This is the fifth of six posts written by students at the North Carolina School of Science and Math as part of an elective about science communication with Dean Amy Sheck.

Research is a journey full of uncertainty in which scientists have to construct their own path, even if they’re unsure of what the end of the journey actually is. Despite this unpredictability, researchers continue their journey because they believe their work will one day drive their fields forward. At least, that’s why Kate Meyer Ph.D. says she has investigated something called m6A for several years.

Kathryn Meyer, Ph.D.

“Virtually every study that I have ever been part of had some frustrations involved because everything can fall apart in just one night,” Meyer said. “Despite all the frustrations you might have, you are still in the research because you know that at the end of the day, you will get new knowledge that is worthy to your field, or perhaps to the world.”

N6-methyladenosine (or m6A) is a modification to one of the four main bases of RNA – adenosine. Because RNA plays a significant role as a bridge between genetic information and functional gene products, modifications in RNA can alter how much of a certain product will be produced, which then controls how our cells and eventually our whole body functions.

The idea of this tiny but powerful modification was first proposed in the 1970s. But scientists struggled to find where m6A was located in the cell before research Meyer made a major contribution to as a trainee was published in 2012. Combining a newly developed antibody that could recognize m6A and gene sequencing techniques that became more accessible to the researchers, Meyer’s work led to the first method that can detect and sequence all of the m6A regions in a cell.

m6A’s interaction with a neuron, as depicted on Dr. Meyer’s laboratory site.

Meyer’s work was transformative research. Her method allowed laboratories around the world to investigate what regulates m6A and what its consequences are. Meyer said this first study which ignited m6A field is one of her most prideful moments as a researcher. 

Significant progress has been made since 2012, but there are still lots of questions that need to be answered. Currently, Meyer’s research team is investigating the relationships between m6A and various neurological issues. She believes that regulation of m6A controls the expression, or activity level, of various genes in the brain. As such, m6A may play an important role in neurodegenerative diseases and memory.

Author Jun Hee Shin, left, and Kate Meyer in her lab.

As an assistant professor of both biochemistry and neurobiology at Duke, Meyer is definitely one of the most important figures in the m6A field. Despite her many accomplishments, she said she had experienced and overcome many frustrations and failures on her way to the results.

Guest Post by Jun Shin, NCSSM 2020