Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Category: Guest Post Page 1 of 13

“Grandma to Many”

Exploring the legacy of Kala Bagai, an early Indian woman in America

Every evening after wrapping up his archival research at the University of California, Berkeley, Ph.D. candidate Arko Dasgupta would stroll into downtown Berkeley. Just one block away from the university, he would pause at “Kala Bagai Way,” a street name that always sparked his interest.

 “Kala Bagai Way” in Berkeley, California. Credit: Arko Dasgupta

Standing there, he often found himself lost in thought, wondering: Why do I know so little about Kala Bagai? What was her story? Why was this street in Berkeley named after her?

Dasgupta, a Doctoral Scholar with Duke’s Samuel DuBois Cook Center on Social Equity, already had research interests in early Indian migration in the United States, so he decided to investigate.

In exploring her life, Dasgupta’s goal has been clear: to bring Kala Bagai’s story to light in both India and the United States. “I hope readers come to appreciate the complexities that immigrants wishing to start life in the United States encountered in the last century and still today,” he says.

Upon his initial investigation, Dasgupta learned that in September 2020 the Berkeley City Council renamed the street in honor of Kala Bagai, one of the first Indian women to immigrate to the United States.

This recognition came from the very town that, over a 100 years earlier, had greeted her and her family with cruelty and hostility.

Dasgupta was fascinated. This topic became the focus of his recent article published the India International Centre Quarterly. “I wanted to dig deeper into the life of Kala Bagai who arrived in this country at a time when there were hardly any women from India here”, he says.

Kala Bagai with her husband Vaishno Das Bagai and their three children. Photo courtesy of Rani Bagai and the South Asian American Digital Archive (SAADA)

Kala Bagai arrived in the U.S. in 1915, a time when Indian women were rare in America. Her husband, Vaishno Das Bagai, was involved in the Ghadar Movement, which sought to challenge British colonial rule from its base in the United States. Despite their financial comfort, the Bagai family faced significant racism in their new setting, exemplified by their rejection when trying to settle in Berkeley.

When they purchased a home in Berkeley, California, their new neighbors locked them out of their house and prevented them from moving in.

“The Bagais, unlike their neighbors, were not White” Dasgupta says.

In 1923, two years after Vaishno Das Bagai had become a U.S. citizen, the Supreme Court’s decision in United States v. Bhagat Singh Thind stripped him of his citizenship, ruling that Indians were not “white” and therefore ineligible for citizenship. Five years later, crushed by the injustice and having had to forego their assets, Vaishno Das took his own life.

Photo of Kala Bagai courtesy of Rani Bagai and the South Asian American Digital Archive (SAADA)
 

“Being a single mother to three children under these circumstances in a country that could be unwelcoming to people of her racial background was doubtlessly challenging,” Dasgupta says.

After losing her husband, Kala Bagai faced the challenges of single motherhood in San Francisco head-on. Determined not to be defeated, she enrolled in night school to learn English and, with the help of a banker, wisely invested her late husband’s life insurance in stocks, securing her family’s financial future.

Kala’s strength and resilience shaped her path forward. She became a philanthropist and joined the American Wives of India, fostering cultural connections. Her son, Ram, became a key figure in the Indian American community, even supporting Dr. Martin Luther King Jr.’s Civil Rights Movement.

In the 1950s, after the Luce-Celler Act granted U.S. citizenship to Indians, Kala purchased property in Los Angeles. Her home became a welcoming haven for South Asian students from UCLA, where her hospitality and warmth made her beloved in the community.

“She enjoyed hosting, feeding, and taking care of people!” Dasgupta says, highlighting her deep commitment to nurturing those around her.

Kala became a pillar of the South Asian community in Southern California, earning the affectionate title of Jhaiji, or grandmother, and was widely recognized as a founding member of the Indian community there.

Her legacy, rooted in resilience, endures in the lasting impact she made by promoting cultural understanding and inspiring others to uplift and connect with their communities. Her unwavering commitment to these values continues to influence and empower those who follow in her footsteps.

Arko Dasgupta is a Ph.D. candidate in history at Carnegie Mellon University and a doctoral fellow at the Samuel DuBois Cook Center on Social Equity at Duke University. Photo by Stephanie Strasburg/ PublicSource

“This story is worth telling because it enriches the larger story of early immigrants from the Indian subcontinent, particularly in a field that is mainly populated by the stories of men” Dasgupta says.

You can read Dasgupta’s full piece in the Summer 2024 issue of IIC Quarterly.

By Amber Holland, Ph.D.

Sharing a Love of Electrical Engineering With Her Students

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the seventh of eight posts.

“As a young girl, I always knew I wanted to be a scientist,” Dr. Tania Roy shares as she sits in her Duke Engineering office located next to state-of-the-art research equipment.

Dr. Tania Roy of Duke Engineering

The path to achieving her dream took her to many places and unique research opportunities. After completing her bachelor’s in India, she found herself pursuing further studies at universities in the United States, eventually receiving her Ph.D. from Vanderbilt University. 

Throughout these years Roy was able to explore and contribute to a variety of fields within electrical engineering, including energy-efficient electronics, two-dimensional materials, and neuromorphic computing, among others. But her deepest passion and commitment is to engage upcoming generations with electrical engineering research. 

As an assistant professor of electrical and computer engineering within Duke’s Pratt School of Engineering, Tania Roy gets to do exactly that. She finds happiness in mentoring her passionate young students. They work on projects focused on various problems in fields such as Biomedical Engineering (BME) and Mechanical Engineering, but her special focus is Electrical Engineering. 

Roy walks through the facilities carefully explaining the purpose of each piece of equipment when we run into one of her students. She explains how his project involves developing hardware for artificial intelligence, and the core idea of computer vision. 

Roy in her previous lab at the University of Central Florida. (UCF photo)

Through sharing her passion for electrical engineering, Roy hopes to motivate and inspire a new generation. 

“The field of electrical engineering is expected to experience immense growth in the future, especially with the recent trends in technological development,” she says, explaining that there needs to be more interest in the field of electrical engineering for the growth to meet demand. 

The recent shortage of semiconductor chips for the industrial market is an example of this. It poses a crucial problem to the supply and demand of various products that rely on these fundamental components, Roy says. By increasing the interest of students, and therefore increasing the number of students pursuing electrical engineering, we can build a foundation for the advancement of technologies powering our society today, says Roy.

Coming with a strong background of research herself, she is well equipped for the role of advocate and mentor. She has worked with gallium nitride for high voltage breakdowns. This is when the insulation between two conductors or electrical components fails, allowing electrical current to flow through the insulation. This breakdown usually occurs when the voltage across the insulating material exceeds a certain threshold known as the breakdown voltage.

In electric vehicles, high breakdown voltage is crucial for several reasons related to the safety, performance, and efficiency of the vehicle’s electrical system, and Roy’s work directly impacts this. She has also conducted extensive research on 2D materials and their photovoltaic capabilities, and is currently working on developing brain-inspired computer architectures for machine learning algorithms. Similar to the work of her student, this research utilizes the structure of the human brain to model an architecture for AI, replicating the synapses and neural connections.

As passionate as she is about research, she shares that she used to love to go to art galleries and look at paintings, “I could do it for hours,” Roy says. Currently, if she is not actively pursuing her research, she enjoys spending time with her two young children. 

“I hope to share my dream with this new generation,” Roy concludes.

Guest post by Sutharsika Kumar, North Carolina School of Science and Mathematics, Class of 2024

International Experience Shaped Epidemiologist’s Career Path

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the sixth of eight posts.

In the complex world of scientific exploration, definitive answers often prove elusive, and each discovery brings with it a nuanced understanding that propels us forward. Dr. Dana Kristine Pasquale’s journey in public health serves as a testament to the intricate combination of exploration and redirection that have shaped her into the seasoned scientist she is today.

Pasquale said her scientific path has been  “…a nonlinear journey, that’s been a series of over-corrections. As I’ve gone from one thing to another, that hasn’t turned out to be what I expected.”

Dana Pasquale Ph.D.

Anchored in her formative years in a study abroad experience in Angola, Africa during undergraduate studies, Pasquale’s exposure to clinical challenges left an indelible mark. She keenly observed the cyclic nature of treating infections by shadowing a local physician. 

“We would treat the same people from month to month for the same kinds of infections,” she recalled. 

Things like economic and social barriers weren’t as stark there – everyone was at the same level, and there was no true impact that she could make investigating them. This realization sparked a profound understanding that perhaps a structural, community-focused intervention could holistically address healthcare needs – water, sanitation, etc. It set the course for her future research endeavors.

Upon returning to the U.S., she orchestrated a deliberate shift in her academic trajectory, choosing to immerse herself in medical anthropology at the University of North Carolina-Chapel Hill. Her mission was clear: to unravel how local communities conceptualize health. Engaging with mothers and child health interventionists, she delved into health behavior, yet found herself grappling with persistent frustrations. 

“I found [health behavior] frustrating because there were still a lot of structural issues that made things impossible,” she says. “And even when you think you’re removing some of the barriers, you’re not removing the most important ones.”

 Rather than being a roadblock, this frustration became a catalyst for Pasquale, propelling her toward the realms of epidemiology and sociology. Here, the exploration of macro and structural factors aligned seamlessly with her vision for sustainable public health, providing the missing pieces to the intricate puzzle she was trying to solve. She didn’t expect to end up here until her mentor suggested going back to school for it.

As principal investigator of Duke’s RDS2 COVID-19 Research and Data Services project during the early months of the pandemic, Pasquale navigated the challenges associated with transitioning contact-tracing efforts online. Despite hurdles in data collection due to the project’s reliance on human interaction and testing, the outcome was an innovative online platform, minimizing interaction and invasiveness. This accomplishment beautifully intertwines with her ongoing work on scalable strategies to enhance efficiency in public health activities during epidemics. 

“We had a lot of younger people say that they would prefer to enter their contacts online rather than talk to someone… something that could be a companion to public health, not subverting contact-tracing, which is an essential public health activity.”

Pasquale’s expansive portfolio extends to an HIV Network Analysis for contact tracing and intelligent testing allocation. Presently, she is immersed in a project addressing bacterial hospital infections among patients and hospital personnel, a testament to her unwavering commitment to tackling critical health challenges from various angles.

When queried about her approach to mentoring and teaching, Pasquale imparts a valuable piece of wisdom from her mentor: “If you’re not completely embarrassed by the first work you ever presented at a conference, then you haven’t come far enough.” 

Her belief in the transformative power of mistakes and the non-linear trajectory in science resonates in her guidance to students, encouraging them to not only accept but embrace the inherent twists and turns in their scientific journeys. As they navigate their scientific journeys, she advocates for the importance of learning and growing from each experience, fostering resilience and adaptability in the ever-evolving landscape of scientific exploration.

Guest Post by Ashika Kamjula, North Carolina School of Math and Science, Class of 2024

How Do Animals – Alone or in Groups – Get Where They’re Going?

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the of fourth eight posts.

In the intricate world of biology, where the mysteries of animal behavior unfold, Dr. Jesse Granger emerges as a passionate and curious scientist with a Ph.D. in biology and a penchant for unraveling the secrets of how animals navigate their surroundings.

Her journey began in high school when she posed a question to her biology teacher about the effect of eye color on night vision. Unable to find an answer, they embarked together on a series of experiments, igniting a passion that would shape Granger’s future in science.

Jesse Granger in her lab at Duke

Granger’s educational journey was marked by an honors thesis at the College of  William & Mary that delved into the potential of diatoms, single-cell algae known for their efficiency in capturing light, to enhance solar panel efficiency. This early exploration of light structures paved the way for a deeper curiosity about electricity and magnetism, leading to her current research on how animals perceive and use the electromagnetic spectrum.

Currently, Granger is involved in projects that explore the dynamics of animal group navigation. She is investigating how animals travel in groups to find food, with collective movement and decision-making.  

Among her countless research endeavors, one project holds a special place in Granger’s heart. Her study involved creating a computational model to explore the dynamics of group travel among animals.  She found that agents, a computational entity mimicking the behavior of an animal, are way better at getting where they are going as part of a group than agents who are traveling alone.

Granger’s daily routine in the Sönke Johnson Lab revolves around computational work. While it may not seem like a riveting adventure to an outsider, to her, the glow of computer screens harbors the key to unlocking the secrets of animal behavior. Coding becomes her toolkit, enabling her to analyze data, develop models, and embark on simulations that mimic the complexities of the natural world.

Granger’s expertise in coding extends to using R for data wrangling and NetLogo, an agent-based modeling program, for simulations. She describes the simulation process as akin to creating a miniature world where coded animals follow specific rules, giving rise to emergent properties and valuable insights into their behavior. This skill set seamlessly intertwined with her favorite project, where the exploration of group dynamics and navigation unfolded within the intricate landscapes of her simulated miniature world.

In the tapestry of scientific exploration, Jesse Granger emerges as a weaver of knowledge, blending biology, physics, and computation to unravel the mysteries of animal navigation. Her journey, marked by curiosity and innovation, not only enriches our understanding of the natural world but also inspires the next generation of  scientists to embark on their unique scientific odysseys.      

Guest Post by Mansi Malhotra, North Carolina School of Science and Math, Class of 2025.

Pioneering New Treatments in Deep Brain Stimulation for Parkinson’s Disease

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the second of eight posts.

Meet a star in the realm of academic medicine – Dr. Kyle Todd Mitchell!

A man who wears many hats – a neurologist with a passion for clinical care, an adventurous researcher, and an Assistant Professor of Neurology at Duke – Mitchell finds satisfaction in the variety of work, which keeps him “driven and up to date in all the different areas.”

Dr. Mitchell holds a deep brain stimulation device.

Dr. Mitchell’s educational journey is marked by excellence, including a fellowship at the University of California San Francisco School of Medicine, a Neurology Residency at Washington University School of Medicine, and an M.D. from the Medical College of Georgia. Beyond his professional accolades, he leads an active life, enjoying running, hiking, and family travels for rejuvenation. 

Dr. Mitchell’s fascination with neurology ignited during his exposure to the field in medical school and residency. It was a transformative moment when he witnessed a patient struggling with symptoms experience a sudden and remarkable improvement through deep brain stimulation. This therapy involves the implantation of a small electrode in the brain, offering targeted stimulation to control symptoms and bringing relief to individuals grappling with the challenges of Parkinson’s Disease.

“You don’t see that often in medicine, almost like a light switch, things get better and that really hooked me,” he said. The mystery and complexity of the brain further captivated him. “Everything comes in as a bit of a mystery, I liked the challenge of how the brain is so complex that you can never master it.” 

Dr. Mitchell’s research is on improving deep brain stimulation to alleviate the symptoms of  Parkinson’s disease, the second most prevalent neurodegenerative disorder, which entails a progressive cognitive decline with no cure. Current medications exhibit fluctuations, leading to tremors and stiffness as they wear off. Deep brain stimulation (DBS), FDA-approved for over 20 years, provides a promising alternative. 

Dr. Mitchell’s work involves creating adaptive algorithms that allow the device to activate when needed and deactivate so it is almost “like a thermostat.” He envisions a future where biomarkers recorded from stimulators could predict specific neural patterns associated with Parkinson’s symptoms, triggering the device accordingly. Dr. Mitchell is optimistic, stating that the “technology is very investigational but very promising.”

A key aspect of Dr. Mitchell’s work is its interdisciplinary nature, involving engineers, neurosurgeons, and fellow neurologists. Each member of the team brings a unique expertise to the table, contributing to the collaborative effort required for success. Dr. Mitchell emphasizes, “None of us can do this on our own.”

Acknowledging the challenges they face, especially when dealing with human subjects, Dr. Mitchell underscores the importance of ensuring research has a high potential for success. However, the most rewarding aspect, according to him, is being able to improve the quality of life for patients and their families affected by debilitating diseases.

Dr. Mitchell has a mindset of constant improvement, emphasizing the improvement of current technologies and pushing the boundaries of innovation. 

“It’s never just one clinical trial — we are always thinking how we can do this better,” he says. 

The pursuit of excellence is not without its challenges, particularly when attempting to improve on already effective technologies. Dr. Mitchell juggles his hats of being an educator, caregiver, and researcher daily. So let us tip our own hats and be inspired by Dr. Mitchell’s unwavering dedication to positively impact the lives of those affected by neurological disorders.

Guest post by Amy Lei, North Carolina School of Science and Math, Class of 2025.

From Occupational Therapy to Stroke Research

Note: Each year, we partner with Dr. Amy Sheck’s students at the North Carolina School of Science and Math to profile some unsung heroes of the Duke research community. This is the first of 8 posts.

Dr. Kimberly Hreha’s journey to studying stroke patients was not a straightforward one, but it started very early.

“My mom was a special ed teacher, and so I would go into her class and volunteer. There was an occupational therapist I met and they really kind of drove my decision to become an occupational therapist.” 

After earning a masters degree in occupational therapy, Hreha worked as an OT for 5 years and became fascinated by stroke survivors and ways to help them live their lives normally again. She was able to do this when she moved to the Kessler Institute for Rehabilitation and began working with a neurologist to study spatial neglect.

Kimberly Hreha and her Prism Adaptation goggles.

“If a stroke happens in the right hemisphere of the brain, the person neglects the left side of space,” Hreha said. “Imagine yourself standing in a room, and I want you to describe to me what the space is. [You would say] Oh my dresser’s on the right side, my bed’s on the right, my picture frame’s on the right. And you would not tell me anything on the left.” 

She further explained that this is not due to blindness in the left eye, the left eye usually can see just fine, it’s simply that the brain ignores the entire left side of space. 

Hreha co-developed a solution and treatment for this issue. It uses a pair of goggles with modified lenses, to move you into left space. I got to try it out to see how it worked.

Hreha first had me touch my hand to my chest and then touch a pen she was holding. I did this easily without the goggles on. When I tried again with the goggles on, I completely missed and put my finger too far to the right. I kept trying to touch the pen with the goggles on until I had retrained my brain to touch it consistently. Next, she had me take the goggles off and try touching the pen again. I went to touch the pen, but I missed it because my finger went too far to the left! 

Hreha explained to me that she had just gotten me into left space. In stroke patients with left spatial neglect, she told me, they could use the goggles to help train them to stop neglecting left space, helping them to vastly improve their lives. 

The goggle therapy, formally called prism adaptation, is a simple treatment that is practiced for 20 minutes a day for 10 days. For this Hreha won the Young Investigator Award in Post-Acute Stroke Rehabilitation in 2018 for her contribution to stroke research. Seeing her passion for her treatment and her happiness to have created something that helps stroke patients was very gratifying for me.

Hreha is also working on finding a connection between stroke patients and dementia, something that she hopes will further help the stroke survivor community. This is a research project that is ongoing for her, and one that she hopes to gain valuable data analysis and research practices skills from.  

Finally, she talked to me about her goals for the future. Hreha hopes to do a collaborative study with people at the low-vision clinic, get a grant for her prism adaptation research, and create a right brain stroke clinic at Duke to be able to do large scale research to help right brain stroke patients. 

As a researcher, she still also finds time to keep up her OT practice, by working as an OT one full day each month. Keeping true to her love of helping others, she said, “That little part of that clinical time just reminds me why I’m doing the research I’m doing. And that when I’m doing the data work, it is, at the end of the day, about that person who is in front of me in the clinic.”

Guest Post by Prithu Kolar, Class of 2025, North Carolina School of Science and Math.

Shifting from Social Comparison to “Social Savoring” Seems to Help

The face of a brown-eyed girl with freckles, bangs and new adult teeth fills most of the frame. Superimposed to the right are the icons of multiple real and imagined social media apps in a semicircular arrangement. Image by geralt, via Pixabay.
Image by geralt, via pixabay.

The literature is clear: there is a dark side to engaging with social media, with linkages to depressive symptoms, a sense of social isolation, and dampened self-esteem recently revealed in the global discourse as alarming potential harms.

Underlying the pitfalls of social media usage is social comparison—the process of evaluating oneself relative to another person—to the extent that those who engage in more social comparison are at a significantly higher risk of negative health outcomes linked to their social media consumption.

Today, 72 percent of Americans use some type of social media, with most engaging daily with at least one platform.(1) Particularly for adolescents and young adults, interactions on social media are an integral part of building and maintaining social networks.(2-5) While the potential risks to psychosocial well-being posed by chronic engagement with these platforms have increasingly come to light within the past several years, mitigating these adverse downstream effects poses a novel and ongoing challenge to researchers and healthcare professionals alike.

The intervention aimed to supplant college students’ habitual social comparison … with social savoring: experiencing joyful emotions about someone else’s experiences.

A team of researchers led by Nancy Zucker, PhD, professor in Psychiatry & Behavioral Sciences and director of graduate studies in psychology and neuroscience at Duke University, recently investigated this issue and found promising results for a brief online intervention targeted at altering young adults’ manner of engagement with social media. The intervention aimed to supplant college students’ habitual social comparison when active on social media with social savoring: experiencing joyful emotions about someone else’s experiences.

A cartoon depicts a small man in a ball cap standing on a table with a smartphone nearby. A larger person on the right with a cat-like nose regards him with tears in her eyes.
Image from Andrade et al

Zucker’s team followed a final cohort of 55 college students (78 percent female, 42 percent White, with an average age of 19.29) over a two-week period, first taking baseline measures of their mental well-being, connectedness, and social media usage before the students returned to daily social media usage. On day 8, a randomized group of students received the experimental intervention: an instructional video on the skill of social savoring. These students were then told to implement this new skill when active on social media throughout days 8 to 14, before being evaluated with the rest of the cohort at the two-week mark.

For those taught how and why to socially savor their daily social media intake, shifting focus from social comparison to social savoring measurably increased their performance self-esteem—their positive evaluation—as compared with the control group, who received no instructional video. Consciously practicing social savoring even seemed to enable students to toggle their self-esteem levels up or down: those in the intervention group reported significantly higher levels of self-esteem on days during which they engaged in more social savoring.

Encouragingly, the students who received the educational intervention on social media engagement also opted to practice more social savoring over time, suggesting they found this mode of digesting their daily social media feeds to be enduringly preferable to that of social comparison. The team’s initial findings suggest a promising future for targeted educational interventions as an effective way to improve facets of young adults’ mental health without changing the quantity or quality of their media consumption.

Of course, the radical alternative—forgoing social media platforms altogether in the name of improved well-being—looms in the distance as an appealing yet often unrealistic option for many; therefore, thoughtfully designed, evidence-based interventions such as this research team’s program seem to offer a more realistic path forward.

Read the full journal article.

References

  1. Auxier B, Anderson M. Social media use in 2021: A majority of Americans say they use YouTube and Facebook, while use of Instagram, Snapchat and TikTok is especially common among adults under 30. 2021.
    2. McKenna KYA, Green AS, Gleason MEJ. Relationship formation on the Internet: What’s the big attraction? J Soc Issues. 2002;58(1):9-31.
    3.Blais JJ, Craig WM, Pepler D, Connolly J. Adolescents online: The importance of Internet activity choices to salient relationships. J Youth Adolesc. 2008;37(5):522-536.
    4. Valkenburg PM, Peter J. Preadolescents’ and adolescents’ online communication and their closeness to friends. Dev Psychol. 2007;43(2):267-277.
    5. Michikyan M, Subrahmanyam K. Social networking sites: Implications for youth. In: Encyclopedia of Cyber Behavior, Vols. I – III. Information Science Reference/IGI Global; 2012:132-147.

Guest Post by Eleanor Robb, Class of 2023

Duke Civil Engineers Make Triumphant Return To Carolinas Symposium

After a three-year hiatus caused by the COVID-19 pandemic, Duke’s student chapter of the American Society of Civil Engineers (ASCE) returned to the Carolinas in-person gathering. And they were in it to win it, taking home awards in four out of the five events in which they competed.

Duke sent seven Duke undergraduates to the symposium, which was hosted by The Citadel in Charleston, South Carolina: Leo Lee, Harrison Kendall, Arthur Tsang, Hana Thibault, Anya Dias-Hawkins, Sarah Bailey and Grace Lee.

When not going for gold, the students also attended business meetings and professional workshops related to the civil engineering profession.

Seven students holding awards stand before the gateway of The Citidel in South Carolina at dusk.
(Left to right) Leo Lee, Harrison Kendall, Arthur Tsang, Hana Thibault, Anya Dias-Hawkins, Sarah Bailey, Grace Lee at The Citadel after the Symposium awards banquet.

Duke ASCE students also enjoyed networking with peers for the first time in years, meeting chapter members from other schools such as North Carolina Agricultural and Technical State University, North Carolina State University, The Citadel, Horry Georgetown Technical College, and Clemson University.

Sarah Bailey, Harrison Kendall, Anya Dias-Hawkins, and Hana Thibault before competing in the Quiz Bowl competition.

But when the lights came up, the gloves came off, and Duke’s students faced off against their peers in five competitions. Sophomore Anya Dias-Hawkins and junior Sarah Bailey earned third place for their efforts in the Geotechnical competition, where students were tasked with a real-life geotechnical design problem.

Juniors Grace Lee and Leo Lee along with senior Arthur Tsang won first place for their design in the Lightest Bridge competition, where popsicle bridges had to withstand a weight of 200 lbs.

Sophomores Anya Dias-Hawkins, Harrison Kendall and Hana Thibault also took home first place honors in the Freshmore competition, where students were tasked with designing an imaginary city. Lastly, Harrison Kendall won an individual award for his paper and presentation in the Daniel W. Mead Paper competition.

Arthur Tsang, Leo Lee, and Grace Lee standing on their winning Lightest Bridge design.

Duke ASCE is extremely excited to continue their efforts at the Carolinas symposium next year and hopes to send many more competitors. The group plans to compete in larger competitions such as Concrete Canoe next year at UNC Charlotte. With enough preparation, the students hope to advance to the national conference in 2024.

If you are interested in getting involved with Duke ASCE and/or competing in next year’s symposium, please email co-Presidents Sarah Bailey and Harrison Kendall at sarah.a.bailey@duke.edu or harrison.kendall@duke.edu.

Post by Harrison Kendall, civil engineering class of ‘25

Some Primates Are More Susceptible to Parasites Than Others. Researchers Are Using New Methods to Find Out Why.

Chimpanzees are among the best studied primates for parasite interactions. Photo credit: Wikimedia Commons

Fleas, tapeworms, Giardia, pinworms:  Parasites are all around us. But some animals are more susceptible than others. Take the well-studied chimpanzee, for example: it’s known to host over 100 parasites. In contrast, species like the indri, a lemur only found on Madagascar, are only known to host about 10 parasites. Many other primates are so poorly studied that only one parasite has ever been recorded.

Relative to the chimpanzee, the indri is poorly known for its parasites. Credit: James Herrera.

In a new study published in the Journal of Animal Ecology, we examined which traits of both primates and parasites predict the likelihood of their interactions. Using advanced techniques in social network analysis, called the exponential random graph, we were able to simultaneously test the traits of primates and parasites to determine what predisposes primates to infection and what gives some parasites a unique advantage.

For primates, larger species that are found in warmer, wetter climates are more likely to host diverse parasites, compared to smaller species living in drier, cooler climates. Further, species in the same branches of the evolutionary tree and those that live in the same geographic region are more likely to share parasites than more distantly related species found on different continents. Viruses, protozoa, and helminth worms are more likely to infect diverse primates than fungi, arthropods, and bacteria. Parasites that are known to infect non-primate mammals are also more likely to infect diverse primates.

A photo from a microscope slide showing the blood parasite Plasmodium falciparum. One of the pathogens that causes malaria, P. falciparum also infects 118 other primates. In contrast, there are at least 30 other kinds of Plasmodium that only infect one or a few primates and their disease effects are poorly understood. Photo credit: Wikimedia Commons.

These new results were made possible by the great advances being made in infectious disease ecology. Over the last two decades, Dr. Charles Nunn at Duke University’s Evolutionary Anthropology and Global Health departments has been working with teams of researchers to compile all published records of primate-parasite interactions. Combing through the literature, almost 600 published sources were obtained to glean which parasites are found in over 200 primates species, with over 2,300 interactions recorded. With the analytical tools in social network science mastered by Duke Sociology professor Dr. James Moody, we were able to systematically test how traits of both hosts and parasites affect the likelihood of their interaction for the first time. While many previous studies used subsets of this database and examined either hosts or parasites in isolation, we were able to make new inferences about the critical links in this unique ecological network.

This work builds on a recent study that showed how extinction of primate hosts could lead to the co-extinction of almost 200 parasite species. While at first this might seem like a good thing, in fact it could have negative impacts on biodiversity as a whole. Many parasites don’t actually cause disease or death in the hosts, and some may even have beneficial properties. We simply don’t know enough about these critical and co-evolved relationships to understand what effects host-parasite coextinctions could have in the long-term.

While it might seem strange to worry about parasite extinctions, they are actually an important part of biodiversity and ecosystem functions. Understanding how primates and parasites interact reveals new insights into coevolutionary theory, and could also contribute to the conservation of underappreciated species richness. While from a public health perspective, we’d like to see some parasites disappear, like corona and ebola viruses, from an evolutionary stance, the sheer diversity of parasites and their intimate relationships with their hosts make them fascinating and crucial components of biodiversity.

By James Herrera, Ph.D., Duke Lemur Center SAVA Conservation Initiative

Deep Conversations Put the ‘Care’ in Healthcare

The Duke Medical Ethics Journal (DMEJ) is a golden opportunity to listen to the ways the world around me hurts and heals. It means asking questions – who is being marginalized in my communities? Where is the injustice in my community? What can I do about it? And when these questions feel too big and too heavy, DMEJ means having a community of mentors, friends, and soul-strengtheners to ask the questions with me. Some of my most cherished experiences at Duke since freshman year have been those rooted in exploring the humanities.

Engaging with the field of ethics through the Kenan Institute of Ethics Living Learning Community as well leading the Duke Medical Ethics Journal (DMEJ) has given me a strong appreciation for the utilization of humanities in healthcare.

Before I saw the Spring 2021 DMEJ edition come together, I never realized how deeply identity could influence health. I had always thought of peoples’ identity in terms of cultural identity, not enough in terms of fertility or neurodiversity, until I read the pieces written by my fellow DMEJ writers. I realized more than ever that healthcare at its deepest level is not just about the biomedical model but it’s also about care, care for the values the lives of its practitioners and patients.

COVID-19 has also naturally brought up questions on the importance of mask-wearing, social distancing, and now, vaccinating. Though most students interested in entering the healthcare field typically fall on one side of the argument, it is safe to say that all of us had to take up more responsibility for ourselves and for others. What does it take to do what is right? The ethics (and effort!) surrounding this responsibility makes for deep conversations puts the “care” in healthcare. And these deep conversations are what DMEJ is all about.

Our upcoming issue, winter 2021, will be about the post-covid era. What does a return to normalcy even mean in an age where normal has been changed forever? And two of our bloggers have already written deeply affecting pieces on post pandemic mental health. To stay up to date on what DMEJ is up to, subscribe to our listserv. We’re always looking for more voices to join our conversation. 🙂

Guest post by Sibani Ram, Class of 2023

Page 1 of 13

Powered by WordPress & Theme by Anders Norén