By Nonie Arora
It may be summer, but student scientists are still on the job. Rising Trinity junior Jack Matteucci is heading to CERN in a few weeks to join the many scientists working with data from the Large Hadron Collider.
Scientists working with data from the Large Hadron Collider are trying to determine whether the Higgs Boson, the so-called “God particle” exists. While the Higgs Boson has been called the “God particle” by some because it is currently the last predicted particle in the Standard Model to be observed, physicists are less fond of the name. “There is no doubt that it’s a huge missing piece to the puzzle, accounting for the observed phenomenon know as invariant mass, but it by no means explains everything about particle physics,” Matteucci says.
Einstein’s famous E= mc^2 showed a relationship between mass and energy. According to Matteucci, the Higgs Boson and its associated field would account for certain observed nonsymmetrical weak interactions, which would explain why certain particles have an inherent mass apart from the energy from their motion.
When collisions happen in Large Hadron Collider, thousands of protons collide and sophisticated computer programs must separate these interactions. After these interactions have been separated, data analysts like Matteucci enter the picture. He will be using ATLAS computing to analyze decay processes of elementary particles and confirm particle interactions.
“During these interactions a plethora of particles are created and destroyed within tiny fractions of milliseconds which decay and lead to secondary products,” Matteucci explained. “Then, scientists try to backtrack to information about primary particles.”
While the collective effort is huge, the data is still analyzed one person at a time and interactions have to be confirmed thousands of times, according to Matteucci.
At Duke, Matteucci works under the guidance of Al Goshaw, the James B. Duke professor of physics. He’s also collaborating with Meg Shea and Yu Sheng Huang to build a cosmic ray detector. Cosmic rays are high-energy particles from the sun. Particles are produced from the interaction of the sun’s radiation and the Earth’s atmosphere. The team in Goshaw’s lab believes this detector will be very reliable and will be used to test more precise, future detectors.