Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Students Page 17 of 42

Just The Way You Say It Can Make Something ‘True’

This is the first of eight blog posts written by undergraduates in PSY102: Introduction to Cognitive Psychology, Summer Term I 2019.

We’ve all accepted a lie that we’ve heard before. For example, “vitamin C prevents the common cold” is a statement that rings true for many people. However, there is only circumstantial evidence supporting this claim, and instead, many researchers agree that the evidence in fact reveals that vitamin C has no effect on the common cold.

So why do we end up believing things that are not true? One reason is known as the “illusory truth effect” which claims that the more “fluent” a statement is or feels, the more likely it is to be remembered as true.

Fluency in this case refers to how easily we can later recall information. Fluency can increase in a variety of ways; it could be due to the size of the text in which the fact was presented, or how many times you have heard the statement. Fluency can even be influenced by the color of the text that we read. As an example, if we were only presented with the blue-text version of the four statements shown in the picture above, it would be easier for us to remember — compared to if we were only shown the yellow-text version — and thus easier for us to recall later. Similarly, if the text was larger, or the statements were repeated more frequently, it would be easier for us to recall the information.

This fluency can be useful if we are constantly told accurate facts. However, in our current day and age, truth and lies can become muddled, and if we end up hearing more lies than truths, this illusory truth effect can take over, and we soon begin to accept these falsehoods.

Vanderbilt University psychologist Lisa Fazio studied this during graduate school at Duke. Her aim was to explore this illusory truth effect.

Eighty Duke undergraduates participated in her studies. For the first part, participants were shown factual statements — both true and false — and asked to rate how interesting they were.

For the second part, participants were shown statements — some of which came from the first part of the study — and told that some would be true and some false. They were then asked to rate how truthful the statements were, on a scale from one to six, with one being definitely false, and six being definitely true.

Fazio and her colleagues found that the illusory truth effect is not only a powerful mental mechanism, but that it is so powerful, it can override our personal knowledge.

For example, if presented with the question “what is the name of the skirt that Scottish people sometimes wear?” most people would correctly respond with “a kilt.” However, if you were shown the false statement “a sari is the skirt worn by Scottish people,” you would be more likely to later report this statement as being truthful, even though you knew the correct answer before reading that false statement.

Fazio’s paper also proposed a model for how fluency and knowledge may interact in this situation. Their model (shown below) suggests that fluency is the main deciding factor on the decisions that we make. If we cannot easily remember an answer, then we rely on our prior knowledge, and finally, if our knowledge fails, then we resort to a guess. This model makes an important distinction from their other model and the underlying hypothesis, which both suggest that knowledge comes first, and thus could override the illusory truth effect.

All of this research can seem scary at first glance. In a world where “fake news” is on the rise, and where we are surrounded by ads and propaganda, how can we make sure that the information we believe to be true is actually true? While the paper does not fully explore the

Lisa Fazio’s model of the illusory truth effect.

effectiveness of different ways to train our brains to weaken the illusory truth effect, the authors  do offer some suggestions.

The first is to place yourself in situations where you are going to rely more on your knowledge. Instead of being a passive consumer of information, actively fact-check the information you find. Similar to a reporter chasing down a story, someone who actively thinks about the things they hear is not as likely to fall victim to this effect.

The second suggestion is to train oneself. Providing training with trial-by-trial feedback in a situation similar to this study could help people understand where their gut reactions fall short, and when to avoid using them. The most important point to remember is that the illusory truth effect is not inherently bad. Instead, it can act as a useful tool to reduce mental work throughout one’s day. If ten people say one thing, and one person says another, many times, then ten will be right, and the one will be wrong. The real skill is learning when to trust the wisdom of the crowds, and when to reject it.

Kevyn Smith Guest Post by Kevyn Smith, a third-year undergraduate majoring in Electrical and Computer Engineering and Computer Science, and minoring in Psychology.

Vulci 3000: A High-Tech Excavation

This summer I have the incredible opportunity to work with the Vulci 3000 Bass Connections team. The project focuses on combining archaeology and innovative technology to excavate and understand an ancient Etruscan and Roman site. Over the next several weeks I will be writing a series of articles highlighting the different parts of the excavation. This first installment recounts the history of the project and what we plan to accomplish in Vulci.

Covered in tall grasses and grazing cows it’s hard to imagine that the Vulci Archaeology Park was ever something more than a beautiful countryside. However, in reality, it was home to one of the largest, most important cities of ancient Etruria. In fact, it was one of the biggest cities in the 1st millennium BCE on the entire Italian peninsula. Buried under the ground are the incredible remains of Iron Age, Etruscan, Roman, and Medieval settlements.

Duke’s involvement with the Vulci site began in 2015 when Maurizio Forte, the William and Sue Gross Professor of Classical Studies Art, Art History, and Visual Studies visited the site. What was so unique about the site was that most of it was untouched.

One of the perils of archaeology is that any site can only be physically excavated once and it is inevitable for some parts to be damaged regardless of how careful the team is. Vulci presented a unique opportunity. Because much of the site was still undisturbed, Forte could utilize innovative technology to create digital landscapes that could be viewed in succession as the site was excavated. This would allow him and his team to revisit the site at each stage of excavation. In 2015 he applied for his first permit to begin researching the Vulci site.

In 2016 Forte created a Bass Connections project titled Digital Cities and Polysensing Environments. That summer they ventured to Italy to begin surveying the Vulci site. Because Vulci is a large site it would take too much time and money to excavate the city. Instead, Forte and his team decided to find the most important spots to excavate. They did this by combining remote sensing data and procedural modeling to analyze the various layers underground. They collected data using magnetometry and ground-penetrating radar. They also used drones to capture aerial photography of the site.

These technologies allowed the team to locate the urban areas of the site through the discovery of large buildings and streets revealed by the aerial photographs, radiometrically-calibrated orthomaps, and 3D point cloud/mesh models.

Anne-Lise Baylé Cleaning a Discovered Artifact on Site

The project continued into 2017 and 2018 with a team returning to the site each summer to excavate. Within the trench were archaeologists ranging from undergrads to postdocs digging, scraping and brushing for months to discover what lay beneath the surface. As they began to uncover rooms, pottery, coins, and even a cistern, groups outside the trench continued to advanced technology to collect data and improve the understanding of the site.

Nevio Danelon Releasing a Drone

One unit focused on drone sensing to digitally create multispectral imagery as well as high-resolution elevation models. This allowed them to use soil and crop marks to better interpretation and classify the archaeological features.

By combining traditional archaeology and innovative technology the team has been able to more efficiently discover important, ancient artifacts and analyze them in order to understand the ancient Etruscan and Roman civilizations that once called Vulci their home.

Photo Taken Using the Insta360 Camera in “Planet” Mode

This year, archaeologists return to the site to continue excavation. As another layer of Vulci is uncovered, students and faculty will use technology like drones, photogrammetry, geophysical prosecutions and GIS to document and interpret the site. We will also be using a 360 camera to capture VR compatible content for the OculusGo in order to allow anybody to visit Vulci virtually.

By Anna Gotskind

Kicking Off a Summer of Research With Data+

If the May 28 kickoff meeting was any indication, it’s going to be a busy summer for the more than 80 students participating in Duke’s summer research program, Data+.

Offered through the Rhodes Information Initiative at Duke  (iiD), Data+ is a 10-week summer program with a focus on data-driven research. Participants come from varied backgrounds in terms of majors and experience. Project themes range  from health, public policy, energy and environment, and interdisciplinary inquiry.

“It’s like a language immersion camp, but for data science,” said Ariel Dawn, Rhodes iiD Events & Communication Specialist. “The kids are going to have to learn some of those [programming] languages like Java or Python to have their projects completed,” Dawn said.

Dawn, who previously worked for the Office of the Vice Provost for Research, arrived during the program’s humble beginnings in 2015. Data+ began in 2014 as a small summer project in Duke’s math department funded by a grant from the National Science Foundation. The following year the program grew to 40 students, and it has grown every year since.

Today, the program also collaborates with the Code+ and CS+ summer programs, with  more than 100 students participating. Sponsors have grown to include major corporations such as Exxonmobil, which will fund two Data+ projects on oil research within the Gulf of Mexico and the United Kingdom in 2019.

“It’s different than an internship, because an internship you’re kind of told what to do,” said Kathy Peterson, Rhodes iiD Business Manager. “This is where the students have to work through different things and make discoveries along the way,” Peterson said.

From late May to July, undergraduates work on a research project under the supervision of a graduate student or faculty advisor. This year, Data+ chose more than 80 eager students out of a pool of over 350 applicants. There are 27 projects being featured in the program.

Over the summer, students are given a crash course in data science, how to conduct their study and present their work in front of peers. Data+ prioritizes collaboration as students are split into teams while working in a communal environment.

“Data is collected on you every day in so many different ways, sometimes we can do a lot of interesting things with that,” Dawn said.  “You can collect all this information that’s really granular and relates to you as an individual, but in a large group it shows trends and what the big picture is.”

Data+ students also delve into real world issues. Since 2013, Duke professor Jonathan Mattingly has led a student-run investigation on gerrymandering in political redistricting plans through Data+ and Bass Connections. Their analysis became part of a 205-page Supreme Court ruling.

The program has also made strides to connect with the Durham community. In collaboration with local company DataWorks NC, students will examine Durham’s eviction data to help identify policy changes that could help residents stay in their homes.

“It [Data+] gives students an edge when they go look for a job,” Dawn said. “We hear from so many students who’ve gotten jobs, and [at] some point during their interview employers said, ‘Please tell us about your Data+ experience.’”

From finding better sustainable energy to examining story adaptations within books and films, the projects cover many topics.

A project entitled “Invisible Adaptations: From Hamlet to the Avengers,” blends algorithms with storytelling. Led by UNC-Chapel Hill grad student Grant Class, students will make comparisons between Shakespeare’s work and today’s “Avengers” franchise.

“It’s a much different vibe,” said computer science major Katherine Cottrell. “I feel during the school year there’s a lot of pressure and now we’re focusing on productivity which feels really good.”

Cottrell and her group are examining the responses to lakes affected by multiple stressors.

Data+ concludes with a final poster session on Friday, August 2, from 2 p.m. to 4 p.m. in the Gross Hall Energy Hub. Everyone in the Duke Community and beyond is invited to attend. Students will present their findings along with sister programs Code+ and the summer Computer Science Program.

Writing by Deja Finch (left)
Art by Maya O’Neal (right)

How Many Neuroscientists Does it Take to Unlock a Door?

Duke’s Summer Neuroscience Program kicked off their first week of research on June 4 with a standard morning meeting: schedules outlined, expectations reiterated, students introduced. But that afternoon, psychology and neuroscience professor Thomas Newpher and undergraduate student services coordinator Tyler Lee made the students play a very unconventional get-to-know-you game — locking them in a room with only one hour to escape.

Not the usual team building activity: Students in Duke’s 8-week Summer Neuroscience Program got to know each other while locked in a room.

Bull City Escape is one of a few escape rooms in the Triangle, but the only one to let private groups from schools or companies or families to come and rent out the space exclusively. Like a live-in video game, you’re given a dramatic plot with an inevitably disastrous end: The crown jewels have been stolen! The space ship is set to self-destruct! Someone has murdered Mr. Montgomery, the eccentric millionaire! With minutes to go, your rag-tag bunch scrambles to uncover clues to unlock locks that yield more clues to yet more locks and so on, until finally you discover the key code that releases you back to the real world.

This summer’s program dips into many subfields, in hopes of pushing the the 16 students (most of them seniors) toward an honors thesis. According to Newpher, three quarters of the senior neuroscience students who participated in the 2018 SNP program graduated with distinction last May.

From “cognitive neuro” that addresses how behavior and psychology interacts with your neural network, to “translational neuro” which puts neurology in a medical context, to “molecular and cellular neuro” that looks at neurons’ complex functions, these students are handling subjects that are not for the faint of heart or dim of mind.

But do lab smarts carry over when you’re locked in a room with people you hardly know, a monitor bearing a big, red timer, blinking its way steadily toward zero?

Apparently so. The “intrepid team of astronauts” that voyaged into space were faced with codes and locks and hidden messages, all deciphered with seven minutes left on the clock, while the “crack-team of detectives” facing the death of Mr. Montgomery narrowly escaped, with less than a minute to spare. At one point, exasperated and staring at a muddled bunch of seemingly meaningless files, a student looked at Dr. Newpher and asked, “Is this a lesson in writing a methods section?”

The Bull City Escape website lists creative problem-solving, focus, attention to detail, and performance under pressure as a few of the skills a group hones by playing their game — all of which are relevant to this group of students, many of whom are pre-med. But hidden morals about clarity and strength-building aside, Newpher picked the activity because it allows different sides of people’s personalities to come out: “When you’re put in that stressful environment and the clock is ticking, it’s a great way to really get to know each other fast.”

By Vanessa Moss
By Vanessa Moss

The Power of Bass Connections Teamwork

Does yoga improve emotional regulation? Why don’t youth vote in elections? Can regular exercise combat anxiety and depression? How do we encourage girls to pursue careers in STEM fields? These are some of the questions explored by Bass Connections teams at Duke this year. After a year of hard work, several teams presented their answers in 5-minute flash talks at the EHDx event on April 9, and their audience was very impressed by their research.

Karina Heaton and Caleb Cooke present on their Bass Connections project, Wired for Learning

Bass Connections is a program at Duke that allows students to engage with real world problems, and apply their classroom knowledge to solve problems in society. Accepted students spend a year or more working with an interdisciplinary team of faculty, undergraduates, and graduate students on a project within the five theme areas of Bass Connections: Brain & Society, Information, Society & Culture, Global Health, Education & Human Development, and Energy & Environment.

The eleven teams that presented at EHDx were part of the Education and Human Development theme, so they spent the year exploring questions related to advancing educational systems, or exploring other areas in support of positive life outcomes for youth. Each team selected representatives to speak for five minutes on the work they have accomplished this year, and the event became a competition when the moderators announced the audience would vote for the best talk at the end.

The winning talk was presented by Bruny Kenou, a Duke undergraduate

The winner of this competition was Bruny Kenou, presenting on behalf of the Virtual Avatar Coaches project. The goal of this team was to create a peer to peer coaching program to support college students struggling with mental health. This project aims to fight stigma with a platform that allows students to send an anonymous text and receive immediate help from a peer. Peer coaches will take a semester-long course to prepare for their role in the program, and the hope is for this to eventually improve the lives of many students suffering from a fear of stigmas and labels.

The talks were followed by a reception and poster session. The team that took the blue ribbon this time was Mindfulness in Human Development. The objective of this team is to improve the lives of middle school students in Durham with a yoga and mindfulness intervention during the school day. The team has found that taking a break for yoga in the middle of the day has had positive effects on empathy, emotional regulation, and body image on the young students. Did someone say namaste?

The winner of the poster contest was the Mindfulness in Human Development Team

Honestly, I didn’t vote — I couldn’t pick a favorite! From designing a new and inclusive curriculum for elementary schools and helping kids learn computer science to investigating educational policy in Brazil and promoting awareness of female philosophers throughout history, each presentation was so impressive. It was easy to see that all of these teams have all been hard at work to affect positive change in society. If they can do this much in under a year, who knows what these talented undergraduates will accomplish in a lifetime!

Post by Anne Littlewood, Trinity ’21

Science Gets By With a Little Help From Its Friends

There are many things in life that are a little easier if one recruits the help of friends. As it turns out, this is also the case with scientific research.

Lilly Chiou, a senior majoring in biology, and Daniele Armaleo, a professor in the Biology Department had a problem. Lilly needed more funding before graduation to initiate a new direction for her project, but traditional funding can sometimes take a year or more.

So they turned to their friends and sought crowdfunding.

Chiou and Armaleo are interested in lichens, low-profile organisms that you may have seen but not really noticed. Often looking like crusty leaves stuck to rocks or to the bark of trees, they — like most other living beings — need water to grow. But, while a rock and its resident lichens might get wet after it rains, it’s bound to dry up.

If you’re likin’ these lichens, perhaps you’d like to support some research…

This is where the power of lichens comes in: they are able to dry to a crisp but still remain in a suspended state of living, so that when water becomes available again, they resume life as usual. Few organisms are able to accomplish such a feat, termed desiccation tolerance.

Chiou and Armaleo are trying to understand how lichens manage to survive getting dried and come out the other end with minimal scars. Knowing this could have important implications for our food crops, which cannot survive becoming completely parched. This knowledge is ever more important as climate becomes warmer and more unpredictable in the future. Some farmers may no longer be able to rely on regular seasonal rainfall.

They are using genetic tools to figure out the mechanisms behind the lichen’s desiccation tolerance[. Their first breakthrough came when they discovered that extra DNA sequences present in lichen ribosomal DNA may allow cells to survive extreme desiccation. Now they want to know how this works. They hope that by comparing RNA expression between desiccation tolerant and non-tolerant cells they can identify genes that protect against desiccation damage.  

As with most things, you need money to carry out your plans. Traditionally, scientists obtain money from federal agencies such as the National Science Foundation or the National Institutes of Health, or sometimes from large organizations such as the National Geographic Society, to fund their work. But applying for money involves a heavy layer of bureaucracy and long wait times while the grant is being reviewed (often, grants are only reviewed once a year). But Chiou is in her last semester, so they resorted to crowdfunding their experiment.

This is not the first instance of crowdfunded science in the Biology Department at Duke. In 2014, Fay-Wei Li and Kathleen Pryer crowdfunded the sequencing of the first fern genome, that of tiny Azolla. In fact, it was Pryer who suggested crowdfunding to Armaleo.

Chiou (left) and Armaleo in a video.

Chiou was skeptical that this approach would work. Why would somebody spend their hard-earned money on research entirely unrelated to them? To make their sales pitch, Chiou and Armaleo had to consider the wider impact of the project, rather than the approach taken in traditional grants where the focus is on the ways in which a narrow field is being advanced.

What they were not expecting was that fostering relationships would be important too; they were surprised to find that the biggest source of funding was their friends. Armaleo commented on how “having a long life of relationships with people” really shone through in this time of need — contributions to the fund, however small, “highlight people’s connection with you.” That network of connections paid off: with 18 days left in the allotted time, they had reached their goal.

After their experience, they would recommend crowdfunding as an option for other scientists. Having to create widely understood, engaging explanations of their work, and earning the support and encouragement of friends was a very positive experience.

“It beats writing a grant!” Armaleo said.

Guest Post by Karla Sosa, Biology graduate student


Open Communication is Key to Research in Schools

One of the things that excited me most about coming to Duke was the amount of research being done on campus, from theoretical physics to biological field work or cultural anthropology. I recently had the opportunity to attend a panel about conducting research in schools. As someone who has only ever done biological and chemistry-based lab work, I was eager to learn more about how research is conducted in other disciplines.

Doing research in schools is particularly challenging because it includes so many parties. The research goals must align with the school district’s priorities, collaboration must occur with the teachers, administrators and researchers about the design of the study and feasibility of implementations, and there must be cooperation from the students who are often young children unaware of the research going on.

Ultimately, the core role of schools is to educate children. Thus, in order to conduct research, the team needs to find a way to provide a clear benefit to schools for participation and make sure of protecting instruction time, reducing the burden on teachers.

The main purpose of the panel was to help Duke researchers better understand how to effectively interact and conduct research in schools. This was very well reflected in the four panelists Amy Davis, Cherry Johnson, Michele Woodson, and Holle Williams who each gave short, individual presentations.

Essentially,  the goal of a school is to provide high-quality education to the students. So to conduct research, researchers must find a way to make their goals applicable to the teachers.

Davis, the coordinator of grants, research, and development in Durham Public Schools explained that because of their large minority population, researchers often want to partner with them. Davis explained that researchers should strive to work collaboratively in a way that will yield what the researcher needs but also benefit the school. The focus of the teachers and administrators is not on research and they are not experts in things like research design.

She urged researchers to first reach out to her because she knows which schools would be a viable fit and can help provide the language to talk directly to them. Furthermore, she addressed that researchers sometimes need to have the flexibility to alter the research design when working in schools.

Johnson, the Director of Research and Grant Development in Johnston County Public Schools began by explaining how her district is driven by principles of relationships, relevance, and innovation.

She added that they are  “always interested in collab opportunities between universities and JCPS.”

However, studies that can aid in furthering their priorities, namely innovation, teacher recruitment and social and emotional learning will have a higher likelihood of being conducted successfully.

What makes the county so unique is that they are almost two districts within one.

“We still have notable lines between the haves and have nots,” Johnson added referring to large the socioeconomic differences between the Raleigh commuters and farm families.

To address some of these challenges, JCPS are participating in many partnerships with universities like NC State, UNC and Duke including a study with Dr. Leslie M. Babinski, associate research professor in the Sanford School of Public Policy.

Dr. Babinski conducting research in schools
Dr. Babinski working with students

Ultimately, university research is not a school district’s top priority. However, Woodson added that if the research has the ability to aid the school in accomplishing their goals then it increases the likelihood of success for both parties.

The last speaker was Holle Williams the Director of Main Campus Institutional Review Board at Duke University. Most schools require the approval of Duke’s IRB, which aims to protect the rights and welfare of human research subjects. Williams explained that their goal is to understand the intent of the researcher’s project.

“We want to make sure that what you are doing, what you are contemplating meets the definition of research” Williams stated.

Understanding intent allows then to distinguish research from other kinds of projects where research can help the school but also must contribute to the universal knowledge of a given education based topic.

A big emphasis of the talk was open communication. Both the school representatives and director of IRB highlighted that in order to most efficiently carry out a research project, the researchers should make sure to reach out to both the schools as well as main campus IRB. Through effective communication, strong partnerships can be built between the Duke community and local schools to conduct research that benefits both parties.

Post by Anna Gotskind

Magazine Covers Hew to Stereotypes, But Also Surprise

Data + Women’s Spaces

Media plays a large role in the lives of most people. It’s everywhere. Even if you don’t actively purchase magazines, you are exposed to the covers in daily life. They are at newsstands, in grocery stores, in waiting rooms, online and more. Intrigued by the messages embedded in magazine covers, Nathan Liang (psychology, statistics), Sandra Luksic (philosophy, political science) and Alexis Malone (statistics) sought out to understand how women are represented in media as a part of a research project in the Data+ program.

Data+ is one of the many summer research opportunities at Duke. It’s a 10-week program focused on data science that allows undergraduate students to explore different research topics using data-driven approaches. Students work collaboratively in small interdisciplinary teams and develop skills to marshal, analyze, and visualize data.

The team’s project, titled Women’s Spaces, focused on a primary research question: Which messages are pervasive in women’s and men’s magazines and how do these messages change over time, across magazines, and between different target audiences.

Together, the team analyzed 500+ magazine covers published between January 2010 and June 2018, from Cosmopolitan, Esquire, Essence, Good Housekeeping and Seventeen. They used image analysis, text analysis and sentiment analysis in order to understand how women are represented on the magazine covers.

To conduct image analysis the team used Microsoft Azure Face Detect with Python in order to identify cover models. This software accounted for perceived emotions, age and race. They also noted the race/ethnicity and hair length of the cover models. Their research revealed that excluding Essence, 85 percent of magazine covers were white and had below average body sizes. One specific thing they found was that men had a greater range of emotions while women seemed to always appear happy. Furthermore, there was less emotional variance among minorities and in general, no Asian men. However, they did note that there may have been a software bias in that Microsoft Azure may not have picked up as well on the emotions of minorities.

In order to conduct text analysis, the team had to self-type the text on the magazine covers because oftentimes the text on magazine covers was layered on top of images making it hard for software to detect. This reduced the number of magazines that they were able to analyze because it took up so much time. They then used a Term Frequency-Inverse Document Frequency (tf-idf) algorithm to determine both how often a term occurred on the cover how important a term was. Their results revealed several keywords associated with different magazines. Some of these include sex (Cosmopolitan),  curvy, beauty, and business (Essence), cooking, cleaning, and kitchen (GH), cute (Seventeen), and cars, America, and Barbeque (Esquire)

Tf-idf word cloud for all magazines

Lastly, they conducted a sentiment analysis. Sentiment analysis involved computationally identifying the opinions expressed in the magazine covers to determine their attitude on the topic being displayed. While sentiment libraries exist, there were not any that had magazine/advertising industry-specific sentiments and thus, were not usable for the research. As a result, the team created their own sentiment dictionary with categories like “positive,” “negative,” “sex,” “sell-words,” “appearance,” “home,” “professional,” “male” and “female.”

At the end of the summer, their main takeaway was that magazines tend to reinforce gender norms and stereotypes. The covers also backed up some of the established preconceived notions they had about magazines. However, they also discovered messages of empowerment. Interestingly, these were often connected to beauty as well as consumerism.

In a presentation, the team explained that one of the lessons they took away from the summer was that Data science is not objective, but biases are hard to spot. They noted that throughout the process they made sure to question their methodologies of analyzing data. It was particularly challenging to determine where the biases were coming into play: be it their questions, data sources or even understanding of feminism. Because of the interdisciplinary nature of the project, combining humanities with data science, the team was academically diverse. Luksic stated in the presentation that she, especially, came in skeptical of the idea that technology was assumed to be “objective”.

Luksic added, “It’s one thing to know, on a abstract level, that data science is not objective. It is another thing entirely to try to do or practice data science in a way that minimizes your subjectivities. Ultimately, we hope for a data science that can incorporate subjectivity in a way that emphasizes differences, such as between black-centered feminism and anti-black feminism.”

The discoveries made by the team play into a larger discussion about women’s roles in media and how that influences feminism and empowerment in relation to marketing and how that impacts women’s movements.

Luksic stated, “the versatility of data science allowed us to pursue multiple different paths with different conceptions of feminisms underlying them, which was exciting and empowering.”

By Anna Gotskind

An Indirect Path to Some Extreme Science

Dr. Cynthia Darnell’s path to becoming a postdoctoral researcher in the Amy Schmid Labat Duke University was, in her words, “not straightforward.”

Dr. Cynthia Darnell is a Postdoc at Duke, studying ‘extremophiles.’

At the start of her post-high school career, Darnell had no clue what she wanted to do, so she went to community college for the first two years while she decided. She had anticipated that she was going to go to college as an art major, but had always enjoyed biology.

While at community college she took a couple biology courses. She transferred to another college where she took a course in genetics and according to her, “it blew my mind.” While at the college she took a variety of different biology courses. Her genetics professor’s wife was looking for a lab technician in the microbiology lab she ran. After Darnell worked there for two years, she decided to go to graduate school and had a whole list of places/universities she could attend.

However, after going to a conference in Chicago and meeting her future graduate advisor, Darnell made the decision to go to Iowa for six years of Graduate school. She ended up in the Schmid Lab at Duke University for her “postdoc” after her boss had recommended the lab to her.

Previously, Darnell had done research on the connectedness of genetic pathways in halophilic extremophiles — bacteria that lived in extremely salty conditions. She developed projects to understand the how their genetic network sends and receives signals.

Darnell is continuing that research at Duke while also looking at the effects of different environmental factors on growth and the genetic network using mutant halophilic extremophiles.

Darnell with some plated archaebacteria in her Duke lab

There are generally three different paths Darnell’s day in the lab can take. The first path is a bench day. During a bench day, she will be doing experiments looking at growth curves, microscopes or RNA extracts. The second path is a computational day in which she will do sequencing to look at gene expression. The third option is a writing day in which she spends a majority of her time writing up grants, papers, and applications.

Dr. Darnell wishes to open up her own lab in the future and serve underprivileged students in underserved areas. She wishes to do more research in the area of archaebacteria because of how under researched and underrepresented it is in the scientific community. Dr. Darnell hopes to study more about the signaling networks in archaebacteria in her own lab someday.

She especially wishes to be able to open her lab up to underprivileged students, exposing them to the possibilities of research and graduate programs.

Guest Post by Tejaswi Siripurapu, NCSSM 2019

New Blogger Jeremy Jacobs: What’s in a Name?

Surviving my first snow day at Duke

Let’s start with my name: Jeremy Abraham Jacobs. It’s a surprisingly Biblical one,
a name that draws more from the Judeo-Christian tradition than my
Indian roots. Jeremy, derived from the prophet Jeremiah and the depths of my mother’s imagination. Abraham, both the name of my father’s father and the patriarch of Judaism. And Jacobs, the latest Americanization of my family name Yakob, Chacko, then Jacob.

At the heart of my name is language, the offspring of a million-year synthesis of firing neurons, geography, and culture. I too grew up a child of intersection, living a blend of the Indian tradition my parents brought over with them and the rich culture of the Deep South that’s flavored ever moment of my life.

I’m a freshman here at Duke, with all the uncertainties—and possibilities—of an undeclared major. But my passion lies in the crossroads that has defined my life. I want to understand the inseparable intertwining of linguistics and neuroscience. And communication enthralls me, from the individual cells that make up the tongue to the Spanish pluperfect subjunctive.

Who knows if, after four years, organic chemistry will have knocked me off the pre-med track, or if English will still hold my interest as tightly as it does today? But for now, at least, mysteries like the power of a name still keep me invested in the intricate interplay of science and language.

Move-in day featuring an injured arm!

What cascading forces of nature and nurture brought my mother to a small hospital in Tupelo, Mississippi, where I came into the world kickin’ and screaming’ one hot July morning? Was there some memory burned into her hippocampus that caused her to choose the name “Jeremy” in a sea of Chad’s, Luke’s, or Matt’s? And how different would my life have been if my name were not Jeremy Abraham Jacobs but rather Aakash Bola, or Harley Covington Pike III?

It took generations of missteps, chance encounters, and biological improbabilities for this name to fall to me, for this name to be mine. Perhaps one day I’ll understand every aspect of my unlikely existence, every factor that led to the genetically unique organism currently typing up this article. More likely, though, is that I’ll spend my life exploring the unknown, learning more about my own place in the mechanisms of the world.

But I know, at least, that intersection follows me, even here at the Duke Research Blog. I’m thrilled to infuse my own mix of science, writing, and culture into each article I produce, so I can ignite the passions of others students of science who seek their own common ground.

Post by Jeremy Jacobs

Page 17 of 42

Powered by WordPress & Theme by Anders Norén