One of downtown Durham’s most memorable landmarks, the Chesterfield building looks like it was aesthetically designed to maintain the country’s morale during World War II. On the former cigarette factory’s roof rests a brilliant red sign that’s visible from miles away:

But don’t mistake the building’s quaint exterior for antiquity: the Chesterfield Building is home to one of the nation’s most powerful quantum computers. Managed by the Duke Quantum Center, the computer is part of Duke’s effort to bolster the Scalable Quantum Computing Laboratory (SQLab).

On February 2nd, the lab’s director – Christopher Monroe – joined engineering professor Michael Reiter and English professor Charlotte Sussman in a Research Week panel to discuss the growing presence of computation at Duke and in research institutions across the country. (View the panel.)

Chris Monroe

Monroe opened by detailing the significance of quantum computing in the modern world. He explained that quantum mechanics are governed by two golden rules: first, that quantum objects are waves and can be in superposition, and second, that the first rule only applies when said objects are not being measured.

The direct impact of quantum mechanics is that electrons can be in two orbits at the same time, which revolutionizes computing. Quantum computers factor numbers exponentially faster than classical computers, converge to more desirable solutions in optimization problems and have been shown to bolster research in fields like biomolecular modeling.

Still, Monroe insists that the future reach of quantum computing is beyond anyone’s current understanding. Says Monroe, “quantum computing is an entirely new way of dealing with information, so we don’t know all the application areas it will touch.” What we do know, he says, is that quantum computers are poised to take over where conventional computers and Moore’s Law leave off.

While Monroe discussed computing innovations, Michael Reiter – James B. Duke Professor of Computer Science and Electrical and Computer Engineering – demonstrated the importance of keeping computing systems safe. By pointing to the 2010 Stuxnet virus, a series of cyberattacks against Iranian nuclear centrifuges, and the 2017 Equifax Data Breach, which stole the records of 148 million people, Dr. Reiter provided evidence to show that modern data systems are vulnerable and attractive targets for cyber warfare.

Michael Reiter

To show the interdisciplinary responsibilities associated with the nation’s cybersecurity needs, Reiter posed two questions to the audience. First, what market interventions are appropriate to achieve more accountability for negligence in cybersecurity defenses? Second, what are the rules of war as it relates to cyber warfare and terrorism?

After Reiter’s presentation, Charlotte Sussman transitioned the conversation from the digital world to the maritime world. A professor of English at Duke, Sussman has always been interested in ways to both memorialize and understand the middle passage, the route slave trading ships took across the Atlantic from Africa to the Americas. Through the University’s Bass Connections and Data+ research programs, she and a group of students were able to approach this problem through the unlikely lens of data science.

Sussman explained that her Data+ team used large databases to find which areas of the Atlantic Ocean had the highest mortality rates during the slave trade, while the Bass Connections team looked at a single journey to understand one young migrant’s path to the bottom of the sea.

Professor Sussman (second from right), and the Bass Connections/Data+ Team.

Monroe, Reiter, and Sussman all showed that the applications of computing are growing without bound. Both the responsibility to improve computing infrastructures and the ability to leverage computing resources are rapidly expanding to new fields, from medicine and optimization to cybersecurity and history.

With so many exciting paths for growth, one point is clear about the future of computing: it will outperform anyone’s wildest expectations. Be prepared to find computing in academia, business, government, and other settings that require advanced information.

Many of these areas, like the Chesterfield Building, will probably see the impact of computing before you know it.

Post by Shariar Vaez-Ghaemi, Class of 2025