Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Physics Page 8 of 11

Meat Glue — True to its Name

By Ashley Yeager

This is the third post in a four-part, monthly series that gives readers recipes to try in their kitchens and learn a little chemistry and physics along the way. Read the first post here and the second one here.

fish checkerboard

Students grab chunks of a fish “checkerboard” made from salmon and flounder cubes. Credit: Ashley Yeager, Duke.

Braided steak and checkerboard fish may sound exotic. But, freshmen in the Chemistry and Physics of Cooking had no fear fingering the meaty masterpieces into their mouths.

The students made this food art – one literally a braid of three steak strips and the other a combination of salmon and flounder cubes – using a molecule called transglutaminase, also known as meat glue.

In 2012, the media roasted meat glue’s reputation, branding it a dirty little secret meat vendors use to stick together cheap cuts of beef, lamb, chicken or fish and then sell as premium cuts.

“In this class, we’re not using the molecule to be dishonest. We’re using it to be creative,” said physical chemist Patrick Charbonneau, who leads the freshman seminar along with chef Justine de Valicourt and teaching fellows Mary Jane Simpson and Keely Glass.

During a lecture, Glass explained how meat glue — an enzyme that speeds chemical reactions — forms covalent bonds between some of the amino acids that make up the proteins in meat and meat substitutes. With just a sprinkle of the enzyme, which comes in a powder form, chefs can then weave together beef cuts, form game-piece patterns from fish or even bind beans, seeds and other ingredients into a veggie burger that doesn’t crumble after the first bite.

“Meat glue is like a lot of modern ingredients. It comes from industry, and you can use it to make industrial food,” like chicken nuggets, de Valicourt said. “But when you master it, you can use it in a very creative and delicious way.”

Chefs often use the fundamentals of chemistry and physics to shape other foods, such as chocolate. “We’re doing the same to shape meat,” Charbonneau said, explaining that the students used transglutaminase in lab to create beautiful, and delicious, combinations of meat far superior to chicken nuggets and other industrial food typically made with the enzyme.

To make your own meat masterpieces, try the following recipe:

Materials:

1 long sheet of plastic wrap OR a bowl
1 cutting board
1 knife
2 latex gloves for each person
1 mask for each person
1 meat grinder (optional)
1-3 gallon-sized Ziploc bags
1 scale

Ingredients:

1 portion fish, chicken, beef OR vegetarian protein (ie black beans and sunflower seeds)
10 g meat glue powder (available online here)

Instructions:

Gluing meat chucks together –

1. Choose meats
2. Place meat on plastic wrap
3. Choose meat pattern – braid or stack
4. Season meat with salt and pepper
5. Put on gloves and mask and measure 10 g of meat glue using the scale
6. Sprinkle meat glue on sides of meat you want to connect
7. Fold meat into desired pattern
8. Place meat in Ziploc bag
9. Refrigerate for 6 hours
10. Cook meat as you would any other time

Making meat patties –

1. Choose meats, grind in meat grinder, and mix in a bowl (Or, buy ground meat and mix)
2. Season meat with salt and pepper
3. Put on gloves and mask, then measure 10 g of meat glue using the scale
4. Add meat glue to meat and knead until fully mixed
5. Separate into two portions (or more for patties) and seal each in a Ziploc bag
6. Roll with rolling pin, if desired
7. Refrigerate for 6 hours
8. Cook meat as you would any other time

Diffusion a la Chocolate Lava Cake

By Ashley Yeager

Note: This is the second post in a four-part, monthly series that will give readers recipes to try in their kitchen and learn a little chemistry and physics along the way. Read the first post here.

Making chocolate lava cakes demonstrates the diffusion of heat. Credit: Ashley Yeager, Duke.

Between bites of hot lava cake and vanilla ice cream, freshmen taking Chemistry and Physics of Cooking talk about diffusion. Their conversation isn’t so esoteric that an outsider wouldn’t understand.

Instead, it’s a simple chat about how long to cook a cake based on how heat moves.

Understanding diffusion is a way to make sense of cooking times, says chemistry and physics professor Patrick Charbonneau, who is leading the class along with chef Justine de Valicourt.

Diffusion of matter is how particles in a liquid, gas or solid intermingle and move from a region of higher concentration to one of lower concentration.

Heat diffusion describes how hot particles warm up cooler particles around them, which allows the inside of a dish to cook, even though only the outside is heated.

Before turning his students loose in a kitchen in Smith Warehouse to eat a product of this process, Charbonneau and his teaching fellows had the group work through the equations that describe diffusion.

“Solving the diffusion equations of heat gives you a first estimate of how long to bake a cake or cook a turkey,” Charbonneau says. The cooking time for lava cake is especially critical in order to get the outside it to bake, while the inside remains gooey, de Valicourt adds.

In class, the students calculated that to make a muffin-sized lava cake with ingredients at room temperature in an oven at 400°F (204°C) would take about 10 minutes. In the lab, they found that the calculation was fairly accurate, but for a more exact estimate of cooking time, they needed to factor in the temperature of melted chocolate chips in their recipe.

“Still, with the cooking time being not so mysterious, it’s one fewer thing left to chance,” Charbonneau says, adding, “then you can be more creative with the recipe in other ways.”

He and de Valicourt, who have partnered with the Alicia Foundation to offer the Chemistry and Physics of Cooking class, have provided the following recipe for experimenting with diffusion and hot lava cake.

Hot Lava Cake —

Ingredients:
60g (1/3 c) dark chocolate chips
60 g (1/2 stick) butter
60 g (1/4 c) sugar
3 eggs (or 2 egg and 45mL (3tbs) coconut milk)
30 g (1/4 c) flour
small pinch salt
Non-stick cooking spray

Materials:
1 bowl (bain-marie)*
4 ramekin dishes or 1 muffin tin
2 medium bowls
1 scale (if weighing ingredients)
1 sieve
1 cooking thermometer (optional)

* You can make a bain-marie by placing a bowl over a saucepan of simmering water.

Instructions:

1. Preheat the oven to 400°F/204°C.
2. Melt chocolate and butter on bain-marie. Stir. Do not boil the water or the chocolate could burn.
3. Combine eggs and sugar (and coconut milk) in a medium bowl and whisk until bubbly.
4. Combine flour and salt in another bowl and pass it through the sieve.
5. With one person whisking and another pouring, slowly add the chocolate mixture to the egg mixture.
6. Add the flour and salt to the wet ingredients and whisk well.
7. Spray ramekins or muffin tin with non-stick cooking spray.
8. Fill the ramekins or muffin tin a little more than halfway full.
9. Place the ramekins or tin in the oven on the middle rack.
10. Bake until the cakes start growing. The interior of the lava cake should be around 158-176°F/70-80°C and the outside around 203-212°F/95-100°C – ie until the edges of the cake are set, but the center is still a liquid – about 7 to 10 minutes (less for smaller cakes).

Close Encounters of the Twitter Kind

By Ashley Yeager

Astrophysicist Katie Mack and other researchers are starting to join Twitter to do better science. Image courtesy of: mediabistro.com

Before launching into dark matter’s effects on particle physics in the early universe, astrophysicist Katie Mack of the University of Melbourne in Australia took a little detour Wednesday to talk about Twitter.

The social media tool is helping her “do better science and learn about new science,” she said during her Jan. 30 seminar at Duke.

The talk materialized from a tweet she had posted a few days ago about attending ScienceOnline, an annual, Raleigh-based conference for scientists and communicators talking and writing about science on the Internet.

Duke physicist Mark Kruse, who joined Twitter in October after the 2012 Council for the Advancement of Science Writers meeting, saw Mack’s tweet about coming to the Triangle and then contacted her to see if she would like to speak about her research.

She said yes, obviously, and explained during her talk that the invitation, as well as the other networking she has done on Twitter, got her to thinking about why all physicists (and scientists) should use the site.

@AstroKatie shares her top reasons scientists should be on Twitter. Credit: Katie Mack, U. of Melbourne.

Here is a paraphrased list of her top five reasons:

1. You can see what scientific breakthroughs people are getting excited about.
2. You can keep track of science discoveries outside of your field.
3. You can share your work with a broader audience.
4. You can connect with other scientists in and outside your field, building your professional network.
5. You can connect and share your work with the public.

Clearly Mack’s invitation to speak at Duke illustrates her third point about Twitter. Now, she said, she looks forward to attending her first ScienceOnline meeting to build on those points and learn new ways of using the tool to connect with other scientists and science enthusiasts.

You can follow Mack at @astrokatie, Kruse at @markckruse and ScienceOnline at @ScienceOnline (or #scio13) if you’re already on Twitter.

And, if you’re a Duke researcher not yet on Twitter but want to be, check it out here, then contact the university’s news office if you’ve got questions.

Cooking up chemistry with candy

By Ashley Yeager

Note: This is the first in a four-part, monthly series that will give readers recipes that they can try in their kitchen and also learn a little chemistry and physics along the way.

Making sucre à la crème (left) and soft toffee (right) illustrates the fundamental principles of changing a liquid to a solid. Credit: Ashley Yeager, Duke.

A dozen freshmen pull on pieces of fresh, soft toffee, popping the candy into their mouths and licking it from their teeth as chef Justine de Valicourt talks about making the treats in a tiny kitchen on the second floor of Smith Warehouse.

Eating toffee and other sweets doesn’t usually spark a discussion about chemistry. But, as the students learn, the core of the eating experience is entirely about chemistry and some physics too, says professor Patrick Charbonneau.

He is leading a freshman seminar, called the Chemistry and Physics of Cooking, and in this particular class, he, de Valicourt and a team of teaching assistants work with the students to explore phase transitions – such as the change of liquid water to ice – by making two traditional Québécois desserts, sucre à la crème and soft toffee.

Both desserts have the same ingredients — maple syrup, butter and cooking cream. But, the experience of eating them is entirely different. One, the toffee, is stretchy, chewy and sticky, while the other, the sucre à la crème, is more crumbly and smooth.

The way the sugar molecules in solution cool down into a solid structure is what determines the final texture of a candy or chocolate, Charbonneau says.

During the lab, the students cool one mixture of syrup, butter and cream quickly and then whisk it. The stirring motion forces the sugar molecules to bump into each other, creating seeds of crystallization, which continue to grow and eventually clump together to give the sucre à la crème its solid, crumbly texture.

The students mix and heat the ingredients, then let them cool slowly, leaving the candy to set for at least three hours. Not whisked or stirred, it solidifies without forming too many large crystals, giving it a glassier appearance and a stickier, chewy texture, a signature feature of toffee.

Making these candies is pretty basic, easy enough that anyone could try it in a home kitchen, Charbonneau says, adding that he and de Valicourt have provided the recipes as a way to reach beyond the classroom and give more than just their students an introduction to cooking and, of course, the chemistry behind it too.

Sucre à la crème —

Ingredients:
1 can of maple syrup (540mL)
45 g (3 tbsp.) of butter (plus some to grease the mold)
250 ml (1 cup) of cooking cream 35%

Materials:
1 medium saucepan
1 candy thermometer
1 wooden spoon
1 square mold
1 whisk
1 bucket of cold water

Instructions:

1. Put all ingredients in the saucepan. Stir.
2. Heat on the stove to 118°C (244°F) – 120°C (248°F). Be careful not to touch the bottom of the pan with the thermometer, which will give an incorrect reading.
3. Put the saucepan in the bucket of cold water and let the mixture cool down to 55°C (131°F) – 60°C (140°F) in the center. Do not stir the mixture.
4. Once cooled in the water, whisk the mixture to make a creamy pale paste. Pour in the mold and cut it before it gets too hard.
5. Let it rest 30 min in the fridge.

Soft toffee —

Ingredients:
1 can of maple syrup (540mL)
45 g (3 tbsp.) of butter (plus some to grease the mold)
250 ml of cooking cream 35%

Materials:
1 medium saucepan
1 candy thermometer
1 wooden spoon
1 square mold

Instructions:
1. Put all ingredients in the saucepan. Stir.
2. Heat on the stove to 118°C (244°F) – 120°C (248°F). Be careful not to touch the bottom of the pan with the thermometer, which will give an incorrect reading.
3. Pour into the greased mold, let it cool down slowly, without disturbing it for 3-8 hours.

Higgs Hunters Seeing Double

By Ashley Yeager

An stuffed animal artist’s conception of the Higgs boson. Credit: The Particle Zoo.

Scientists searching for the Higgs boson on the ATLAS experiment at the Large Hadron Collider near Geneva are reporting small discrepancies from the two main channels they use to look for the particle.

With these channels – the decay of a Higgs to two light particles (photons) or to two Z bosons – the scientists determined the mass of the Higgs-like particle to be roughly 125 GeV, about 125 times the mass of the proton.

They announced complimentary results from both channels in July 2012, and since then have been crunching more data to support the findings. The scientists gave updates on their work Dec. 13 at CERN.

“It’s turned out that for ATLAS the Zed-Zed channel and gamma-gamma channel differ quite a bit, by about 3 GeV, for the respective masses of the Higgs particle from which they decay,” says Duke physicist Mark Kruse, who is analyzing data from the ATLAS experiment. “It doesn’t sound like much, but the probability they could differ by this much or more is only about 0.5 percent.”

“This is probably not a big deal,” he says, noting that the new results explain why the ATLAS team was not ready to report the separate mass measurements at the November 2012 Hadron Collider Physics Symposium in Kyoto, Japan.

Kruse says there could be several reasons for the discrepancy. It could just be a statistical fluke. Or, there could be a subtle problem with one or both of the measurements. “There is a lot that goes into these analyses and it is not always possible at this stage to be absolutely certain every detail has been done perfectly,” Kruse says.

The more dramatic scenario is that these results could be due to two different Higgs-like particles.

Kruse, however, thinks the two Higgs-like particle answer is highly unlikely, especially if scientists using the CMS experiment at LHC do not report the same discrepancy. CMS scientists have not yet released their new “two photon” result.

The ATLAS result is most likely due to a statistical fluctuation. Right now, though, the team has only crunched about half the data from the collisions. Of course, scientists will only know more once they have analyzed the full ATLAS dataset a couple of months from now, Kruse adds, suggesting that there is still the possibly for more Higgs mania to come.

From the basement, female physicists shaped Duke and German science

By Ashley Yeager

Google Doodle honors physicist Hedwig Kohn who fled Nazi Germany

Google Doodle honors physicist Hedwig Kohn who fled Nazi Germany

Physicist Hedwig Kohn‘s brother was murdered in a Nazi concentration camp in 1941.

Yet, when she trained young German physicists at Duke University a little more than 10 years later, she bore no resentment against them. Those students later returned to Germany and helped educate the country’s students in quantum mechanics.

Kohn fled Nazi Germany with the help of several prominent scientists in 1940, teaching first at the Women’s College in Greensboro, now UNC–Greensboro, and then at Wellesley College in Massachusetts. In 1952, she retired from teaching and accepted a research associate position working with physicist Hertha Sponer at Duke.

“It’s important that Kohn’s and Sponer’s tenure at Duke not be forgotten,” said physicist Brenda Winnewisser, an adjunct professor at The Ohio State University. The women’s lives and their research helped shape the physics department’s early encouragement of women interested in science.

Winnewisser, who earned her Ph.D. in physics at Duke in 1965, spoke briefly about Sponer and mostly about Kohn during a Nov. 28 physics colloquium. During her talk, Winnewisser recounted Kohn’s history, explained how she saved Kohn’s letters and photographs from destruction and described how she is using the archived information to write Kohn’s biography, a book called Hedwig Kohn: A Passion for Physics.

In her lab, which was in the subbasement of the Duke physics building, Kohn measured the absorption features and concentrations of atomic species in flames. The research was a continuation of what she had worked on from 1912 until 1933, when the Nazis stripped her of her privilege to do research and teach because of her being Jewish and female.

Still, the Nazis couldn’t take away the quality or importance of her work, which had a resurgence in citations in the 1960s as researchers began to test rocket designs and study plasmas, Winnewisser said. She added that Kohn also had an “indirect impact on improving quantum mechanics education in Germany after World War II.”

Three of the four physicists Kohn mentored at Duke returned to Germany to teach at prominent universities, bringing with them what they had learned from Kohn about flames, absorption and also quantum mechanics. “Kohn gave them the technical basis for successful careers,” Winnewisser said.

Her biography of Kohn, who died in 1964, is slated for release by Biting Duck Press in the spring of 2014.

Gecko's stick inspires adhesives and even superheroes

By Ashley Yeager

A single hair on a gecko’s foot has enough “stickiness” to pick up an ant. Credit: Kellar Autumn, Lewis & Clark College.

Sticky feet driving you up the wall?

Well, maybe not. But they are for Cicak, or Gecko-Man. After a few sips of coffee contaminated by a virus-infected gecko, a loser lab scientist suddenly becomes a Malaysian superhero, sticking to walls, using his tongue to scale skyscrapers and even eating bugs.

“Gecko feet are nature’s best adhesion and removal device,” said Lewis & Clark College biologist Kellar Autumn. He gave the keynote speech during the awards ceremony of the third annual Abhijit Mahato photo contest on Nov. 7.

While Autumn riled up the audience with his images and videos of the science behind gecko feet and their inspiration for new adhesives, robots and superheroes, he also used the talk to remind the photographers in the audience that appearance and scientific images can be misleading.

The science of how geckos climb up walls and across ceilings is at least a 200-year-old question, one that even Aristotle tried to answer. In the late 1960s, one scientist took some scanning electron microscope images of gecko feet and thought they revealed suction cups as the mechanism that let geckos scale walls and ceilings. But that idea was wrong.

It wasn’t until Autumn and his collaborators began looking more closely at the creature’s feet in the late nineties and early 2000s that scientists realized it wasn’t suction, but nanometer-scale interactions between a surface and the gecko’s foot hairs, or setae, that let them stick, release and climb. His team took a single gecko foot hair and made the first direct measurement of its adhesive function. Turns out the stickiness in one hair is so strong it can lift the weight of an ant.

The team also discovered that geckos release their feet as they climb by changing the angle of their feet hairs. That means that the contact geometry of setae are more important that any other factor in their ability to climb, Autumn said, adding that the discovery demonstrated “we could make this stuff.”

Tom Cruise climbs a skyscraper with “gecko gloves: in MI:Ghost Protocol. Image courtesy of: Danny Baram.

He showed videos of both the kinematics and kinetics of the way geckos climb and compared and contrasted the physics the creatures use to the human-engineered “nanopimples” and wedge-shaped nanoridges that resemble geckos’ sticky feet. The animal’s foot physics is “different than pretty much everything else out there,” Autumn said, though he did describe several developing projects to try to mimic the animals’ movements.

Still, he said, he’s convinced that “had geckos not evolved their sticky feet, humans would not have invented adhesive nanostructures.” And, there’s no way we’d have gecko gloves or could even think of gecko band-aides and the other cool applications of gecko-feet science, he said.

Citations:

“Adhesive force of a single gecko foot-hair.” Autumn, K., et. al. (2000). Nature 405, 681-685.

“Evidence for van der Waals adhesion in gecko setae.” Autumn, K., et. al. (2002). Proc. Natl. Acad. Sci. USA 99, 12252-12256.

“Evidence for self-cleaning in gecko setae.” Hansen, W. and Autumn, K. (2005). Proc. Nat. Acad. Sci. U. S. A. 102, 385-389.

Refereed physics for Twitter and Facebook, maybe

By Ashley Yeager

These library stacks of science journals are going out of style as more publishers opt for online-only, open access formats. Credit: UCSF.

When journal publishers send peer-reviewed tweets, they’ll have truly entered the digital age. They’re not there yet, but that doesn’t mean they’re not trying, said Gene Sprouse, editor-and-chief of the American Physical Society(APS) and a physics professor at Stony Brook University.

Sprouse, speaking at an Oct. 17 physics colloquium, described how the Internet is changing the way scientists share their research. They used to submit papers to journals, have their ideas vetted by other scientists, and then see their arguments and data in print — or not. He said it has been this way since the 1660s when the first journal, Philosophical Transactions, was first published.

But with online journals available right on researchers’ desktop and open-access digital archives, such as arXiv.org, journal editors, like those at the helm of magazines and newspapers, are trying to figure out how to shift print publications online while still making a profit.

“Eventually print journals will disappear,” Sprouse said, explaining that sans paper, authors and publishers could include new types of content like movies and active graphics in their articles. But even with new media features, “what physicists want is rapid acceptance of their paper into a prestigious journal with no hassles during peer review. They want attention for their work, and they want it widely distributed.”

To meet those demands in the new media landscape, APS has developed a Creative Commons license for authors to share their articles on their personal web sites and encourages them to publish pre-prints in online digital archives, such as arXiv.org.

Hoping to merge the prestige of the “baby Nature” journals – Nature Photonics, Nature Optics, Nature Physics, etc. – with the open-access model of the Public Library of Science, or PLOS, journals, the society has also created Physical Review X.

It’s the society’s first online-only, fully open-access journal. The one-year-old publication, which charges authors $1,500 per accepted article, is already comparable in prestige to APS’s other leading journal, Physical Review Letters. The difference is that now authors have an open-access journal to submit to at APS, which is important as more funders push researchers to submit to that type of publication, Sprouse said.

The society isn’t ignoring Twitter and Facebook either. When asked when the society would post the first refereed physics tweet, Sprouse said he couldn’t really say because he personally doesn’t use social media. But, APS, he added quickly, is working on its social media strategy and would “welcome any advice from those of you exploring that realm.”

Packing for Proteins

This artist's rendering shows a ribbon diagram of the protein T4 phage lysozyme. Image courtesy of Ohio State.

By Ashley Yeager

If you ask vacationers about packing, they’ll probably tell you about over-stuffed suitcases and inflatable beach toys. But if you ask Yale physicist Corey O’Hern, he’ll tell you packing is about pockets, proteins and geometry.

“You may not believe it or may not have heard about it, but I’m going to argue that just geometry is important for understanding protein structure,” and “that makes protein structure look like a packing problem,” O’Hern said at a Sept. 26 physics colloquium. The protein packing problem and solving it could have implications for drug design.

O’Hern first learned about packing problems in physics as an undergraduate at Duke in the early 1990s. Working with Duke physicist Bob Behringer, he tried to explain how corn and coffee beans get jammed in their dispensers. O’Hern continued this type of work as a graduate student at the University of Pennsylvania and then earned a faculty post as a theorist in Yale’s engineering and applied science department.

“I didn’t believe in fate until I went to Yale and learned about Fred Richards. Now I do,” O’Hern said, explaining that the Yale biophysicist was interested in the structure of proteins and the “interior packing,” or arrangement, of their amino acids. O’Hern said Richards thought of proteins as a jigsaw puzzle and tried to figure out how the weird pieces fit together.

To better understand a protein’s geometry, Richards would trace water molecules over the surface of its amino acids. He thought that the inner folds of proteins were “well-packed” because the strong attractions of the atoms in those areas. “I don’t completely believe Richards’ results,” but the work “made me feel destined to get in on the research,” O’Hern said.

He now looks at how tightly animo acid molecules fit together in certain regions of the protein, T4 phage lysozyme. To study its packing properties, O’Hern simulates the energy and entropy in the pockets, or cavities, of the lysozyme’s inner folds. His early results suggest that the most stable forms of the protein have the most entropy, or randomness, among the amino acids in the pockets.

That way of packing is definitely counter-intuitive, O’Hern said. He’s still working on how the results are possible and, in a broader sense, how they could affect packing and folding of drugs to improve their effectiveness.

Taking a 'DiVE' into Neutrinos

Physicists can now analyze neutrino events, such as this one, in 3D. Courtesy: Berkeley Lab.

By Ashley Yeager

Using a virtual, 3D environment, scientists are getting their closest look yet at neutrinos’ interactions with matter.

Neutrinos are subatomic particles that “interact with matter only very rarely, maybe once in your body in your entire lifetime,” said Duke physicist Kate Scholberg during a Sept. 21 talk, which the Visualization Technology Group hosted.

Scholberg explained that to study neutrino interactions, scientists use large, underground detectors, which may only record one event per day. That might not seem significant. But, as Scholberg explained, scientists need to observe the events to determine how the universe developed with more matter than anti-matter, a phenomenon that allows life to exist.

Typically, Scholberg and her colleagues analyze neutrino interactions from their Japan-based detector Super-K in a two-dimensional computer program. Recently, however, Scholberg “stepped” into the Duke immersive Virtual Environment, or DiVE, a six-sided, cave-like, virtual-reality theater programed with data from Super-K.

Inside, Scholberg got her first look at neutrinos interactions in 3D. She was able to see a representation of Super-K and thousands of its light detectors. She could also see data from a recent neutrino event and was able to walk around the detector simulation and visualize the neutrino interaction from all sides. The software had even traced out the “sonic boom” of light, which looks like a circle in two-dimensions and a cone or ring in three-dimensions, given off after a neutrino event.

“This is what I’ve imagined happens a million times after an interaction,” Scholberg said, showing a video of her experience in the DiVE. “It’s entirely different seeing it in 3D,” she said, adding that the drawing of the cone shape of a Cherenkov ring has never been done in a neutrino event display before.

Benjamin Izatt a student at the University of California, Berkeley was the mastermind who developed the 3D neutrino simulation, called Super-KAVE. He designed it to help Duke physicists explain their neutrino research to the public.

But, Scholberg said, the tool may also help her and her collaborators at Super-K better understand complex neutrino interactions and sort out where the particles’ rings and cones overlap. She added that in future simulations, “we may also be able to see particles and interact with the particles, which would be not only fun, but helpful.”

Page 8 of 11

Powered by WordPress & Theme by Anders Norén