Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Robin Smith Page 2 of 8

Traveling With Friends Helps Even Mixed-Up Migrators Find Their Way

North American monarch butterflies migrate each winter to just a few mountaintops in central Mexico, with help from an internal compass that guides them home. New computer modeling research offers clues to how migrating animals get to where they need to go, even when their magnetic compass leads them astray. Credit: Jesse Granger, Duke University

DURHAM, N.C. — Some of us live and die by our phone’s GPS. But if we can’t get a signal or lose battery power, we get lost on our way to the grocery store.

Yet animals can find their way across vast distances with amazing accuracy.

Take monarch butterflies, for example. Millions of them fly up to 2,500 miles across the eastern half of North America to the same overwintering grounds each year, using the Earth’s magnetic field to help them reach a small region in central Mexico that’s about the size of Disney World.

Or sockeye salmon: starting out in the open ocean they head home each year to spawn. Using geomagnetic cues they manage to identify their home stream from among thousands of possibilities, often returning to within feet of their birthplace.

Now, new research offers clues to how migrating animals get to where they need to go, even when they lose the signal or their inner compass leads them astray. The key, said Duke Ph.D. student Jesse Granger: “they can get there faster and more efficiently if they travel with a friend.”

When their internal compasses go bad, migrating animals like these sockeye salmon don’t stop to ask directions. But they succeed if they stay with their fellow travelers. Credit: Jonny Armstrong, USGS

Many animals can sense the Earth’s magnetic field and use it as a compass. What has puzzled scientists, Granger said, is the magnetic sense is not fail-safe. These signals coming from the planet’s molten core are subtle at the surface. Phenomena such as solar storms and man-made electromagnetic noise can disrupt them or drown them out.

It’s as if the ‘needle’ of their inner compass sometimes gets thrown off or points in random directions, making it hard to get a reliable reading. How do some animals manage to chart a course with such a noisy sensory system and still get it right?

“This is the question that keeps me up at night,” said Granger, who did the work with her adviser, Duke Biology Professor Sönke Johnsen.

Multiple hypotheses have been put forward to explain how they do it. Perhaps, some scientists say, migrating animals average multiple measurements taken over time to get more accurate information.

Or maybe they switch from consulting their magnetic compass to using other ways of navigating as they near the end of their journey — such as smell, or landmarks — to narrow in on their goal.

In a paper published Nov. 16 in the journal Proceedings of the Royal Society B, the Duke team wanted to pit these ideas against a third possibility: That some animals still manage to find their way, even when their compass readings are unreliable, simply by sticking  together.

To test the idea, they created a computer model to simulate virtual groups of migrating animals, and analyzed how different navigation tactics affected their performance.

The animals in the model begin their journey spread out over a wide area, encountering others along the route. The direction an animal takes at each step along the way is a balance between two competing impulses: to band together and stay with the group, or to head towards a specific destination, but with some degree of error in finding their bearings.

The scientists found that, even when the simulated animals started to make more mistakes in reading their magnetic map, the ones that stuck with their neighbors still reached their destination, whereas those that didn’t care about staying together didn’t make it.

“We showed that animals are better at navigating in a group than they are at navigating alone,” Granger said.

Even when their magnetic compass veered them off course, more than 70% of animals in the model still made it home, simply by joining with others and following their lead. Other ways of compensating didn’t measure up, or would need to guide them perfectly for most of the journey to accomplish the same feat.

But the strategy breaks down when species decline in number, the researchers found. The team showed that animals who need friends to find their way are more likely to get lost when their population shrinks below a certain density.

Prior to the 1950s, tens of thousands of Kemp’s ridley sea turtles could be seen nesting near Rancho Nuevo, Mexico on a single day. By the mid-1980s the number of nesting females had dropped to a few hundred.

“If the population density starts dropping, it takes them longer and longer along their migratory route before they find anyone else,” Granger said.

Previous studies have made similar predictions, but the Duke team’s model could help future researchers quantify the effect for different species. In some runs of the model, for example, they found that if a hypothetical population dropped by 50% — akin to what monarchs have experienced in the last decade, and some salmon in the last century — 37% fewer of the remaining individuals would make it to their destination.

“This may be an underappreciated aspect of concern when studying population loss,” Granger said.

This research was supported in part by the Air Force Office of Scientific Research (FA9550-20-1-0399) and by a National Defense Science & Engineering Graduate Fellowship to Jesse Granger.

CITATION: “Collective Movement as a Solution to Noisy Navigation and its Vulnerability to Population Loss,” Jesse Granger and Sönke Johnsen. Proceedings of the Royal Society B, Nov. 16, 2022. DOI: 10.1098/rspb.2022.1910

Robin Smith
By Robin Smith

Feeling Lonely? What We Want From Our Relationships Can Change With Age

Not feeling the holiday cheer this year? The gap between expectations and reality can leave people feeling lonely. Photo by madartzgraphics.

Not everyone’s holiday plans resemble a Hallmark card.

If the “most wonderful time of the year” isn’t your reality, you’re not alone. You might have an idea of a festive picture-perfect holiday season, but what actually transpires doesn’t always measure up.

And that’s where loneliness comes from, says King’s College London graduate student Samia Akhter-Khan, first author of a new study on the subject.

“Loneliness results from a discrepancy between expected and actual social relationships,” Akhter-Khan said.

Together with Duke psychology and neuroscience Ph.D. Leon Li, Akhter-Khan and colleagues co-authored a paper on why people feel lonely, particularly in later life, and what we can do about it.

“The problem that we identified in current research was that we haven’t really thought about: What do people expect from their relationships?” Akhter-Khan said. “We work with this definition of expectations, but we don’t really identify what those expectations are and how they change across cultures or over the lifespan.”

In every relationship, we expect certain basics. We all want people in our lives who we can ask for help. Friends we can call on when we need them. Someone to talk to. People who “get” us. Someone we can trust. Companions with whom we can share fun experiences.

But the team’s theory, called the Social Relationship Expectations Framework, suggests that older people may have certain relationship expectations that have gone overlooked.

Akhter-Khan’s first clue that the causes of loneliness might be more complex than meets the eye came during a year she spent studying aging in Myanmar from 2018 to 2019. At first, she assumed people generally wouldn’t feel lonely — after all, “people are so connected and live in a very close-knit society. People have big families; they’re often around each other. Why would people feel lonely?”

But her research suggested otherwise. “It actually turns out to be different,” she said. People can still feel lonely, even if they don’t spend much time alone.

What efforts to reduce loneliness have neglected, she said, is how our relationship expectations change as we get older. What we want from social connections in, say, our 30s isn’t what we want in our 70s.

The researchers identified two age-specific expectations that haven’t been taken into account. For one, older adults want to feel respected. They want people to listen to them, to take an interest in their experiences and learn from their mistakes. To appreciate what they’ve been through and the obstacles they have overcome.

They also want to contribute: to give back to others and their community and pass along traditions or skills through teaching and mentoring, volunteering, caregiving, or other meaningful activities.

Finding ways to fulfill these expectations as we get older can go a long way towards combating loneliness in later life, but research has largely left them out.

“They’re not part of the regular scales for loneliness,” Li said.

Part of the reason for the oversight may be that often the labor and contributions of older people are unaccounted for in typical economic indices, said Akhter-Khan, who worked in 2019-20 as a graduate research assistant for a Bass Connections project at Duke on how society values care in the global economy.

“Ageism and negative aging stereotypes don’t help,” she added. A 2016 World Health Organization survey spanning 57 countries found that 60% of respondents said that older adults aren’t well respected.

Loneliness isn’t unique to older people. “It is a young people’s problem as well,” Akhter-Khan said. “If you look at the distribution of loneliness across the lifespan, there are two peaks, and one is in younger adulthood, and one is an old age.”

Even before the COVID-19 pandemic, world leaders began sounding the alarm on loneliness as a public health issue. Britain became the first country to name a minister for loneliness, in 2018. Japan followed suit in 2021.

That’s because loneliness is more than a feeling – it can have real impacts on health. Persistent loneliness has been associated with higher risks of dementia and Alzheimer’s disease, heart disease and stroke, and other health problems. Some researchers suggest it’s comparable or riskier than smoking and obesity.

The researchers hope that if we can better understand the factors driving loneliness, we might be better able to address it.

CITATION: “Understanding and Addressing Older Adults’ Loneliness: The Social-Relationship Expectations Framework,” Samia C. Akhter-Khan, Matthew Prina, Gloria Hoi-Yan Wong, Rosie Mayston, and Leon Li. Perspectives on Psychological Science, Nov. 2, 2022. DOI: 10.1177/17456916221127218

Robin Smith
By Robin Smith

How to Encourage Preschoolers to Be More Fair, According to Science

Exposing young kids to different opinions or asking them to explain their thinking can have surprising benefits, Duke University researchers find.

DURHAM, N.C. — “But that’s not fair!” If you’re a parent or a teacher, you’ve probably heard this countless times.

To most young children, “fair” simply means treating everyone equally. Kids are quick to say they shouldn’t have to go to bed earlier than a sibling, or put up with more chores or homework than a classmate.

But as children get older, they begin to grasp that sometimes, things can be unequal and still be fair — especially when people have different needs, circumstances, or abilities. Up until 8 to 10 years of age, most children aren’t yet capable of such moral subtlety, but a new study shows they can get closer, with help from a surprising source: disagreement.

For preschoolers, a 20-minute conversation with someone who disagrees with them or who asks them to justify their ideas can foster more nuanced moral calculations about what it means to be “fair.”

That’s the key finding from a new Duke University study that examines how children develop their sense of morality.

Many theorists have proposed that a child’s interactions with other people can shape their growing sense of right and wrong. But experiments to pinpoint exactly what kinds of interactions are most helpful have been lacking, said first author Leon Li, who did the research with developmental psychologist Michael Tomasello as part of his PhD in psychology and neuroscience at Duke.

In a study that appeared this summer in the Journal of Experimental Child Psychology, the researchers asked 129 children aged 4 to 5 years to discuss simple moral dilemmas with a puppet and try to make the most fair decision.

In one experiment for example, they asked the children to imagine two boys, one of whom missed breakfast, and decide how to split cookies between them at snack time. In another, the question was whether two girls should get in the same amount of trouble for throwing away someone’s lunch, when one of them mistook it for trash.

No matter what the child decided, afterward the puppet responded by either agreeing or disagreeing, and by either asking the child to explain their reasoning or not. Then the researchers observed how the puppet’s responses affected the child’s thinking in future trials.

They found that children who had previously encountered different points of view, or had to justify their decisions, were more likely to favor the more deserving recipient, rather than fall into “fair must mean equal” thinking.

Li cautions that disagreeing with a child or asking them to justify themselves won’t necessarily make them more honest, or hardworking, or generous.

“Those are other domains of morality, but we only found this in fairness,” Li said. “It’s possible it wouldn’t have an effect with, say, social exclusion” or some other aspect of moral behavior that the team didn’t examine.

But when people ask him, ‘is this how I teach my child to be more virtuous?’ — at least when it comes to fairness — “the answer is yes,” Li said.

CITATION: “Disagreement, Justification, and Equitable Moral Judgments: A Brief Training Study,” Leon Li and Michael Tomasello. Journal of Experimental Child Psychology, July 14, 2022. DOI: 10.1016/j.jecp.2022.105494

Robin Smith
by Robin Smith

Lemur Gut Isn’t One Ecosystem, It’s Many

Lemurs like Ferdinand are leaf-eating machines, says Duke microbiome researcher Lydia Greene. Credit: Lydia Greene

DURHAM, N.C. — A jungle. A rainforest. A wetland. A wilderness. Researchers have used various metaphors to describe the complex, interconnected community of microbes (most of them bacteria) living inside your body, and all over it too.

If you were to count up all the trillions of cells inside and out, we are more bacteria than human. Fortunately, perhaps, the microbes that make a cozy home inside your nose, or clinging to your teeth, aren’t the same ones that are living behind your ear or busily multiplying in your belly button.

The same is true for our distant primate cousins the lemurs, particularly in their guts, say researchers Lydia Greene and Erin McKenney in a new study.

Lemurs rely on gut microbes to digest their leafy diets, explains Greene, a research scientist at the Duke Lemur Center. Microbes in lemurs’ GI tracts help ferment plant fiber, detoxify plant chemical defenses, and synthesize vitamins and nutrients that lemurs can’t make for themselves. Our own gut bugs do many of the same things for us.

Greene and McKenney study how lemur gut bacteria are shaped by what lemurs eat, how they evolved and the complexity of the route microbes travel through the body. They hope to better understand how these microorganisms keep lemurs healthy, or — when they’re out of balance — make them sick.

Researchers who do this kind of work spend a lot of time collecting poop. For good reasons, says McKenney, an assistant professor at North Carolina State University. Scientists can learn about lemurs by what they leave behind, and poop can be collected repeatedly without harming the animals. But for this study the team tried something different, made possible by a one-of-a-kind biobank:

When an animal dies at the Duke Lemur Center, veterinary staff determine the cause of death, and blood and tissue samples that might be important for research or education are collected and preserved.

Today, the collection holds thousands of samples, collected over decades from more than two dozen species of rare and endangered primates, which the center stores in super cold freezers in their headquarters in North Carolina. It’s a frozen ark maintained at up to minus 80 degrees Celsius, with redundant backup power.

In the event that any one of these species goes extinct, and the last living parts of them are gone, future generations will still be able to study the genetic and other information they left behind.

Using this bank, the team sampled several sites in the bowels of 52 deceased lemurs, including dwarf lemurs, aye-ayes, ruffed lemurs, bamboo lemurs, brown lemurs, ring-tailed lemurs and sifakas.

A trip through a lemur’s GI tract is a journey through a varied landscape. The long, twisting route from the stomach through the small intestine to the colon serves numerous functions, filtering, digesting, absorbing, detoxifying, fermenting.

Not all lemur guts work the same: Fruit-eaters, like ruffed lemurs, generally have short, simple guts. If you stretched them out, they’d be five times their body length — not much shorter than ours, relative to body size. Leaf-eaters like sifakas have more complex GI tracts with relatively longer colons and a leaf-fermentation pouch called a cecum. Their guts are the lemur champions — up to 16 times body length.

Having whole lemurs to study instead of just poo enabled the researchers to sample different regions of the gut to figure out what kinds of microbes were present in each spot. They used genetic sequencing technology to identify microbes and compare their relative abundance in different sites.

Sampling along the digestive tract, they found that different spots along this long, twisting pathway have their own communities of bacteria doing different kinds of jobs. The complex ecosystem lurking in a lemur’s small intestine, for example, isn’t the same as the microbial menagerie setting up camp in their colon.

Levels of biodiversity varied too. The stomach supports less microbial life because fewer species can tolerate its acidic digestive juices. But if the upper regions of the gut are a garden, the lower regions are more like a tropical rainforest. About two dozen types of bacteria were more abundant in the cecum and colon than elsewhere. Lemurs with relatively longer lower guts host the richest microbiomes, to better ferment high-fiber foods.

“We probably couldn’t have detected these relationships without such an extensive comparative dataset,” McKenney said.

“This kind of lemur research can really only be done at the Duke Lemur Center,” Greene said.

Rodelinda, a Coquerel’s sifaka lemur, munches on leaves at the Duke Lemur Center. Credit: Lydia Greene.

This research was supported by the National Science Foundation (DBI PRFB 1906416) and by a Duke Lemur Center Director’s fund.

CITATION: “Gut Site and Gut Morphology Predict Microbiome Structure and Function in Ecologically Diverse Lemurs,” Lydia K. Greene, Erin A. McKenney, William Gasper, Claudia Wrampelmeier, Shivdeep Hayer, Erin E. Ehmke, & Jonathan B. Clayton. Microbial Ecology, May 14, 2022. DOI: 10.1007/s00248-022-02034-4

Behold: the Cell’s Skeleton in Motion

To many of us, cells are the building blocks of life, akin to bricks or Legos. But to biologist Regan Moore, a former Ph.D. student in Dan Kiehart’s lab at Duke, cells are so much more: they’re busy construction sites, machinery and materials moving about to build and shape the body. And now, new live imaging techniques make it possible to watch some of the nano-scale construction in action.

In time-lapse videos published this month, Moore, Kiehart and colleagues were able to peer inside cells as they filled a hole in the back of a developing fruit fly, a crucial step in the fly’s development into a larva. The process is coordinated with help from a thin mesh of protein fibers just under the cell surface, each one 10,000 times finer than a human hair. The fibers help the cells hold their shape, “kind of like rebar in concrete,” Moore said.

But unlike rebar, she added, “they’re constantly moving and changing.” Normally, features like these are too small and quick to see with conventional microscopes, which can only take a few images a second or are too out-of-focus. So Kiehart’s team used a technique called super-resolution fluorescence microscopy to track individual fibers with nanoscale resolution.

By watching the “rebar of the cell” at work during this hole-closing process in fruit flies, the researchers hope to better understand wound healing in humans, and what goes awry for children with birth defects such as cleft lip and spina bifida.

LEARN MORE: “Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays,” Regan P. Moore, Stephanie M. Fogerson, U. Serdar Tulu, Jason W. Yu, Amanda H. Cox, Melissa A. Sican, Dong Li, Wesley R. Legant, Aubrey V. Weigel, Janice M. Crawford, Eric Betzig, and Daniel P. Kiehart. Molecular Biology of the Cell, July 15, 2022. DOI: 10.1091/mbc.E21-11-0537

Finding the Tipping Point for Coastal Wetlands

Cypress swamp, eastern North Carolina. Photo by Steve Anderson, Duke

DURHAM, N.C. — The Albemarle-Pamlico Peninsula covers more than 2,000 square miles on the North Carolina coastal plain, a vast expanse of forested swamps and tea-colored creeks. Many people would probably avoid this place, whose dense thickets of cane and shrubs and waterlogged soils can slow a hike to a crawl.

“It’s hard fieldwork,” says Duke researcher Steve Anderson. “It gets really dense and scratchy. That, plus the heat and humidity mixed with the smell of sulfur and the ticks and the poison ivy; it just kind of adds up.”

But to Anderson and colleagues from Duke and North Carolina State University, these bottomlands are more than impenetrable marsh and muck and mosquitoes. They’re also a barometer of change.

Researchers surveying plants in Alligator River National Wildlife Refuge in 2016. Photo by Mathew Stillwagon, North Carolina State University

Most of the area they study lies a mere two to three feet above sea level, which exposes it to surges of ocean water — 400 times saltier than freshwater — driven inland by storms and rising seas. The salt deposits left behind when these waters recede build up year after year, until eventually they become too much for some plants to cope with.

Trudging in hip waders through stunted shrubs and rotting tree stumps, Anderson snaps a picture with his phone of a carpet of partridge berry trailing along the forest floor. In some parts of the peninsula, he says, the soils are becoming so salty that plants like these can no longer reproduce or are dying off entirely.

Along the North Carolina coast, understory plants such as this partridge berry (left) are quickly ceding ground to species such as this bigleaf marsh-elder (right) as the soils become too salty for them to thrive. Credit: Steve Anderson

In a recent study the team, led by professors Justin Wright and Emily Bernhardt of Duke, and Marcelo Ardón of NC State, surveyed some 112 understory plants in the region, making note of where they were found and how abundant they were in relation to salt levels in the soil.

The researchers identified a ‘tipping point,’ around 265 parts per million sodium, where even tiny changes in salinity can set off disproportionately large changes in the plants that live there.

Above this critical threshold, the makeup of the marsh floor suddenly shifts, as plants such as wax myrtle, swamp bay and pennywort are taken over by rushes, reeds and other plants that can better tolerate salty soils.

Certain dwindling plants could be an early warning sign that salt is poisoning inland waters, researchers say. Credit: Steve Anderson

The hope is that monitoring indicator species like these could help researchers spot the early warning signs of salt stress, Anderson says.

This research was supported by grants from the National Science Foundation (DEB1713435, DEB 1713502, and Coastal SEES Collaborative Research Award Grant No. 1426802).

CITATION: “Salinity Thresholds for Understory Plants in Coastal Wetlands,” Anderson, S. M., E. A. Ury, P. J. Taillie, E. A. Ungberg, C. E. Moorman, B. Poulter, M. Ardón, E. S. Bernhardt, and J. P. Wright. Plant Ecology, Nov. 24, 2021. DOI: 10.1007/s11258-021-01209-2.

Salt is poisoning the soils past a point of no return for some marsh plants; one team is trying to pinpoint the early warning signs. By Steve Anderson.

When the gut’s internal ecosystem goes awry, could an ancient if gross-sounding treatment make it right?

Lemur researchers make a case for fecal transplants to reduce the side effects of antibiotics. Photo by David Haring, Duke Lemur Center.

Dr. Cathy Williams knew something wasn’t right. The veterinarian had felt off for weeks after her 2014 trip to Madagascar.

At first she just felt bloated and uncomfortable and wasn’t interested in eating much. But eventually she developed a fever and chills that sent her to the emergency room.

When tested, doctors found that what she had wasn’t just a stomach bug. She was suffering from an infection of Clostridium difficile, a germ that causes severe diarrhea and abdominal pain and can quickly become life-threatening if not treated promptly.

“It was horrible,” Williams said.

The condition is often triggered when antibiotics disrupt the normal balance of bacteria that inhabit the gut, allowing “bad” bacteria such as C. difficile to multiply unchecked and wreak havoc on the intestines.

To get her infection under control, Williams asked her doctors if they could try an approach she and other veterinarians had used for decades to treat lemurs with digestive problems at the Duke Lemur Center. The procedure, known as a fecal microbiota transplant, involves taking stool from a healthy donor and administering it to the patient to add back “good” microbes and reset the gut.

At the time it was considered too experimental for clinical use in human cases like Williams’. She was prescribed the standard treatment and was sent home from the hospital, though she wouldn’t feel well enough to go back to work for another month. But now new research in lemurs is confirming what Williams and others long suspected: that this ancient if gross-sounding treatment can help an off-kilter gut microbiome get back to normal.

In a recent study in the journal Animal Microbiome, a research team led by Duke professor Christine Drea, former PhD student Sally Bornbusch and colleagues looked at the gut microbiomes of 11 healthy ring-tailed lemurs over a four-month period after receiving a seven-day course of the broad-spectrum antibiotic amoxicillin.

The lemurs were split into two experimental groups. One was a wait-and-see group, with continued follow-up but no further treatment after the antibiotics. The other group was given a slurry of their own feces, collected prior to antibiotic treatment and then mixed with saline and fed back to the same animal after their course of antibiotics was over.

“It sounds crazy,” Williams said. But she has used a similar procedure since the 1990s to treat illnesses in Coquerel’s sifaka lemurs, whose infants are known to eat their mother’s poop during weaning — presumably to get the microbes they’ll need to transition to solid food.

A baby Coquerel’s sifaka tries some of her first solid foods. Photo by David Haring.

Drea, Bornbusch and team used genetic sequencing techniques to track changes in the lemurs’ gut microbiome before, during and after treatment.

As expected, even a single course of antibiotics caused the numbers of microbes in their guts to plunge compared with controls, briefly wiping out species diversity in both experimental groups before returning to baseline.

“Antibiotics had dramatic effects, even in healthy animals,” Drea said.

But in terms of which types of bacteria bounced back and when, the patterns of recovery in the two groups were different. Lemurs that received the “poop soup” treatment started to stabilize and return to their pre-antibiotic microbiome within about two weeks. In contrast, the bacterial composition in the wait-and-see group continued to fluctuate, and still hadn’t quite returned to normal even after four months of observation.

This kind of therapy isn’t new. Reports of using fecal transplants to treat people suffering from food poisoning or diarrhea date back as far as fourth century China. The evidence for its effectiveness in captive settings has Bornbusch advocating for freezing stool at Smithsonian’s National Zoo, where she is now a postdoctoral fellow.

“If we can bank feces from animals when they’re healthy, that can be a huge benefit down the road,” Bornbusch said. “It can help the animals get better, faster.”

And now if any of her lemur patients were to get sick with C. difficile like she did, Williams said, “I would absolutely go with a fecal microbiota transplant.”

“People are put off by it,” Drea said, “But the disgust for this approach might actually have been holding up a fairly cheap and useful cure.”

Ring-tailed lemurs at the Duke Lemur Center in North Carolina. Photo by David Haring, Duke Lemur Center

This research was supported by the National Science Foundation (BCS 1749465), the Duke Lemur Center Director’s Fund, and the Duke Microbiome Center.

CITATION: “Antibiotics and Fecal Transfaunation Differentially Affect Microbiota Recovery, Associations, and Antibiotic Resistance in Lemur Guts,” Sally L. Bornbusch, Rachel L. Harris, Nicholas M. Grebe, Kimberly Roche, Kristin Dimac-Stohl, Christine M. Drea. Animal Microbiome, Oct. 1, 2021. DOI: 10.1186/s42523-021-00126-z.

By Robin Ann Smith

In Drawers of Old Bones, New Clues to the Genomes of Lost Giants

DNA extracted from a 1,475-year-old jawbone reveals genetic blueprint for one of the largest lemurs ever.

By teasing trace amounts of DNA from this partially fossilized jawbone, nearly 1,500 years after the creature’s death, scientists have managed to reconstruct the first giant lemur genome. Credit: University of Antananarivo and George Perry, Penn State

If you’ve been to the Duke Lemur Center, perhaps you’ve seen these cute mouse- to cat-sized primates leaping through the trees. Now imagine a lemur as big as a gorilla, lumbering its way through the forest as it munches on leaves.

It may sound like a scene from a science fiction thriller, but from skeletal remains we know that at least 17 supersized lemurs once roamed the African island of Madagascar. All of them were two to 20 times heftier than the average lemur living today, some weighing up to 350 pounds.

Then, sometime after humans arrived on the island, these creatures started disappearing.

The reasons for their extinction remain a mystery, but by 500 years ago all of them had vanished.

Coaxing molecular clues to their lives from the bones and teeth they left behind has proved a struggle, because after all this time their DNA is so degraded.

But now, thanks to advances in our ability to read ancient DNA, a giant lemur that may have fallen into a cave or sinkhole near the island’s southern coast nearly 1,500 years ago has had much of its DNA pieced together again. Researchers believe it was a slow-moving 200-pound vegetarian with a pig-like snout, long arms, and powerful grasping feet for hanging upside down from branches.

A single jawbone, stored at Madagascar’s University of Antananarivo, was all the researchers had. But that contained enough traces of DNA for a team led by George Perry and Stephanie Marciniak at Penn State to reconstruct the nuclear genome for one of the largest giant lemurs, Megaladapis edwardsi, a koala lemur from Madagascar.

Ancient DNA can tell stories about species that have long since vanished, such as how they lived and what they were related to. But sequencing DNA from partially fossilized remains is no small feat, because DNA breaks down over time. And because the DNA is no longer intact, researchers have to take these fragments and figure out their correct order, like the pieces of a mystery jigsaw puzzle with no image on the box.

Bones like these are all that’s left of Madagascar’s giant lemurs, the largest of which weighed in at 350 pounds — 20 times heftier than lemurs living today. Credit: Matt Borths, Curator of the Division of Fossil Primates at the Duke Lemur Center

Hard-won history lessons

The first genetic study of M. edwardsi, published in 2005 by Duke’s Anne Yoder, was based on DNA stored not in the nucleus — which houses most of our genes — but in another cellular compartment called the mitochondria that has its own genetic material. Mitochondria are plentiful in animal cells, which makes it easier to find their DNA.

At the time, ancient DNA researchers considered themselves lucky to get just a few hundred letters of an extinct animal’s genetic code. In the latest study they managed to tease out and reconstruct some one million of them.

“I never even dreamed that the day would come that we could produce whole genomes,” said Yoder, who has been studying ancient DNA in extinct lemurs for over 20 years and is a co-author of the current paper.

For the latest study, the researchers tried to extract DNA from hundreds of giant lemur specimens, but only one yielded enough useful material to reconstitute the whole genome.

Once the creature’s genome was sequenced, the team was able to compare it to the genomes of 47 other living vertebrate species, including five modern lemurs, to identify its closest living relatives. Its genetic similarities with other herbivores suggest it was well adapted for grazing on leaves.

Despite their nickname, koala lemurs weren’t even remotely related to koalas. Their DNA confirms that they belonged to the same evolutionary lineage as lemurs living today.

To Yoder it’s another piece of evidence that the ancestors of today’s lemurs colonized Madagascar in a single wave.

Since the first ancient DNA studies were published, in the 1980s, scientists have unveiled complete nuclear genomes for other long-lost species, including the woolly mammoth, the passenger pigeon, and even extinct human relatives such as Neanderthals.

Most of these species lived in cooler, drier climates where ancient DNA is better preserved. But this study extends the possibilities of ancient DNA research for our distant primate relatives that lived in the tropics, where exposure to heat, sunlight and humidity can cause DNA to break down faster.

“Tropical conditions are death to DNA,” Yoder said. “It’s so exciting to get a deeper glimpse into what these animals were doing and have that validated and verified.”

See them for yourself

Assembled in drawers and cabinets cases in the Duke Lemur Center’s Division of Fossil Primates on Broad St. are the remains of at least eight species of giant lemurs that you can no longer find in the wild. If you live in Durham, you may drive by them every day and have no idea. It’s the world’s largest collection.

In one case are partially fossilized bits of jaws, skulls and leg bones from Madagascar’s extinct koala lemurs. Nearby are the remains of the monkey-like Archaeolemur edwardsi, which was once widespread across the island. There’s even a complete skeleton of a sloth lemur that would have weighed in at nearly 80 pounds, Palaeopropithecus kelyus, hanging upside down from a branch.

Most of these specimens were collected over 25 years between 1983 and 2008, when Duke Lemur Center teams went to Madagascar to collect fossils from caves and ancient swamps across the island.

“What is really exciting about getting better and better genetic data from the subfossils, is we may discover more genetically distinct species than only the fossil record can reveal,” said Duke paleontologist Matt Borths, who curates the collection. “That in turn may help us better understand how many species were lost in the recent past.”

They plan to return in 2022. “Hopefully there is more Megaladapis to discover,” Borths said.

A fossil site in Madagascar. Courtesy of Matt Borths, Duke Lemur Center Division of Fossil Primates

CITATION: “Evolutionary and Phylogenetic Insights From a Nuclear Genome Sequence of the Extinct, Giant, ‘Subfossil’ Koala Lemur Megaladapis Edwardsi,” Stephanie Marciniak, Mehreen R. Mughal, Laurie R. Godfrey, Richard J. Bankoff, Heritiana Randrianatoandro, Brooke E. Crowley, Christina M. Bergey, Kathleen M. Muldoon, Jeannot Randrianasy, Brigitte M. Raharivololona, Stephan C. Schuster, Ripan S. Malhi, Anne D. Yoder, Edward E. Louis Jr, Logan Kistler, and George H. Perry. PNAS, June 29, 2021. DOI: 10.1073/pnas.2022117118.

Duke Researcher Busts Metabolism Myths in New Book

Herman Pontzer explains where our calories really go, and what studying humanity’s past can teach us about staying healthy today.

Photo by Elena Georgiou, My City /EEA

Duke professor Herman Pontzer has spent his career counting calories. Not because he’s watching his waistline, exactly. But because, as he sees it, “in the economics of life, calories are the currency.” Every minute, everything the body does — growing, moving, fighting infection, even just existing — “all of it takes energy,” Pontzer says.

In his new book, “Burn,” the evolutionary anthropologist recounts the 10-plus years he and his colleagues have spent measuring the metabolisms of people ranging from ultra-athletes to office workers, as well as those of our closest animal relatives, and some of the surprising insights the research has revealed along the way.

Much of his work takes him to Tanzania, where members of the Hadza tribe still get their food the way our ancestors did — by hunting and gathering. By setting out on foot each day to hunt zebra and antelope or forage for berries and tubers, without guns or electricity or domesticated animals to lighten the load, the Hadza get more physical activity each day than most Westerners get in a week.

So they must burn more calories, right? Wrong.

Herman Pontzer
Herman Pontzer, associate professor of evolutionary anthropology at Duke

Pontzer and his colleagues have found that, despite their high activity levels, the Hadza don’t burn more energy per day than sedentary people in the U.S. and Europe.

These and other recent findings are changing the way we understand the links between energy expenditure, exercise and diet. For example, we’ve all been told that if we want to burn more calories and fight fat, we need to work out to boost our metabolism. But Pontzer says it’s not so simple.

“Our metabolic engines were not crafted by millions of years of evolution to guarantee a beach-ready bikini body,” Pontzer says. But rather, our metabolism has been primed “to pack on more fat than any other ape.” What’s more, our metabolism responds to changes in exercise and diet in ways that thwart our efforts to shed pounds.

What this means, Pontzer says, is you can walk 16,000 steps each day like the Hadza and you won’t lose weight. Sure, if you run a marathon tomorrow you’ll burn more energy than you did today. But over time, metabolism responds to changes in activity to keep the total energy you spend in check.

Pontzer’s book is more than a romp through the Krebs cycle. For anyone suffering pandemic-induced pangs of frustrated wanderlust, it’s also filled with adventure. He takes readers on an hours-long trek to watch a Hadza man track a wounded giraffe across the savannah, to the rainforests of Uganda to study climbing chimpanzees, and to the foothills of the Caucasus Mountains to unearth the 1.8 million-year-old remains of some of the first people who trekked out of Africa.

His humor shines through along the way. Even when awoken by a chorus of 300-pound lions just a few hundred yards from his tent, he stops to ponder whether his own stench gives him away, and what he might do if they come for his “soft American carcass, the  warm triple crème brie of human flesh.”

Pontzer spoke via email with Duke Today about his book:

Q: What’s the lesson the Hadza and other hunter-gatherers teach us about managing weight and staying healthy?

A: The Hadza stay incredibly fit and healthy throughout their lives, even into their older ages (60’s, 70’s, even 80’s). They don’t develop heart disease, diabetes, obesity, or the other diseases that we in the industrialized world are most likely to suffer from. They also have an incredibly active lifestyle, getting more physical activity in a typical day than most Americans get in a week.

My work with the Hadza showed that, surprisingly, even though they are so physically active, Hadza men and women burn the same number of calories each day as men and women in the U.S. and other industrialized countries. Instead of increasing the calories burned per day, the Hadza physical activity was changing the way they spend their calories — more on activity, less on other, unseen tasks in the body.

The takeaway for us here in the industrialized world is that we need to stay active to stay healthy, but we can’t count on exercise to increase our daily calorie burn. Our bodies adjust, keeping energy expenditure in a narrow range regardless of lifestyle. And that means that we need to focus on diet and the calories we consume in order to manage our weight. At the end of the day, our weight is a matter of calories eaten versus calories burned — and it’s really hard to change the calories we burn!

Q: You’re saying that exercise doesn’t matter? What’s the point, if we can’t eat that donut?

A: All those adjustments our bodies make responding to exercise are really important for our health! When we burn more calories on exercise, our bodies spend less energy on inflammation, stress reactivity (like cortisol), and other things that make us sick.

Q: What’s the biggest misunderstanding about human metabolism?

A: We’re told — through fitness magazines, diet fads, online calorie counters — that the energy we burn each day is under our control: if we exercise more, we’ll burn more calories and burn off fat. It’s not that simple! Your body is a clever, dynamic product of evolution, shifting and adapting to changes in our lifestyle.

Q: In your book you say we’re driven to magical thinking when it comes to calories. What do you mean by that?

A: Because our body is so clever and dynamic, and because humans are just bad at keeping track of what we eat, it’s awfully hard to keep track of the calories we consume and burn each day. That, along with the proliferation of fad diets and get-thin-quick schemes, has led to this idea that “calories don’t matter.” That’s magical thinking. Every ounce of your body — including every calorie of fat you carry — is food you consumed and didn’t burn off. If we want to lose weight, we must eat fewer calories than we burn. It really comes down to that.

Q: Some people say that if the cavemen didn’t eat it, we shouldn’t either. What does research show about what foods are “natural” for humans to eat?

A: There’s no singular, natural human diet. Hunter-gatherers like the Hadza eat a diverse mix of plant and animal foods that varies day to day, month to month, and year to year. There’s even more dietary diversity when we look across populations. Humans are built to thrive on a wide variety of diets — just about everything is on the menu.

That said, the ultra-processed foods we’re inundated with in our modern industrialized world really are unnatural. There are no Twinkies to forage in the wild. Those foods are literally engineered to be overconsumed, with a mix of flavors that overwhelm our brain’s ability to regulate our appetites. Now, it is still possible to lose weight on a Twinkie diet (I’m not recommending it!), if you’re very strict about the calories eaten per day. But we need to be really careful about how we incorporate ultra-processed foods into our daily diets, because they are calorie bombs that drive us to overconsume.

Q: If we could time travel, what would our hunter-gatherer ancestors make of our industrialized diet today?

A: We don’t even need to imagine — We are those hunter-gatherers! Biologically, genetically, we are the same species that we were a hundred thousand years ago, when hunting and gathering were the only game in town. When we’re confronted with modern ultra-processed foods, we struggle. They are engineered to be delicious, and we tend to overconsume.

Q: Has the COVID-19 pandemic brought any of these lessons home for you? What can we do to keep active and watch what we eat, even while working from home?

The pandemic has been a tragedy on so many levels — the loss of life, those suffering with long-term effects, the social and economic impacts. The impact on diet and exercise have been bad as well, for many of us. Stress eating is a real phenomenon, and the stress and emotional toll of the pandemic — along with having easy access to the snacks in our kitchen — have led many to gain weight. Physical activity seems to have declined for many. There aren’t easy answers, but we should try to make a point to get active every day. And we can help ourselves make better decisions about food by keeping ultra-processed foods out of our houses. You can’t plow through a bag of chips if you don’t have chips in your cupboard.

Q: You’ve measured the energy costs of activities ranging from taking a breath to doing an Ironman. What is one of the more extreme or surprising calorie-burning activities that you’ve measured, or would like to measure, in humans or some other animal?

A: With colleagues from Japan, I measured the energy cost of a heartbeat – a tricky bit of metabolic measurement! Turns out each beat of your heart burns about 1/300th of a kilocalorie! Amazing how efficient our bodies can be.

Q: What is something people have questions about that we just don’t know the answer to yet? What would it take to find out?

A: Right now we’re excited about measuring the adjustments our bodies make when we increase our exercise: how exactly does burning more energy on physical activity impact our immune system, our stress response, our reproductive system? It will take a long-term study of exercise to see how these systems change over time.

Robin Smith - University Communications
Robin Smith – University Communications

Tracking Tiny Moving Targets

This squiggly line shows the path taken by a snippet of DNA as it might move around within the soupy interior of a cell. Duke’s Kevin Welsher and colleagues have developed a technique that turns a microscope into a ‘flight tracker’ for molecules, making it possible to follow the paths of viruses and other particles thousands of times smaller than the period at the end of this sentence. Until now, such techniques have required particles to be tethered to make sure they stay within the field of view. But the Welsher lab has developed a way to lock on to freely moving targets and track them for minutes at a time.

Page 2 of 8

Powered by WordPress & Theme by Anders Norén