The Web of Science ranking of the world’s most highly-cited scientists was released this morning, telling us who makes up the top 1 percent of the world’s scientists. These are the authors of influential papers that other scientists point to when making their arguments.
EDITOR’S NOTE! — Web of Science shared last year’s data! We apologize. List below is now corrected, changes to copy in bold. We’re so sorry.
Twenty-three of the citation laureates are Duke scholars or had a Duke affiliation when the landmark works were created over the last decade.
Dan Scolnic of Physics returns as our lone entry in Space Science, which just makes Duke sound cooler all around, don’t you think?
This is a big deal for the named faculty and an impressive line on their CVs. But the selection process weeds out “hyper-authorship, excessive self-citation and anomalous citation patterns,” so don’t even think about gaming it.
Fifty-nine nations are represented by the 6,636 individual researchers on this year’s list. About half of the citation champions are in specific fields and half in ‘cross-field’ — where interdisciplinary Duke typically dominates. The U.S. is still the most-cited nation with 36 percent of the world’s share, but shrinking slightly. Mainland China continues to rise, claiming second place with 20 percent of the cohort, up 2.5 percent from just last year. Then, in order, the UK, Germany and Australia round out the top five.
In fact, five Duke NUS faculty made this year’s list: Antonio Bertoletti, Derek Hausenloy and Jenny Guek-Hong Low for cross-field; Carolyn S. P. Lam for clinical medicine, and the world famous “Bat Man,” Lin-Fa Wang, for microbiology.
In an increasingly polarizing world, the discussion surrounding human rights remains at the forefront of all that we do as a society. People are becoming more aware, as, these days, violations are displayed right before our eyes. With a click of a button or a swipe of the thumb, people are able to see travesties occurring throughout all parts of the world. Developments in technology help us remain knowledgeable about such issues, but what about the offenses that we don’t see—the silent killers that we chalk up to poor fate, to chance? What about the violations in which we ourselves play a major role? These are urgent questions that researchers at the Duke School of Medicine are working to answer, with a specific focus on the deadly impacts of climate change.
In times of crisis, the most disadvantaged communities bear the greatest burden. The researchers recognize that climate change is no different and have strategized ways to reverse these effects. They presented their research in a recent talk, titled Climate Change and Human Health: Creating a Strategic Plan for Duke’s School of Medicine. Associate Professor and lung disease expert Dr. Robert Tighe led the conversation.
While presenting his research, Tighe identified a major shift in sea surface temperature trends, noting that the trend has deviated greatly from the statistical norm. Although the reasons behind this shift are not fully understood, it is believed to have serious implications, as excess heat poses risks to human health. According to the Centers for Disease Control, increasing temperatures and carbon dioxide have the potential to impact water quality, air pollution, allergens, and severe weather conditions. These conditions, in turn, bring forth respiratory allergies, cholera, malnutrition, and cardiovascular disease, to name a few. Tighe’s research goes beyond the general effects of these issues; it delves into how they disproportionately impact the most vulnerable members of society: children, the elderly, low-income communities, and communities of color.
On a local scale, Tighe highlights that many in these vulnerable positions often lack access to the healthcare necessary to mitigate these impacts. For instance, low-income citizens are often unable to afford the costs associated with repairing the physical damage climate change inflicts on their homes, leaving them exposed to pollutants and the effects of environmental toxins. The elderly also find themselves in similarly precarious scenarios, as many of these situations require evacuation—something not always feasible for those in fragile health. Consequently, they too are left exposed to pollutants and dietary challenges exacerbated by climate change.
On a global scale, these issues heavily impact countries in vulnerable positions. The United States, China, India, the European Union, and Russia are among the largest contributors to carbon emissions. However, the consequences of this burden fall disproportionately on countries like Bangladesh, Haiti, Mozambique, small island nations, and others. Due to their geographic locations, climate change brings far more than just hotter days—it brings devastating hurricanes, tsunamis, cyclones, and widespread malnutrition. The limited financial resources in these nations make rebuilding and mitigating these impacts extraordinarily challenging, especially as many climate effects are recurring. This disparity is particularly frustrating, as these countries contribute only a fraction of the world’s carbon emissions.
This is precisely what Tighe’s work aims to address. He is working to connect the science on climate change effects, researched by those in the School of Medicine, with that of the Nicholas School of the Environment. Referring to this as an interdisciplinary issue, Tighe believes that the place to begin is within the community. He emphasizes the importance of starting with the people of Durham: What do they need? How can we best help them? How does this affect our own backyard? He stresses the importance of outreach, educating the community on how climate has long-term impacts on their health. Tighe also underscores the need to view this as an opportunity to combine diverse strengths to address the crisis from every angle.
In the face of a climate crisis that goes beyond borders and affects the most vulnerable among us, Tighe’s and his fellow researchers’ work is a call to action. By fostering collaboration between scientific fields and engaging directly with local communities, he develops an approach that is both comprehensive and compassionate. His work reminds us that addressing climate change isn’t just a scientific or political issue—it’s a deeply human one, demanding a united effort for the wellbeing of all under the sun.
Quality is of utmost importance in the world of scientific publishing, but speed can be crucial, too. Early in the COVID-19 pandemic, for instance, researchers needed to share updates quickly with other scientists. One solution is disseminating preprints of studies that have not yet been peer reviewed or published in a traditional academic journal. Richard Sever, Assistant Director of Cold Spring Harbor Laboratory Press in New York and Executive Editor for the Cold Spring Harbor Perspectives journals, recently visited Duke to discuss his work as the co-founder of bioRxiv and medRxiv, two of a number of servers that post preprints of scientific papers.
In traditional publishing, Sever says, “When you submit a paper to a good journal… most of the time it’s immediately rejected.” Of the papers that are considered by the journal, about half will ultimately be rejected by editors. Even for successful papers, the entire process can take months or years and often ends with the paper being placed behind a paywall.
Posting preprints on servers like bioRxiv, according to Sever, doesn’t preclude the studies from eventually being published in journals. It just “means the information is public much more quickly.”
In 2013, Cold Spring Harbor Laboratory released bioRxiv. In the time since, there has been a “proliferation of discipline-specific servers” like chemRxiv, socarXiv, NutriXiv, and SportRxiv.
How do these preprint servers work? Scientists submit a study to an Rxiv server, and then after a brief screening process the paper is made visible to everyone within hours to days. A frequent concern about these servers is that they could be used to disseminate poor-quality science or false information. Since the priority is to share information rapidly, the staff and volunteers in charge of screening cannot perform extensive peer review of every submission. Instead, the screening process focuses on a few key criteria. Is the information plagiarized? Is it actual research? Is it science or non-science? And most importantly, could it be dangerous?
In 2019, Sever and his colleagues at Cold Spring Harbor collaborated with Yale and the BMJ Group to launch medRxiv, a server that focuses on health research. Since the consequences of posting misleading clinical information could be more severe, it uses enhanced screening for the papers that are submitted.
Papers can also be revised after being uploaded to a server like bioRxiv. A scientific journal, on the other hand, may occasionally publish a correction for a published article but not a completely new version.
What are the benefits of preprint servers? Releasing preprints allows scientists to transmit study results more quickly. It can also increase visibility, especially for scientists early in their careers who don’t have extensive publishing records. Grant or hiring committees can look at preprints months before a paper would be published in a journal. This emphasis on speed also accelerates communication and discovery, and the lack of paywalls could make science more accessible. Additionally, preprint servers can give researchers an opportunity to get broader feedback on their work before they submit to journals.
So why submit to scientific journals at all? Traditional publishing is slower, but it aims to assess scientific rigor and quality and, critically, the importance of the work. “The currency of academic career progression,” Sever says, “is journal articles.” Another attendee of Sever’s lecture brought up the value of curation, using the example of movie reviews on Rotten Tomatoes. Sever believes that the sort of curation performed by journals is different. Movie reviewers give their opinions later in the process; they don’t stop production of a movie halfway through, saying “I want a happy ending.” Sever believes preprint servers allow science to be shared more widely without putting the final decision in the hands of editors.
What are the concerns regarding preprint servers? One concern scientists may have is being “scooped,” or sharing information only for another researcher to claim it as their own. Sever does not find the scooping argument to be very persuasive. “How can you be scooped if you’re using an anti-scooping device?” He believes that Rxiv servers, since they allow rapid dissemination of results, actually provide a safeguard against people passing ideas off as their own because the preprint author is in control of the timing. Another concern occasionally expressed is that having a paper on an Rxiv server may make it harder to get it accepted by a journal. Sever is unconvinced, pointing out that most papers are rejected by journals anyway.
A more pressing concern may be the potential for preprint servers to disseminate bad science, though Sever notes that there are “a lot of not-very-good papers in traditional publishing” as well. Besides, academics’ careers depend on producing high-quality work, which should be an incentive not to share bad work, whether on preprint servers or in scientific journals.
Nonetheless, people do sometimes submit pseudoscience to preprint servers. “We have been sent HIV denialism, we have been sent anti-vaxx things,” Sever says. Some people, unfortunately, are motivated to share false information disguised as legitimate science. That is why bioRxiv screens submissions—less for accuracy and more for outright misinformation.
A more recent concern is the potential for AI-generated “papers.” But like journal articles, all papers posted on bioRxiv are kept there permanently, so even a fake paper that makes it through the screening process could be caught later. Anyone doing this risks future exposure. A more insidious form of this problem, Sever says, is “citation spam,” where someone generates papers under another person’s name but cites themselves in the references to improve their own citation record.
“Like anything,” Sever says, “we’ll have to accept that there’s some garbage in there, there’s some noise.” The vessel, he says, is no guarantee of accuracy, and “at some point you have to trust people.”
Sever believes preprint servers play an important role by “decoupling dissemination from certification.” He hopes they can open the door to “stimulating evolution of publishing.”
In your retirement, would you ever hold four Zoom calls every week with colleagues?
To be fair, Dr. John Bartlett is not technically retired. He is employed by Duke at the 20% level and continues to serve as a Professor of Medicine. However, his busy schedule, which also includes 2-3 months in Tanzania every year and writing grants to support research education efforts, in no way resembles the glorified picture of retirement many of us imagine!
Fellow freshmen, we may be in for the long haul.
Before I dive into my interview with Dr. Bartlett, I must acknowledge the incredible enthusiasm he showed in response to my invitation to an interview. Even as cable lines are down in western North Carolina, where he resides, due to the impact of Hurricane Helene, he still offered to keep our original interview time and made himself fully accessible to my questions. I extend my sincere gratitude to Dr. Bartlett for his time, and it is only just for me to relay his thoughts to our readers at large.
For students unfamiliar with Dr. Bartlett’s background or professional experiences, he has been a Duke faculty member since the 1980s, serving as both a physician in infectious diseases and internal medicine and a professor. His lengthy career traversed continents, having become deeply involved in international HIV/AIDS research and treatment since the 2000 World AIDS conference held in Durban, South Africa.
“As I traveled to South Africa, I witnessed the profound disparities between clinical outcomes for patients in the U.S., who were thriving, and [those in] the continent most severely impacted by HIV, where no treatment was available,” said Dr. Bartlett, recalling his transition to international work. “We reckoned that [the] concept of research with service could be applicable with an African partner,” he added, which led him to spend two-thirds of the next decade in Tanzania, focusing on this new partnership.
Captivated by Dr. Bartlett’s unique experiences, I inquired why he became involved in Tanzania, a country halfway across the globe. To my surprise, it turned out that in the early 2000s, faculty and students at Duke held a strong inclination towards advancing global health research. At the same time, researchers also sought to expand the scope of their activities overseas. Dr. Bartlett shared what was perhaps the most important reason last: “I have to credit my wife, a social worker, who was also quite committed to international work.”
I learned much about global health throughout the interview. When Dr. Bartlett shared statistics showing 100% effectiveness of certain HIV/AIDS treatments currently offered in lower-income countries, I was stunned. From no access to treatment a few decades ago to successful management of the disease today, there has been remarkable and swift progress that is saving millions of lives. Of course, there are still barriers to treatment including cultural norms, “ubiquitous” stigma, lack of testing resources, and cost. However, the global health field is advancing every day, with newfound knowledge regarding protective factors against HIV transmission helping to further lower mortality rates.
Discussing Duke’s global health efforts at large, Dr. Barlett was quick to point out the diversity of current projects around the world. “I would refer you to the website for the latest list of countries because I can’t keep up with the continuing growth!” Upon a quick search, this sentiment makes sense: Duke works in more than 40 countries and there are more than 100 active projects. “I am especially proud to see that [the institute’s work] is not limited to a single geographic region or a single topic”, Dr. Bartlett added, reflecting how projects “run the gammit from infectious diseases to non-communicable diseases to cancer to mental health to health systems strengthening.”
By this point in the article, maybe some engineer readers are yearning for a message pertaining to their academic interests. Don’t worry, Dr. Bartlett talked about your importance in global health work during the conversation too! “There are quite a few BME professors who work with students to develop practical, low-cost solutions to common global health problems,” he said. From rapid diagnostic tests to laparoscopes, the BME department has played a crucial role in the Global Health Institute’s efforts. And these engineering projects are still active: for students desiring to involve themselves in this work, Dr. Bartlett recommends reaching out to Dr. Ann Saterbak, a Biomedical Engineering professor who coordinates many opportunities.
Before I conclude, I would like to share a quote from Dr. Kathy Andolsek, professor of family medicine, discussing the character, expertise, and work of Dr. Bartlett:
“He was a dedicated researcher and clinician and an early pioneer in HIV/AIDS. [As a] primary doc, I [worked] with him to get my patients into his clinical trials… so we ‘shared’ many patients. He was inspirational to students and a great listener.”
Thank you, Dr. Bartlett, for your tireless work on HIV/AIDS treatment around the world. As an educator, researcher, and clinician, you have contributed much to the betterment of health outcomes for patients. Your commitment towards this noble cause and desire to help Tanzanian counterparts become independent in their research encourage all of us, medical students and non-medical students alike, to persistently pursue goals we believe in.
Bandaids and pimple patches are the first things we consider when discussing adhesives in medicine. But what if there is more to the story? What if adhesives could not only cover and protect but also diagnose and communicate? It turns out Dr. Wei Gao, assistant professor of medical engineering at the California Institute of Technology, is asking these exact questions. In the field of biomedical adhesives, Gao’s research is revolutionizing our understanding of precision medicine and medical testing accessibility. He visited Duke on Oct. 9 to present his work as part of the MEMS (Mechanical Engineering and Material Science) Seminar Series.
Gao’s research team focuses on material, device, and system innovations that apply molecular research and principles to clinical settings and improve health. Gao focused his talk on the invaluable characteristics and uses of sweat. Sweat can offer doctors a broad spectrum of information, including nutrients, biomarkers, pH levels, electrolytes/salts, and hormones. He leverages this fundamental characteristic of human physiology to design wearable biosensors that can provide early warnings of health issues or diseases. Gao focuses on making biomarker detection more efficient than current methods, such as blood samples, which require hospital testing, involve highly invasive techniques, and lack continuous monitoring.
The first milestone in his research came in 2016 when he introduced a fully printed, wearable, real-time monitoring sensor device. The device allowed them to continuously collect sweat and wirelessly communicate data about these sweat samples from patients onto digital devices. The initial 2016 device focused on resolving four fundamental challenges: since most chemical sensors are not stable over long periods of time, the device had to be (1) low-cost and (2) disposable without sacrificing performance. In addition, the device had to (3) be mass-producible to be accessible to the public and (4) integrate multiple signals that could be real-time transmitted to a digital interface.
To address the first two of those challenges, Gao and his group turned to printing techniques. The circuit substrate was a thin piece of flexible PET (a plastic), upon which they layered the circuit components. The flexible sensor array was constructed in a similar pattern, with a layer of PET patterned with gold to produce the electrodes, covered with parylene, and then each electrode was tuned to receive a specific chemical stimulus: potassium and sodium ion sensors, with a polyvinyl butyrate reference electrode, and oxidase-based glucose and lactate sensors paired with a silver/silver chloride reference electrode. This design allows the simultaneous monitoring of multiple biomarkers. To transmit the data wirelessly, the circuit board included a Bluetooth transceiver.
The next major step was to devise a way to monitor sweat without relying upon heat or vigorous exercise, neither of which may be feasible in the case of clinically ill patients. In a 2023 paper, Gao and colleagues published a biosensor that could induce localized sweating using an electric circuit. Called iontophoresis, the technique delivers a drug (a cholinergic agonist) that stimulates the sweat glands on demand and only in the area of the sensor.
Another important question was how to power the devices sustainably. Gao’s lab has devised two primary responses to this question: In a 2020 paper, his team powered a similar multiplexed wireless sensor entirely using electricity generated from compounds in sweat. This entailed using lactate biofuel cells to harness the oxidation of lactate to pyruvate (coupled with the reduction of oxygen to water) to provide a stable current. In a 2023 paper, they employed a flexible perovskite solar cell onboard the device to power the monitoring of a suite of biomarkers.
With these technical hurdles overcome, Gao and his lab have been able to develop sensors targeted to several important medical applications. The work can be directly applied to the monitoring of conditions like cystic fibrosis and gout. More broadly, wearable biosensors can be used to track levels of medically relevant compounds like cortisol (for stress monitoring), C reactive protein (inflammation), and reproductive hormones. The lab has also branched into other kinds of devices that use similar microfluidics approaches, including smart bandages for wound monitoring and smart masks to detect biomarkers in breath.
Through eight years of dedicated investigation, Gao serves as a pioneer in the field of bioelectronic interfaces. Gao continues to widen the possibilities of biosensors not only within the medical sphere but also for the general public. For example, his lab is collaborating with NASA and the U.S. Navy to support the performance and health of astronauts and our military, which is vital as they work in extreme environments. By pushing forward ground-breaking devices such as sweat biosensors, our healthcare systems can pursue preventative care, reducing the need for treatments or health resources by catching these issues early on. Following Gao’s footsteps, we can now build toward a healthier future as we improve the precision of our healthcare approaches and technological advancements.
Sure, A.I. chatbots can write emails, summarize an article, or come up with a grocery list. But ChatGPT-style artificial intelligence and other machine learning techniques have been making their way into another realm: healthcare.
Imagine using AI to detect early changes in our health before we get sick, or understand what happens in our brains when we feel anxious or depressed — even design new ways to fight hard-to-treat diseases.
For assistant professor of biomedical engineering Pranam Chatterjee, the real opportunity for the large language models behind tools like ChatGPT lies not in the language of words, but in the language of biology.
Just like ChatGPT predicts the order of words in a sentence, the language models his lab works on can generate strings of molecules that make up proteins.
His team has trained language models to design new proteins that could one day fight diseases such as Huntington’s or cancer, even grow human eggs from stem cells to help people struggling with infertility.
“We don’t just make any proteins,” Chatterjee said. “We make proteins that can edit any DNA sequence, or proteins that can modify other disease-causing proteins, as well as proteins that can make new cells and tissues from scratch.”
New faculty member Monica Agrawal said algorithms that leverage the power of large language models could help with another healthcare challenge: mining the ever-expanding trove of data in a patient’s medical chart.
To choose the best medication for a certain patient, for example, a doctor might first need to know things like: How has their disease progressed over time? What interventions have already been tried? What symptoms and side effects did they have? Do they have other conditions that need to be considered?
“The challenge is, most of these variables are not found cleanly in the electronic health record,” said Agrawal, who joined the departments of computer science and biostatistics and bioinformatics this fall.
Instead, most of the data that could answer these questions is trapped in doctors’ notes. The observations doctors type into a patient’s electronic medical record during a visit, they’re often chock-full of jargon and abbreviations.
The shorthand saves time during patient visits, but it can also lead to confusion among patients and other providers. What’s more, reviewing these records to understand a patient’s healthcare history is time-intensive and costly.
Agrawal is building algorithms that could make these records easier to maintain and analyze, with help from AI.
“Language is really embedded across medicine, from notes to literature to patient communications to trials,” Agrawal said. “And it affects many stakeholders, from clinicians to researchers to patients. The goal of my new lab is to make clinical language work for everyone.”
Jessilyn Dunn, an assistant professor of biomedical engineering and biostatistics and bioinformatics at Duke, is looking at whether data from smartwatches and other wearable devices could help detect early signs of illness or infection before people start to have symptoms and realize they’re sick.
Using AI and machine learning to analyze data from these devices, she and her team at Duke’s Big Ideas Lab say their research could help people who are at risk of developing diabetes take action to reverse it, or even detect when someone is likely to have RSV, COVID-19 or the flu before they have a chance to spread the infection.
“The benefit of wearables is that we can gather information about a person’s health over time, continuously and at a very low cost,” Dunn said. “Ultimately, the goal is to provide patient empowerment, precision therapies, just-in-time intervention and improve access to care.”
David Carlson, an associate professor of civil and environmental engineering and biostatistics and bioinformatics, is developing AI techniques that can make sense of brain wave data to better understand different emotions and behaviors.
Using machine learning to analyze the electrical activity of different brain regions in mice, he and his colleagues have been able to track how aggressive a mouse is feeling, and even block the aggression signals to make them more friendly to other mice.
“This might sound like science fiction,” Carlson said. But Carlson said the work will help researchers better understand what happens in the brains of people who struggle with social situations, such as those with autism or social anxiety disorder, and could even lead to new ways to manage and treat psychiatric disorders such as anxiety and depression.
The COVID-19 pandemic sometimes feels like a problem we mostly dealt with yesterday, not one we’re still facing today. However, Duke medical anthropologist Harris Solomon had a different story to tell in the Trent Humanities in Medicine Lecture on April 9.
During the height of the pandemic, hospitals morphed into war zones where the frontlines became the ICU rooms. Like never before, these rooms became a no-man’s-land that few others would cross. A separation was born.
This separation, however, was beyond a physical space; it was a delineation of roles and responsibilities. Nurses often found themselves acting as intermediaries between the patient and the external healthcare team, prompting a sense of isolation and moral burden. They wrestled with their fears in solitary confinement, while colleagues relayed instructions over walkie-talkies—a stark contrast to the collaborative nature of pre-pandemic medicine. Protocols that were once straightforward now needed a touch of ‘MacGyvering,’ with clinicians making do with what was available.
The rigidity of clinical trials also faced challenges; the blinding of studies was questioned as lifesaving drugs teetered on the edge of accessibility. Solomon gave an example of what this change looked like in real life. A patient was due to be treated, and they said that they didn’t care about the details. Even if it was a placebo, they were fine with it. While he didn’t go into the specifics of what had happened, he used this story to accentuate the disparity between evidence and treatment. People don’t care about the treatment as much as they used to.
“We make decisions like we never did before. We summon the need to accept uncertainty”, Solomon said.
As the crisis was evolving, and the world was recovering from the aftermath of COVID, the fabric of healthcare work found itself to be changed forever. Processes and practices that were once considered to be stable, are now brought under a microscope in a post-pandemic world.
The pandemic has indeed been a catalyst for change, but is this change good? While there is no black-and-white answer, I left the room feeling a bit uncomfortable. Although the pandemic has prompted a reevaluation of the health care system, have we innovated, or have we just found shortcuts?
On June 5, 1981, the Centers for Disease Control and Prevention reported the first cases of a mysterious disease afflicting young, otherwise healthy men in a tiny suburb of Los Angeles, California. The disease, now known as AIDS, would go on to infect 85.6 millionpeople around the world, sparking an epidemic that persists to this day.
Pictured from left to right: Dr. James Curran and Dr. Kevin M. De Cock
The Origin of the Epidemic
The first cases of AIDS were reported by Dr. Michael Gottlieb, a young immunologist from UCLA. His groundbreaking findings, published in the CDC’s Morbidity and Mortality Weekly Report, described “previously healthy gay men from Los Angeles, San Francisco, and New York, who presented with rare opportunistic infections,” said De Cock. These infections, known as PCP (Pneumocystis carinii pneumonia) and KS (Kaposi’s sarcoma), were extremely rare. Upon observation, Gottlieb identified a startling commonality among the cases: they were all sexually active gay men.
These findings “didn’t fit into any organizational unit at the CDC,” so a multispecialty task force was formed. Led by Curran, it recruited experts in STIs, parasitology, virology, cancer, and more.
Tracking the Epidemic
At the start of the epidemic, cases were phoned into the CDC by individual doctors. But this quickly became inadequate. The epidemic was growing fast, and CDC phone lines could not keep up. “The CDC, therefore, developed a surveillance case definition for the syndrome,” De Cock explained. “Cases meeting this definition were reported through health departments to the CDC.”
“I think we were able with the case definition for surveillance, to take advantage of the fact that all of these conditions were very serious and so unusual that the physician would say ‘I’ve never seen anything like it,’…,” Curran said. “The other conditions were far less specific and far less useful for tracking the disease.”
In October 1981, these tracking protocols helped identify AIDS as a sexually transmitted disease. A national case-control study found that sexual activity was a leading risk factor, and a cluster of cases in 10 US cities linked via sexual contact was discovered. “People just didn’t want to believe it,” Curran said. “They wanted to believe that it wasn’t something transmissible.”
Expanding Epidemic
Over the next year, the epidemic expanded to include injection drug users, heterosexual partners of bisexual men, people of Haitian descent, and infants. But perhaps most surprising was the transmission occurring through blood transfusion. In December 1982, a case of AIDS-like illness was reported in a 20-month-old infant after receiving blood from a donor who later developed the virus.
“Until that December report of the infant, the mainstream media had actually paid very little attention to AIDS. But that suddenly changed,” said De Cock. “While AIDS was seen as a problem of marginalized groups… it was easy to ignore. But anyone might need a blood transfusion.”
In the following years, rumors surrounding transmission and contact sparked nationwide panic. Fear of contracting the disease caused AIDS patients to lose their jobs and housing. Although the CDC provided up-to-date information on the nature of the virus, quelling public fear was extremely difficult. “AIDS proved that you can’t separate prevention and treatment,” Curran explained.
Modern AIDS Era
As we get close… to 100 million HIV infections since the epidemic began- have we done as well as we should have?”
Dr. Kevin M. De Cock
In 1991, researchers successfully identified HIV (Human immunodeficiency virus) as the underlying cause of AIDS. Since then, scientific understanding of the disease has greatly improved. “Our success has made AIDS more normal, which has robbed the disease of some of its mystique,” De Cock expressed. However, there is still no known cure for AIDS. The disease is a lifelong battle that wreaks havoc on the people it infects.
De Cock and Curran’s contributions to the AIDS epidemic fundamentally shaped our understanding of the virus. Their work shines a light on the importance of frontline research and support. Their book, entitled ‘Dispatches from the AIDS Pandemic: A Public Health Story,’ is available to read here.
“Of all the forms of inequality” Dr. Martin Luther King Jr. once said in a 1966 press conference, “injustice in health is the most shocking and the most inhumane.”
In honor of King’s impact on public health, Duke’s dean of Trinity College Dr. Gary G. Bennett delivered a powerful address Jan. 12 at the Trent Semans Center. Entitled ‘You have to Keep Moving Forward: Obesity in High-Risk Populations,’ Bennett discussed America’s Obesity Epidemic, and its disproportionate effects on Black women.
“More than 40% of the American population has obesity,” Bennett began. Incidence rates among Black women are the highest and have been since the epidemic began in 1955. “These disparities have not closed, and in many cases, they’ve widened over the years,” Bennett said.
Type two diabetes, hypertension, and cardiovascular disease are just some of the health risks associated with obesity. Compared to other racial groups, Black women are more likely to suffer from these conditions, as well as die from their effects. Furthermore, it appears that the efficacy of treatment options is significantly lower for patients of African descent.
But why do such disparities exist in the first place? According to Bennett, they can be attributed to a range of internal and external factors. “There certainly are physiological variations that are worth noting here, which is perhaps a challenge in all of obesity research.”
Research published in the journal Nature in 2022 found that, while there are different forms of obesity, that have shared ‘genetic and biological underpinnings.’ Environmental factors are also driving disparities. Black women are “exposed to more obesogenic environments, food desserts,” Bennett explained. With limited access to affordable and nutritious food, options for healthy eating are slim.
But perhaps most interestingly, Black women also have a range of sociocultural factors at play. “There are fewer within-group social pressures to lose weight,” Bennett maintained. Other sociocultural factors include higher body image satisfaction and higher weight misperception. “This is problematic in some ways,” he continued. While it protects against certain eating disorders and low self-esteem, “It does challenge your ability to achieve weight loss.”
For Black women, obesity is a complex public health issue that needs to be addressed.
But how? Frommedication to surgery, there are myriad potential treatment options. According to Bennett, however, the real key is lifestyle intervention. “It really is the foundation.” Comprised of three parts: reduced calorie diet, physical activity, and self-monitoring, lifestyle intervention is able to reach the widest range of participants.
Like other treatment options, the lifestyle intervention route shows racial disparities in its outcomes. Because of this, Dr. Bennett’s work focuses on developing methods that are designed with Black patients in mind.
At the forefront of his research is a new online intervention called iOTA, which stands for Interactive Obesity Treatment Approach. “This is a digital obesity approach that we designed specifically for high-risk populations.” The platform personalizes weight loss goals and feedback, which assist in program retention.
In addition, participants are equipped with coaching support from trained medical professionals. “This IOTA approach does a bunch of things,” Bennett said. “It promotes weight loss and prevents weight gain, improves cardiometabolics,” along with a host of other physical benefits. Results also show a reduction in depressive symptoms and increased patient engagement. Truly incredible.
Scholars like Bennett have continued the fight for public health equity- a fight advocated for by Dr. King many years ago. For more information on Bennett and his work, you can visit his website here.
Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the sixth of eight posts.
In the complex world of scientific exploration, definitive answers often prove elusive, and each discovery brings with it a nuanced understanding that propels us forward. Dr. Dana Kristine Pasquale’s journey in public health serves as a testament to the intricate combination of exploration and redirection that have shaped her into the seasoned scientist she is today.
Pasquale said her scientific path has been “…a nonlinear journey, that’s been a series of over-corrections. As I’ve gone from one thing to another, that hasn’t turned out to be what I expected.”
Anchored in her formative years in a study abroad experience in Angola, Africa during undergraduate studies, Pasquale’s exposure to clinical challenges left an indelible mark. She keenly observed the cyclic nature of treating infections by shadowing a local physician.
“We would treat the same people from month to month for the same kinds of infections,” she recalled.
Things like economic and social barriers weren’t as stark there – everyone was at the same level, and there was no true impact that she could make investigating them. This realization sparked a profound understanding that perhaps a structural, community-focused intervention could holistically address healthcare needs – water, sanitation, etc. It set the course for her future research endeavors.
Upon returning to the U.S., she orchestrated a deliberate shift in her academic trajectory, choosing to immerse herself in medical anthropology at the University of North Carolina-Chapel Hill. Her mission was clear: to unravel how local communities conceptualize health. Engaging with mothers and child health interventionists, she delved into health behavior, yet found herself grappling with persistent frustrations.
“I found [health behavior] frustrating because there were still a lot of structural issues that made things impossible,” she says. “And even when you think you’re removing some of the barriers, you’re not removing the most important ones.”
Rather than being a roadblock, this frustration became a catalyst for Pasquale, propelling her toward the realms of epidemiology and sociology. Here, the exploration of macro and structural factors aligned seamlessly with her vision for sustainable public health, providing the missing pieces to the intricate puzzle she was trying to solve. She didn’t expect to end up here until her mentor suggested going back to school for it.
As principal investigator of Duke’s RDS2 COVID-19 Research and Data Services project during the early months of the pandemic, Pasquale navigated the challenges associated with transitioning contact-tracing efforts online. Despite hurdles in data collection due to the project’s reliance on human interaction and testing, the outcome was an innovative online platform, minimizing interaction and invasiveness. This accomplishment beautifully intertwines with her ongoing work on scalable strategies to enhance efficiency in public health activities during epidemics.
“We had a lot of younger people say that they would prefer to enter their contacts online rather than talk to someone… something that could be a companion to public health, not subverting contact-tracing, which is an essential public health activity.”
Pasquale’s expansive portfolio extends to an HIV Network Analysis for contact tracing and intelligent testing allocation. Presently, she is immersed in a project addressing bacterial hospital infections among patients and hospital personnel, a testament to her unwavering commitment to tackling critical health challenges from various angles.
When queried about her approach to mentoring and teaching, Pasquale imparts a valuable piece of wisdom from her mentor: “If you’re not completely embarrassed by the first work you ever presented at a conference, then you haven’t come far enough.”
Her belief in the transformative power of mistakes and the non-linear trajectory in science resonates in her guidance to students, encouraging them to not only accept but embrace the inherent twists and turns in their scientific journeys. As they navigate their scientific journeys, she advocates for the importance of learning and growing from each experience, fostering resilience and adaptability in the ever-evolving landscape of scientific exploration.
Guest Post by Ashika Kamjula, North Carolina School of Math and Science, Class of 2024