

Though I’ve yet to explore all of Duke’s nooks and crannies, I feel confident that my favorite corner of campus will always be the Sarah P. Duke Gardens. Nature, and green space generally, is good for us as humans. Most of us understand this on an intuitive level, but what’s the underlying reason? How might it be built into our brains?

Psychology professor Marc G. Berman looks for the answers. At the University of Chicago, Berman directs the Environmental Neuroscience Lab, in which he investigates interactions between our brains and our physical surroundings. In a recent virtual Grand Rounds lecture in Duke’s Department of Psychiatry & Behavioral Sciences, Berman spoke about the broad scope of his research and its implications for a better society.

Attention Restoration Theory

Researchers have proposed various theories for why we love nature. For example, the biophilia hypothesis states that humans have an innate attraction to nature on a genetic and evolutionary basis. However, Berman is focused primarily on the Attention Restoration Theory, a concept he’s contributed to significantly. Under this theory, attention is split into two types: directed and involuntary.

The first type is finite––think about the amount of energy it takes you to deliberately concentrate on something. “The first five minutes of lecture, everybody’s very focused on me,” Berman said, using the example of his own classes. Forty-five minutes later, and people inevitably begin to nod off.

Mingo Falls, North Carolina. Author photo

On the other hand, involuntary attention is not really under our control and isn’t as susceptible to becoming drained. Within stimuli that capture our involuntary attention, some are softer or harsher than others, like a stream compared to flashing lights (the stream being a softer attention capture, which we call soft fascination).  

The cornerstone of Attention Restoration Theory is that nature provides an ideal environment for the restoration of directed attention; full of “softly fascinating” features, it stimulates involuntary attention without placing demands on directed attention.

A Walk in the Park

Roughly 20 years ago while Berman was a researcher at the University of Michigan, he and his colleagues wanted to test out the Attention Restoration Theory. So, after asking study participants to perform a backwards digit span task (a test for memory that would require directed attention), they told them to take a walk. Participants were directed to either a route through downtown Ann Arbor, or through the Nichols Arboretum. Then another digit span test. A week later, they repeated the whole procedure, this time walking in the other environment. Interestingly, walking through the arboretum proved more beneficial for memory. “We see about a 20% improvement in this task after people go on this brief 50-minute walk in nature versus walking in the urban environment. So that’s pretty impressive,” Berman said.

Many of us wouldn’t be surprised by this–certainly, I know a walk in the Gardens on a pleasant day recharges my ability to focus. Time in green space and warm weather often lifts our moods, but they discovered that this cognitive benefit occurs regardless of how you feel afterwards. Walkers turned cranky from the winter cold demonstrated improvements on par with those who gladly embraced sunny weather in June.

Berman saw even more of a positive effect for the park-goers when repeating the study with participants diagnosed with depression, contrary to a concern that walks alone might induce rumination on negative thoughts.

Cities: Better Than You Think They Are

In the Environmental Neuroscience Lab, Berman and doctoral students look at everything from brief interactions with nature to the long-term effects of living in large cities. Given everything thus far, it would seem logical that the latter would be far worse for our brains than other environments. Yet, Berman found just the opposite

As it turns out, cities are beneficial for our social connectivity. Since people tend to encounter each other more often in urban areas, an individual will likely develop more social connections on average. Prior neuroscience studies have connected a greater number of social relationships to protection against depression.  

Chicago is the third largest city in the United States, both in terms of population and metropolitan area.

Based on this, the risk of depression might be aptly represented by an inverse model of the number of people in one’s social network. In other words, the more people you maintain contact with, the lower your risk. To test it, Berman and collaborators enlisted four different data sets regarding depression–including in-person interviews, phone interviews with personal demographics, and over 15 million tweets (converted via machine learning algorithms into a PH-Q depression inventory score). The results confirmed it. “What we see across all of these different data sets is that as cities get larger, you get less depression per capita,” he said.

“Many of us have this impression that in bigger cities like New York, like Chicago, like Los Angeles, people are not as friendly…but these results suggest the opposite,” Berman said. “It must be on average that those social interactions are positive in cities and that more is better.” 

Designing Environments for Our Brains

Regarding the main conversation surrounding mental health, Berman said, “We often think about [depression] in terms of this individual scale…your genetic makeup, brain activity patterns, individual psychological patterns. Maybe things about your family. We don’t really think about your neighborhood and your city.”

Knowing what we do about nature and large social networks can ultimately help us improve mental health outcomes on a broad scale. These two factors might seem to work against each other, but they don’t have to. Ultimately, we need more green space everywhere, including in large cities. The benefits are undeniable–urban areas with more greenery consistently see less aggression and crime, even when adjusting for race, ethnicity and income.

In addition, cities tend to have a lot of harsh stimuli, but that doesn’t mean some features of urban environments can’t be potentially restorative. “We believe that certain environmental features can be designed to improve human performance and well-being, like incorporating more natural features or natural patterns in the environment, trying to figure out ways to increase social interactions,” Berman said. By mimicking aspects of nature like curved lines, we might be able to create “soft fascination” closer to home and reduce the different demands pulling on our attention. 

Crystal Han, Class of 2028

Making Sure Drugs Work Where They’re Needed in the Brain

Sticky post

Treating Parkinson’s and other neurological conditions has been challenging due to a lack of tools capable of navigating the complexity of neural circuits. New precision tools like DART.2 help make those therapeutic aspirations a reality, one tethered drug at a time.

The brain is one of our most complex organs, full of neurons that are constantly communicating with one another at places called synapses. Synapses both release molecules called ligands and express cell surface receptors that the ligands bind to, prompting the cells to undergo various processes within. The kinds of ligands and receptors that are important to disease are often released by and found on a variety of cell types. It is crucial, therefore that when we use a drug that targets a certain receptor, we also make sure that they only interact with receptors on the desired cell type.

To achieve this, in 2018 a team led by Duke professor Mike Tadross introduced “Drugs Acutely Restricted to Tethering” or “DART,” a drug delivery system that allows researchers to administer drugs to specific neuronal cell types. In June of this year, the Tadross lab unveiled DART.2. Pairing the cell-type specificity provided by DART.2 with the cellular receptor-specificity already provided by a given drug is essential to treating diseases like Parkinson’s without severe off-target effects, something researchers have been unable to do until tools like DART entered the scene.

Think of it like cutting the water supply to an apartment that has had a pipe burst. You don’t want to cut the water to the entire building, just the flooding apartment, because the other tenants still need water. This newest version of DART increases the ability of researchers to flip the right switches.

With increased cell type specificity optimized for drugs targeting two different receptor types, enabling broader dosing techniques and opening the door for discoveries of unknown roles of well-known receptors, researchers have made DART.2 into an “even more subtle, refined, yet transformative drug delivery system, a marked improvement from more rudimentary options that operate more like sledgehammers,” said Brenda Shields, one of the lead scientists on the DART.2 project.

The HaloTag protein (HTP) helps recruit drugs tethered to the HaloTag ligand (RXDART) to the desired cell types. Courtesy of Erin Fykes.

This is, in part, owing to the use of natural, or endogenous, receptor machinery in its design. Organisms are infected with a virus that prompts only certain cell types to express HaloTag, a protein that sits on the surface of the cells of choice. A HaloTag ligand, or small molecule that binds specifically to the HaloTag surface protein, is tethered to a drug of choice. This allows the tethered drug to be selectively recruited to the cells that have the HaloTag protein, bringing the drug into closer proximity to its intended cellular receptor, discouraging it from binding to unintended receptors, and reducing the amount of drug needed for efficacy.

DART.2 is not changing receptors that are already present, nor is it affecting the signaling cascades activated by engagement with the receptors. Cell-specificity of drug delivery was improved in DART.2 by decreasing the time and drug concentration needed to achieve intended effects – it is 100 times more precise than the previous system, with desired effects achieved in just 15 minutes.

Using the previous version of DART, researchers tried delivering a tethered version of the drug gabazine to GABA receptors (neural receptors associated with inhibitory neurotransmission) on a select group of neurons – gabazine blocks GABA from binding to GABA receptors and subsequently increases neural activity. Unfortunately, DART did not achieve high enough cell-specificity and gabazine bound to enough off-target receptors to trigger epileptic responses in mouse models. DART.2, however, is capable of delivering gabazine without these effects. The original version of DART was only optimized to work with drugs targeting excitatory (AMPA receptors) neurotransmission. The ability of the current version to work with inhibitory (GABA) and excitatory (AMPA) neurotransmission makes this system useful for “bi-directional” modifications, greatly increasing its utility.

Interestingly, while testing the effects of the drug gabazine on GABA receptors in ventral tegmental area dopamine neurons, they found that GABA receptors on these cells actually suppress locomotion, opposite to findings in other studies that more broadly focused on GABA receptors in multiple cell types. This highlights the need for tools like DART.2 that allow us to understand diverse receptor/ligand dynamics on a cell-by-cell basis to gain more nuanced approaches to understanding and treating disease.

To visualize dispersion and binding of tethered drugs to HaloTag proteins versus off-target receptors, Tadross’s team developed a way of seeing where the tethered drugs accumulated by introducing a small percentage of HaloTag ligands bound to a fluorescent reporter rather than a drug into the pool of tethered drugs. This visualization further confirmed a significant increase in cell-type specificity and a decrease in off-target effects of DART.2.

With previous levels of cell specificity, local delivery of the tethered drugs via cannula insertion at the brain region of interest was necessary to ensure drugs made it to the right targets. With increased specificity and a new visualization method for seeing where DART.2 drugs bind, researchers were able to assess whether brain wide dosing would be possible, decreasing deleterious effects of pumping high concentrations of drug into a certain area. Excitingly, they found that broad administration of tethered drugs across large areas of the brain did not significantly increase binding at receptors on cells not expressing the HaloTag protein. Drug delivery in the brain is notoriously difficult, so having the flexibility to administer a drug from an easier delivery point without reducing binding at target sites translates to a greater chance of therapeutic success.  

For those unfamiliar with the process of drug and therapeutic development, the improvements presented in DART.2 represent a realistic look into the measure of scientific progress. Originally used to treat Parkinson’s mouse models, our conception of DART.2’s therapeutic relevance to other conditions is continually expanding. Shields shared that adaptions for conditions such as anxiety and depression may not be far off, just to name a few. DART.2 also makes it possible to use drugs like opioids in new ways. While helpful for pain management, the addictive potential of opioids sometimes renders them more harmful than helpful. Utilizing DART.2, opioids could be administered more specifically to cells that benefit from the drug, potentially reducing interactions with cell types involved in addiction development. Additionally, researchers are beginning to couple DART.2 with other tools on the market that can enhance its therapeutic promise and applicability (and vice versa). Each improvement of DART brings us closer to the reality of treating conditions we once deemed hopeless.

Post by Erin Fykes, Ph.D. student in cell and molecular biology

This Entrepreneur Is Changing the Way We Repair the Human Body

Sticky post

A long time ago in a galaxy far, far away… Or should I say, January 23 at the Rubenstein Arts Center…? That is where biomedical engineer Nina Tandon showed us the almost magical, yet extremely precise, science of EpiBone–where personalized bones and cartilage are grown from stem cells.

Photo credit: Brown Girl Magazine

But first, it would be completely inappropriate of me to discuss Tandon’s revolutionary work without first sharing her stories from her childhood and adolescent years; that was one of the many aspects I admired about her talk–how much love Tandon shared for those who helped spark her passion for science. 

First, there was her grandmother, Dadi Ma, who at a young age wanted to study math, but unfortunately, due to the time she grew up in, was pushed away from any STEM-related field. Tandon helped complete her Dadi Ma’s dreams to pursue a STEM education. And there were the late nights in the research library with her mother; Tandon told us how she would often use her class as a group to “test how people’s memories worked, and test our (Tandon’s) classmate’s depth perception.” Then, Tandon met Dr. Maria Musarella, who helped identify her brother’s retinitis pigmentosa. And while no cure for it at the time, Dr. Musareli told Tandon how there was a team at MIT working on it–to which Tandon thought, “Maybe I’ll join that team one day.” 

Little did young Nina Tandon know just what she would do one day.

After going to school for electrical engineering, Tandon found herself working at a Bell Labs spin-off, where she learned one of the most important lessons of her life: One’s choice of job should always be “content secondary, people primary.” However, because of the new suburban area she found herself in post-9/11, Tandon felt isolated. But within this time of solace, she was able to connect the similarities between genes and data: “The axon conduction in a nerve–that’s a lot like those same equations that govern the transatlantic cable… cell membranes are 20 times higher capacitance than the best capacitors that we could build with our human hands.”

Through these observations, Tandon was able to conclude that “our bodies are the most exquisite technology we have ever been familiarized with.”

Photo credit: London College of Osteopathy

So she decided to apply to the team at MIT that Dr. Musarella had told her about years before, in which she was accepted and then joined. It was a full circle moment; Tandon was seeing herself living the dreams of the girl who would conduct experiments on her elementary school class. It should have been perfect, right?

“And I had made a mistake… I made a mistake.” She had not chosen people first and content secondary. However, as Tandon noted many times throughout her talk, it is her failures that showed her what it was she needed to do in order to succeed.

I found this aspect of the talk truly inspiring. Usually, when an extremely accomplished person talks to an eager room, they spend most of their time highlighting what they have done correctly. But here Tandon was, taking her time telling us all of the ways in which she had failed. And how those were the moments that led to her largest lessons learned. Although I can’t speak for everyone in that room, as a college student myself, there was a comfort in seeing such a successful, powerful, and kind woman telling us that we will fail… And showing us that that is the beauty in success.

So, to make an extremely long story short, Tandon then proceeded to join Robert Langer’s lab at MIT for five years, studying “how electrical signals could coax stem cells into becoming tissue,” work in a management consulting job at McKinsey & Company to learn more about entrepreneurship, and then attend Columbia for her EMBA and PhD (at the same time!). Phew, that’s a lot.

In 2014, Tandon co-founded EpiBone, in which she and her team began working in a candy factory-converted lab in Harlem. By starting with CT scans, EpiBone can make a “perfect puzzle piece-shaped biome material scaffold and a perfect puzzle piece bioreactor.”  In other words, “an environment that simulated the natural conditions for tissue development.” Within two to four weeks, Tandon and her team can grow any cartilage, bone, and joints needed throughout the body. 

Photo credit: EpiBone

Since starting her company, EpiBone has been able to grow jaw bones for six patients, which “fit perfectly and were integrated within four to six months.” This is just the beginning. EpiBone’s technology could change how we view medicine and treatment–giving patients a promise of more active lives instead of just a prescription of pain medicines.

However, as much of a miracle as this is, Tandon had to move her business’s location because of the restraining process of clinical trials within the United States, where the limited funding cannot match the necessary costs of clinical trials. Now in Abu Dhabi, Tandon has found a home for her and her family to live happily while also being in a place where she feels like EpiBone is finally starting to see a future where it can be implemented into medicine and used in patients.

Photo credit: EpiBone

Ending her talk, Tandon noted how she has learned to count her blessings, even in times when she felt like her work was not being appreciated for what it was. “It’s a shortcut for me because I’ve studied biology to be grateful… Oh my god, my heart just beat five times–that’s like a million miracles.”

Tandon has shown us that true success is not viewed from the top of the mountain, looking down at all that you have climbed, but instead, learning to appreciate and find joy in the trek to the top. I thank her, on behalf of all of the people at Duke and all who she will help in the future, for her revolutionary work in science and her honest words of inspiration.

By Sarah Pusser Class of 2028

From Propulsion to Provost: A Conversation With Alec Gallimore

Sticky post

Science fiction may seem an unlikely source for research inspiration. But for Duke University Provost Alec Gallimore, it has been just that: inspiration for a career’s worth of electric propulsion research.

Alec Gallimore in his plasmadynamics and electric propulsion laboratory at the University of Michigan, where he was a faculty member and dean for more than 30 years before coming to Duke. (Credit: University of Michigan)

Gallimore said it was stories from science fiction authors like Arthur C. Clarke and Isaac Asimov that piqued his interests for fusion and other advanced propulsion technologies at a young age. It is an interest that led him to pursue studies in aerospace engineering with a focus in plasma physics at Princeton University and Rensselaer Polytechnic Institute.

He channeled those interests into the Plasmadynamics and Electric Propulsion Laboratory (PEPL) he founded as a professor of aerospace engineering at the University of Michigan. Focused on the development and testing of more efficient and powerful electric thrusters for spacecraft, the lab has long been at the forefront of electric propulsion research. 

High thrust, high efficiency electric propulsion systems are poised to transform space exploration. They are viable replacements for the inefficient, yet flight-proven chemical thrusters typically used on spacecraft. This is because the electric thrusters can operate over longer periods of time, providing sustained thrust that allows spacecraft to travel the solar system in record time. Electric propulsion systems are slated for use on countless future spacecraft, from the Gateway lunar space station to Mars orbiters.

Gallimore said he is proudest of the X3 Nested Channel Hall Thruster developed at PEPL. Weighing just a tenth the size of an SUV at 230 kg, the X3 is one of the largest, most powerful electric thrusters the lab has developed. It consists of three nested chambers in which ionized gases are accelerated by electric fields, generating thrust highly efficiently. Most Hall-effect thrusters – the category of electric thruster to which the X3 belongs – contain only one chamber. The X3’s three separate chambers help it generate substantially more thrust. That means it can be used to propel heavier spacecraft destined for more distant locations in the solar system. 

Low-power test run of the X3 Nested Channel Hall Thruster (Credit: PEPL)

Gallimore sees this as just the beginning for electric propulsion. Miniaturized electric thrusters will also, according to him, become mainstays on smaller satellites, providing them with the propulsion capabilities they have long lacked. More important will be future research on novel propellant types for electric thrusters, specifically water. “Water is the answer,” Gallimore said. 

“Water is all over the place in the solar system, and so you are able to develop an infrastructure where you can tank up as you need to with water as your propellant,” he explained. “It opens everything up in the solar system so that, by the second half of the century, you can have an amazing infrastructure throughout the inner part of the solar system with water as a propellant.”

Leading research advancements such as these comprised much of Gallimore’s work at PEPL, experience that has informed his work at Duke, where he became provost in July 2023. “Genius is 10% inspiration, 90% perspiration,” he said. Having a team of people fully committed to their research and a common mission was vital to him.

So was having a diversity of opinions. PEPL hosted researchers from varying disciplines such as applied physics and aerospace engineering, as well as diverse life experiences and identities. That promoted a culture of “mutual respect” in “intangible ways” that drove innovation and staved off “group think,” he said. 

That philosophy of thoughtful discussion and collaboration is one Gallimore has taken to Duke, informing the Office of the Provost’s efforts to advance academic excellence and improve campus community.

Whether as an electric propulsion researcher developing the thrusters that will take humans to Mars or as Duke University Provost, working to invigorate the school community, Gallimore has pushed boldly forward. In a future perhaps defined by advanced human space exploration and a more just world, we will no doubt have some small thanks to pay to Gallimore.

Post by Adrian Tejada, NCSSM class of 2025. 

Farmers, Crops…and Computers?

Sticky post

In Hanjie the rules are simple. In this game of logic and creativity, the players, often working on medium-sized grids of 225 squares, use numbers on the rows and columns as clues to determine which boxes to shade. At first, the prospect of seeing a beautiful picture seems almost unfathomable. However, through patience and collaboration from every corner of the page, these small seemingly random squares gradually come together to reveal a masterpiece—one square at a time. 

In a sense the efforts of Duke’s Climate Commitment are no different. The issue of climate change has proven to be a multifaceted one. One in which many parties play a role. However, with initiatives such as Duke’s Forever Learning Institute, the probability of tackling these issues becomes much clearer.

The logo of Duke’s Forever Learning Institute retrieved from their website.

Recently Duke’s Forever Learning Institute, an interdisciplinary educational program for Duke alumni, hosted Professors Norbert Wilson and Maiken Mikkelson for a compelling session on the impact of climate change on food and agriculture. Wilson, an agricultural economist and the Director of the World Food Policy Center at Duke, specializes in addressing critical issues related to food access, nutrition, and food security. Mikkelsen, a distinguished expert in physics, electrical, and computer engineering, explores the potential of nanomaterials to revolutionize agricultural processes, paving the way for innovative solutions in the field. Together, they explained how advancements in nanomaterials can improve food security and sustainability. 

Throughout the session, Wilson emphasized the concept of food security. He began by clarifying the difference between “food loss” and “food waste.”  Food loss occurs at the agricultural level. It refers to food that is produced but never reaches consumers, often due to challenges such as poor harvesting seasons, labor shortages for harvesting, or other natural factors. He describes the ways in which loss occurs across the board but disproportionately affects less developed countries. Wilson also explained how food waste occurs at the consumer level. He details how it goes beyond the waste of a product but is also a waste of the resources used to create that product. 

Picture of Professor Norbert Wilson. Photo retrieved from Duke Divinity School.

Wilson illustrated the significance of these issues by drawing out the larger issue of food insecurity. Food insecurity describes an inability to access food or concerns about accessing food. In the United States 13.5 percent of citizens struggle with accessing food. This can lead to a number of negative health outcomes such as cardiovascular issues and diabetes. Food insecurity can also lead to behavioral and performance issues, particularly in young children.

Infographic about food insecurity retrieved from ECOMERGE.

This is where Mikkelson comes in. She described a term known as Precision Agriculture. In this, researchers observe and measure agriculture fields and extra data to see what resources such as water, and fertilizer is needed at each part. In this, they hope to retrieve good information through wavelengths as a means of getting a spectral fingerprint that supplies information about the crops. Mikkelsen describes her interest in leveraging nanomaterials to create lightweight, cost-effective hyperspectral cameras capable of capturing detailed spectral fingerprints of crops. She hopes that these materials can be employed around the world, and low resource settings to increase crop yields. The greatest roadblock in this would be the price and issues with widespread application. However, once applied it would hold the ability to detect key characteristics such as nutrient deficiencies, water stress, or disease presence.

Duke Researchers working with Nanotechnology. Image retrieved from Duke Pratt School of Engineering.

Our world is wildly affected by climate change. Climate change and agricultural production hold a very dependent relationship and fixing one side holds the ability to correct the other. This is what makes the work and research of those such as Wilson and Mikelson all the more important. Their efforts show how we can utilize technology to not only enact social change but also reverse our climate issues. Their research highlights not only the urgency of addressing food security and agricultural sustainability but also the transformative potential of interdisciplinary approaches.

Just as the game of Hanjie reveals its masterpiece one square at a time, tackling climate change requires collective effort and patience. Each initiative, whether through advanced nanotechnology or policy-driven solutions, brings us closer to a sustainable future. Duke’s Forever Learning Institute serves as a platform to connect these ideas, inspiring action and innovation that can shape a better tomorrow—one step at a time.

Post by Gabrielle Douglas, Class of 2027
Post by Gabrielle Douglas, Class of 2027

‘Design Climate’ Students Pitch Solutions at Energy Week 2024

Sticky post

Amid the constant drumbeat of campus events, much of the conversation turned toward the challenges we face in energy policy, security and transitions during Duke’s annual Energy Week, held Nov. 11-15.

On the second day, the Innovation Showcase featured not only startups making their pitches for clean energy and sustainable tech products, but students doing so as well. 

Currently in its second year, Duke Design Climate is a new initiative between the Pratt School of Engineering and the Nicholas School of the Environment. It functions as a two-course sequence, in which students form groups to prototype and promote climate solutions after conducting market research.

As I made my rounds to the teams, I met a mix of graduate students and undergraduates with academic backgrounds ranging from engineering to economics to environmental science. The ideas they have aren’t purely theoretical: all are looking for sponsors or partners to help implement their solutions into real-world use. Here were some of the highlights:    

Team ReefCycle is building from plants: Our first stop is named after the company whose product they intend to scale up. Initially, Mary Lempres founded ReefCycle to develop sustainable material for artificial reefs. Regular industrial production for cement requires intensive heating– burning of fossil fuels–releasing tons of carbon dioxide. ReefCycle sought to reduce this climate impact with a different method: their cement is plant-based and enzymatic, meaning its essentially grown using enzymes from beans. Testing in the New York Harbor yielded some promise: the cement appeared to resist corrosion, while becoming home for some oysters. The Design Climate team is now trying to bring it to more widespread use on land, while targeting up to a 90% reduction in carbon emissions across all scopes.

Team Enfield is uplifting a local community: Design Climate, evidently, is by no means limited to science. Instead, these team members intend to address an environmental justice issue close to home: energy inequality. Around 30-35% of Enfield residents live below the poverty line, and yet suffer from some of the highest energy bills in the larger area. Located a ninety minute drive east of Durham, this rural town is one of the poorest in North Carolina. Historic redlining and unfavorable urban planning are responsible for its lack of development, but now this team aims to bring back commerce to the area through microfinance. Once enough funding is gathered from investors and grants, the team hopes to provide microloans and financial literacy to spur and empower businesses. 

UNC Libraries Commons

Team Methamatic promotes a pragmatic e-methane solution: This team is harnessing the power of sunlight to drive fuel production. Synthetic methane, commonly referred to as e-methane, is produced by reacting green hydrogen and carbon dioxide. “Currently, the power-to-gas process can be carbon neutral,” said team member Eesha Yaqub, a senior. “Sourcing the recycled carbon dioxide from a carbon capture facility essentially cancels out the emissions from burning methane.” However, this power-to-gas (P2G) process is an intensive one requiring high heat, energy, and pressure–hoops that might not have to be jumped through if an alternative process could break through the market. Professor Jie Liu and the Department of Chemistry have been working on developing a reactor that would conduct this same reaction without those obstacles. “[Utilizing] the energy from ultraviolet light, which is absorbed by a catalyst …makes the process less energy intensive,” Yaqub said.

Right now, the team has a small prototype, but one used for commercial generation would appear much larger and cost between $15,000 to $20,000. Their intended customers? Oil and gas companies under pressure to shift away from fossil fuels. If successfully scaled up, they predict this process would produce e-methane at a price of $5 per kilogram. 

Analyzing living shorelines through Team Coastal Connect: If “Coastal Connect” sounds more like an app than a project name, that’s because it is one. This group is designing what one member dubbed a “fitbit for shorelines”: a monitoring system that brings data from ocean buoys to the phones of local landowners. While measurements in salinity and water level aren’t always telling for the average person, the app would contextualize these into more useful phrases. Is it currently safe to swim? It’ll let you know.

Moreover, it would also allow for the long-term monitoring of living shorelines. While we know this nature-based solution offers resilience to natural disasters and presents erosion, short-term fixes like seawalls are often built instead to continue allowing development up to the edge of beaches. The team hopes that ideally, providing concrete data on living shorelines would allow us to demonstrate their benefits and promote their implementation. 

By Crystal Han, Class of 2028

The Dukies Cited Most Highly

Sticky post

The Web of Science ranking of the world’s most highly-cited scientists was released this morning, telling us who makes up the top 1 percent of the world’s scientists. These are the authors of influential papers that other scientists point to when making their arguments.

EDITOR’S NOTE! — Web of Science shared last year’s data! We apologize. List below is now corrected, changes to copy in bold. We’re so sorry.

Twenty-three of the citation laureates are Duke scholars or had a Duke affiliation when the landmark works were created over the last decade.

A couple of these Duke people disappeared from this year’s list, but we’re still proud of them.

Two names on the list belong to Duke’s international powerhouse of developmental psychology, the Genes, Environment, Health and Behavior Lab, led by Terrie Moffitt and Avshalom Caspi.

Dan Scolnic of Physics returns as our lone entry in Space Science, which just makes Duke sound cooler all around, don’t you think?

This is a big deal for the named faculty and an impressive line on their CVs. But the selection process weeds out “hyper-authorship, excessive self-citation and anomalous citation patterns,” so don’t even think about gaming it.

Fifty-nine nations are represented by the 6,636 individual researchers on this year’s list. About half of the citation champions are in specific fields and half in ‘cross-field’ — where interdisciplinary Duke typically dominates. The U.S. is still the most-cited nation with 36 percent of the world’s share, but shrinking slightly. Mainland China continues to rise, claiming second place with 20 percent of the cohort, up 2.5 percent from just last year. Then, in order, the UK, Germany and Australia round out the top five.

Tiny Singapore, home of the Duke NUS Graduate Medical School, is the tenth-most-cited with 1.6 percent of the global share.

In fact, five Duke NUS faculty made this year’s list: Antonio Bertoletti, Derek Hausenloy and Jenny Guek-Hong Low for cross-field; Carolyn S. P. Lam for clinical medicine, and the world famous “Bat Man,” Lin-Fa Wang, for microbiology.

Okay, you scrolled this far, let’s go!

Biology and Biochemistry

Charles A. Gersbach

Clinical Medicine

Christopher Bull Granger

Adrian F. Hernandez

Gary Lyman

Cross-Field

Priyamvada Acharya

Chris Beyrer

Stefano Curtarolo

Vance G. Fowler Jr.

Po-Chun Hsu (adjunct, now U. Chicago)

Ru-Rong Ji

William E. Kraus

David B. Mitzi

Christopher B. Newgard

Pratiksha I. Thakore (now with Genentech)

Xiaofei Wang

Mark R. Wiesner

Environment and Ecology

Robert B. Jackson (adjunct, now Stanford U.)

Microbiology

Barton F. Haynes

Neuroscience and Behavior

Quinn T. Ostrom

Plant and Animal Science

Sheng-Yang He

Psychiatry and Psychology

Avshalom Caspi

William E. Copeland

Terrie E. Moffitt

Space Science

Dan Scolnic

Sticking to Sweat: The Future of Biosensors and Tracking Our Health

Sticky post

Bandaids and pimple patches are the first things we consider when discussing adhesives in medicine. But what if there is more to the story? What if adhesives could not only cover and protect but also diagnose and communicate? It turns out Dr. Wei Gao, assistant professor of medical engineering at the California Institute of Technology, is asking these exact questions. In the field of biomedical adhesives, Gao’s research is revolutionizing our understanding of precision medicine and medical testing accessibility. He visited Duke on Oct. 9 to present his work as part of the MEMS (Mechanical Engineering and Material Science) Seminar Series. 

Wei Gao presenting at Duke University

Gao’s research team focuses on material, device, and system innovations that apply molecular research and principles to clinical settings and improve health. Gao focused his talk on the invaluable characteristics and uses of sweat. Sweat can offer doctors a broad spectrum of information, including nutrients, biomarkers, pH levels, electrolytes/salts, and hormones. He leverages this fundamental characteristic of human physiology to design wearable biosensors that can provide early warnings of health issues or diseases. Gao focuses on making biomarker detection more efficient than current methods, such as blood samples, which require hospital testing, involve highly invasive techniques, and lack continuous monitoring. 

The first milestone in his research came in 2016 when he introduced a fully printed, wearable, real-time monitoring sensor device. The device allowed them to continuously collect sweat and wirelessly communicate data about these sweat samples from patients onto digital devices. The initial 2016 device focused on resolving four fundamental challenges: since most chemical sensors are not stable over long periods of time, the device had to be (1) low-cost and (2) disposable without sacrificing performance. In addition, the device had to (3) be mass-producible to be accessible to the public and (4) integrate multiple signals that could be real-time transmitted to a digital interface.  

Schematic of the sensor array for multiplexed perspiration analysis in Dr. Gao’s 2016 biosensor design

To address the first two of those challenges, Gao and his group turned to printing techniques.  The circuit substrate was a thin piece of flexible PET (a plastic), upon which they layered the circuit components.  The flexible sensor array was constructed in a similar pattern, with a layer of PET patterned with gold to produce the electrodes, covered with parylene, and then each electrode was tuned to receive a specific chemical stimulus: potassium and sodium ion sensors, with a polyvinyl butyrate reference electrode, and oxidase-based glucose and lactate sensors paired with a silver/silver chloride reference electrode.  This design allows the simultaneous monitoring of multiple biomarkers.  To transmit the data wirelessly, the circuit board included a Bluetooth transceiver.

The next major step was to devise a way to monitor sweat without relying upon heat or vigorous exercise, neither of which may be feasible in the case of clinically ill patients. In a 2023 paper, Gao and colleagues published a biosensor that could induce localized sweating using an electric circuit. Called iontophoresis, the technique delivers a drug (a cholinergic agonist) that stimulates the sweat glands on demand and only in the area of the sensor. 

Another important question was how to power the devices sustainably.  Gao’s lab has devised two primary responses to this question: In a 2020 paper, his team powered a similar multiplexed wireless sensor entirely using electricity generated from compounds in sweat. This entailed using lactate biofuel cells to harness the oxidation of lactate to pyruvate (coupled with the reduction of oxygen to water) to provide a stable current. In a 2023 paper, they employed a flexible perovskite solar cell onboard the device to power the monitoring of a suite of biomarkers.

Dr. Gao’s recent publication in February 2024 highlighted a Consolidated AI-Reinforced Electronic Skin (CARES) for stress response monitoring

With these technical hurdles overcome, Gao and his lab have been able to develop sensors targeted to several important medical applications. The work can be directly applied to the monitoring of conditions like cystic fibrosis and gout. More broadly, wearable biosensors can be used to track levels of medically relevant compounds like cortisol (for stress monitoring), C reactive protein (inflammation), and reproductive hormones. The lab has also branched into other kinds of devices that use similar microfluidics approaches, including smart bandages for wound monitoring and smart masks to detect biomarkers in breath.

Through eight years of dedicated investigation, Gao serves as a pioneer in the field of bioelectronic interfaces. Gao continues to widen the possibilities of biosensors not only within the medical sphere but also for the general public. For example, his lab is collaborating with NASA and the U.S. Navy to support the performance and health of astronauts and our military, which is vital as they work in extreme environments. By pushing forward ground-breaking devices such as sweat biosensors, our healthcare systems can pursue preventative care, reducing the need for treatments or health resources by catching these issues early on. Following Gao’s footsteps, we can now build toward a healthier future as we improve the precision of our healthcare approaches and technological advancements.

By Monona Zhou and Nicolás Zepeda

Duke experts discuss the potential of AI to help prevent, detect and treat disease

Sticky post

Sure, A.I. chatbots can write emails, summarize an article, or come up with a grocery list. But ChatGPT-style artificial intelligence and other machine learning techniques have been making their way into another realm: healthcare.

Imagine using AI to detect early changes in our health before we get sick, or understand what happens in our brains when we feel anxious or depressed — even design new ways to fight hard-to-treat diseases.

These were just a few of the research themes discussed at the Duke Summit on AI for Health Innovation, held October 9 – 11.

Duke assistant professor Pranam Chatterjee is the co-founder of Gameto, Inc. and UbiquiTx, Inc. Credit: Brian Strickland

For assistant professor of biomedical engineering Pranam Chatterjee, the real opportunity for the large language models behind tools like ChatGPT lies not in the language of words, but in the language of biology.

Just like ChatGPT predicts the order of words in a sentence, the language models his lab works on can generate strings of molecules that make up proteins.

His team has trained language models to design new proteins that could one day fight diseases such as Huntington’s or cancer, even grow human eggs from stem cells to help people struggling with infertility.

“We don’t just make any proteins,” Chatterjee said. “We make proteins that can edit any DNA sequence, or proteins that can modify other disease-causing proteins, as well as proteins that can make new cells and tissues from scratch.”

Duke assistant professor Monica Agrawal is the co-founder of Layer Health. Credit: Brian Strickland

New faculty member Monica Agrawal said algorithms that leverage the power of large language models could help with another healthcare challenge: mining the ever-expanding trove of data in a patient’s medical chart.

To choose the best medication for a certain patient, for example, a doctor might first need to know things like: How has their disease progressed over time? What interventions have already been tried? What symptoms and side effects did they have? Do they have other conditions that need to be considered?

“The challenge is, most of these variables are not found cleanly in the electronic health record,” said Agrawal, who joined the departments of computer science and biostatistics and bioinformatics this fall.

Instead, most of the data that could answer these questions is trapped in doctors’ notes. The observations doctors type into a patient’s electronic medical record during a visit, they’re often chock-full of jargon and abbreviations.

The shorthand saves time during patient visits, but it can also lead to confusion among patients and other providers. What’s more, reviewing these records to understand a patient’s healthcare history is time-intensive and costly.

Agrawal is building algorithms that could make these records easier to maintain and analyze, with help from AI.

“Language is really embedded across medicine, from notes to literature to patient communications to trials,” Agrawal said. “And it affects many stakeholders, from clinicians to researchers to patients. The goal of my new lab is to make clinical language work for everyone.”

Duke assistant professor Jessilyn Dunn leads Duke’s BIG IDEAs Lab. Credit: Brian Strickland

Jessilyn Dunn, an assistant professor of biomedical engineering and biostatistics and bioinformatics at Duke, is looking at whether data from smartwatches and other wearable devices could help detect early signs of illness or infection before people start to have symptoms and realize they’re sick.

Using AI and machine learning to analyze data from these devices, she and her team at Duke’s Big Ideas Lab say their research could help people who are at risk of developing diabetes take action to reverse it, or even detect when someone is likely to have RSV, COVID-19 or the flu before they have a chance to spread the infection.

“The benefit of wearables is that we can gather information about a person’s health over time, continuously and at a very low cost,” Dunn said. “Ultimately, the goal is to provide patient empowerment, precision therapies, just-in-time intervention and improve access to care.”

Duke associate professor David Carlson. Credit: Brian Strickland

David Carlson, an associate professor of civil and environmental engineering and biostatistics and bioinformatics, is developing AI techniques that can make sense of brain wave data to better understand different emotions and behaviors.

Using machine learning to analyze the electrical activity of different brain regions in mice, he and his colleagues have been able to track how aggressive a mouse is feeling, and even block the aggression signals to make them more friendly to other mice.

“This might sound like science fiction,” Carlson said. But Carlson said the work will help researchers better understand what happens in the brains of people who struggle with social situations, such as those with autism or social anxiety disorder, and could even lead to new ways to manage and treat psychiatric disorders such as anxiety and depression.

Credit: Brian Strickland.
Robin Smith
By Robin Smith

Deep Dive into Engineering’s Past

Many of us enter the Duke library complex through the Rubenstein doors, especially on rainy days. However, despite passing countless times, most have never ventured into the Rubenstein Rare Book & Manuscript Library or checked out its artifacts – including some eye-catching items featured at the annual Engineering Expo on September 18.

How could I not start by describing the 16th-century amputation saw? The magnificent artifact was handled by many impressed visitors, including myself (see adjacent photo). The embroidery was exuberant, and Rachel Ingold, the Curator of the History of Medicine Collections, informed me that the saw was of European descent. She also pointed out that the blade is removable and appears different from the rest of the artifact, suggesting that the instrument has been so frequently used that the blade had to be replaced. I curiously asked whether historians know how many patients have been victimized by this gruesome, two-person saw… sadly, the answer is we don’t know. Merely the thought of the procedure makes me shudder.

Me holding the amputation blade… it should’ve been held by two people back in the day!


While the saw was the headline artifact, it was by no means the only spotlight! Brooke Guthrie, a Research Services Librarian staffing the event, suggested that I examine Robert Hooke’s “Micrographia,” her personal favorite. In particular, she pointed out the exquisite scientific illustration of a flea, which was recorded using an early microscope. The level of detail (such as the hairs and claws) captured by Hooke in the drawing was fascinating – and spooky! What’s more amazing was that the copy we were looking at was the first edition, now more than 350 years old.

From my conversation with Guthrie, I learned that the Rubenstein Library boasts an expansive portfolio, ranging from the History of Medicine Collections to the Hartman Center for Advertising and Marketing History and the John Hope Franklin Research Center for African and African American History and Culture. While the library is interested in the areas correlated to its existing centers, the acquisition of materials is also heavily guided by student and faculty interests, which is evident in the diversity of Rubenstein collections. For instance, did you know that you could spend an afternoon with historically significant comic books? If that’s not your thing, you could opt to bring a few friends and spend some time playing ancient board games instead.

During my visit, I also spoke to Andy Armacost, Head of Collection Development at the Rubenstein. He introduced me to my favorite artifacts at the event, both hailing from the Hartman Center’s Consumer Reports Collection. The first was an apparatus testing the quality of razor blades: the wood frame was covered with meandering strings and fixtures, with the experimental blade placed adjacent to the test material, positioned in the center of the entire object. The second was a newer device, the structure composed of metal and testing toothpaste, which was applied by a toothbrush onto a grimy dental fixture. Both Armacost and I chuckled at the thought of making the fake teeth “dirty” before each trial… it must have been a sight for the experimenters!

Can you spot the remaining residue on the artificial teeth? Crest needs to do better according to this test machine!

Duke community members continued to stream in to event. Right as I was about to visit the “make a button” station, I spotted Pratt Dean Jerome Lynch in the room as well, testing out visual perception glasses that turned 2D images into 3D scenes. As a Biomedical Engineering student, I could not help walking over to him and asking a few questions regarding his perspective on the exhibition. Lynch was extremely welcoming to my questions and offered many words of advice to Pratt students regarding utilizing the libraries’ rich resources. He encouraged engineering students to frequent the Rubenstein collections, arguing that the artifacts illuminate the evolution of the role of engineers and how previous engineers creatively addressed the great contemporary challenges. He also expressed his personal interest in history… thus defeating any claims that engineers could not simultaneously enjoy the humanities.

The perception goggles that both Dean Lynch and I peeked into during the Engineering Extravaganza!

Before leaving, I made sure to speak to Ingold again, given that she was a leading organizer of the event. Well, she maintains that it was a group effort, so perhaps I should edit “leading organizer” into “co-organizer.” Anyhow, she expressed strong enthusiasm for student involvement in the Rubenstein collections, calling for those interested in exhibit curation to reach out and seek opportunities to do so. She also touted an upcoming Spring exhibition and the likely return of the extravaganza next Fall… Keep vigilant on more information for these events!

Next time you enter through Rubenstein doors, take a moment to check out the storied collections. I promise you will not be disappointed!

By Stone Yan, Class of 2028

Page 1 of 14

Powered by WordPress & Theme by Anders Norén