Duke Research Blog

Following the people and events that make up the research community at Duke.

Page 2 of 60

Researchers Get Superman’s X-ray Vision

X-ray vision just got cooler. A technique developed in recent years boosts researchers’ ability to see through the body and capture high-resolution images of animals inside and out.

This special type of 3-D scanning reveals not only bones, teeth and other hard tissues, but also muscles, blood vessels and other soft structures that are difficult to see using conventional X-ray techniques.

Researchers have been using the method, called diceCT, to visualize the internal anatomy of dozens of different species at Duke’s Shared Materials Instrumentation Facility (SMIF).

There, the specimens are stained with an iodine solution that helps soft tissues absorb X-rays, then placed in a micro-CT scanner, which takes thousands of X-ray images from different angles while the specimen spins around. A computer then stitches the scans into digital cross sections and stacks them, like slices of bread, to create a virtual 3-D model that can be rotated, dissected and measured as if by hand.

Here’s a look at some of the images they’ve taken:

See-through shrimp

If you get flushed after a workout, you’re not alone — the Caribbean anemone shrimp does too.

Recent Duke Ph.D. Laura Bagge was scuba diving off the coast of Belize when she noticed the transparent shrimp Ancylomenes pedersoni turn from clear to cloudy after rapidly flipping its tail.

To find out why exercise changes the shrimp’s complexion, Bagge and Duke professor Sönke Johnsen and colleagues compared their internal anatomy before and after physical exertion using diceCT.

In the shrimp cross sections in this video, blood vessels are colored blue-green, and muscle is orange-red. The researchers found that more blood flowed to the tail after exercise, presumably to deliver more oxygen-rich blood to working muscles. The increased blood flow between muscle fibers causes light to scatter or bounce in different directions, which is why the normally see-through shrimp lose their transparency.

Peer inside the leg of a mouse

Duke cardiologist Christopher Kontos, M.D., and MD/PhD student Hasan Abbas have been using the technique to visualize the inside of a mouse’s leg.

The researchers hope the images will shed light on changes in blood vessels in people, particularly those with peripheral artery disease, in which plaque buildup in the arteries reduces blood flow to the extremities such as the legs and feet.

The micro-CT scanner at Duke’s Shared Materials Instrumentation Facility made it possible for Abbas and Kontos to see structures as small as 13 microns, or a fraction of the width of a human hair, including muscle fibers and even small arteries and veins in 3-D.

Take a tour through a tree shrew

DiceCT imaging allows Heather Kristjanson at the Johns Hopkins School of Medicine to digitally dissect the chewing muscles of animals such as this tree shrew, a small mammal from Southeast Asia that looks like a cross between a mouse and a squirrel. By virtually zooming in and measuring muscle volume and the length of muscle fibers, she hopes to see how strong they were. Studying such clues in modern mammals helps Kristjanson and colleagues reconstruct similar features in the earliest primates that lived millions of years ago.

Try it for yourself

Students and instructors who are interested in trying the technique in their research are eligible to apply for vouchers to cover SMIF fees. People at Duke University and elsewhere are encouraged to apply. For more information visit https://smif.pratt.duke.edu/Funding_Opportunities, or contact Dr. Mark Walters, Director of SMIF, via email at mark.walters@duke.edu.

Located on Duke’s West Campus in the Fitzpatrick Building, the SMIF is a shared use facility available to Duke researchers and educators as well as external users from other universities, government laboratories or industry through a partnership called the Research Triangle Nanotechnology Network. For more info visit http://smif.pratt.duke.edu/.

Post by Robin Smith, News and Communications

Post by Robin Smith, News and Communications

To Frack or Not to Frack

We’ve all heard about fracking, and some of us may even claim to understand it. Politicians on both ends of the spectrum certainly do, with some touting the oil and gas drilling technology as the savior of the U.S. energy industry and others decrying it as the harbinger of doom for the planet.

Duke alumnus Daniel Raimi, in his new book The Fracking Debate: The Risks, Benefits, and Uncertainties of the Shale Revolution, hopes to show people the gray area that lies in between.

Image credit to Daniel Raimi.

At a talk last week co-sponsored by the Duke Energy Initiative and the Nicholas Institute for Environmental Policy Solutions, Raimi shared some of the insights he gained in traveling the country to investigate the community-level impact of the shale revolution in the U.S. Raimi, a Durham native and 2012 graduate of the Sanford School of Public Policy, first made sure to explain that “fracking” and “the shale revolution” aren’t actually interchangeable terms.

“Fracking is short for hydraulic fracturing, which involves pumping water, sand and chemicals underground to stimulate production from an oil or gas well,” Raimi said. “Companies have been stimulating oil and gas wells since the 1950s, but it’s been applied at an extremely large scale recently and combined with other technologies like horizontal drilling.”

The shale revolution, which began in the early 2010s, has caused U.S. natural gas

U.S crude oil production from 1950 to 2015. Image credit to Daniel Raimi.

and crude oil production to explode — reaching an all-time high of 10 million barrels per day in the last few months.

With this in mind, Raimi began his investigative journey in Marcellus Shale, Pennsylvania, a place he’d read was booming with thousands of new wells and where he expected to encounter trucks, oil rigs and an influx of eager workers from other states reminiscent of the California Gold Rush. Instead, he found rolling green hills and untouched corn fields.

The township of Dimock, Pennsylvania. Image credit to Daniel Raimi.

Even more puzzling was his later discovery that residents of a local township, Dimock, were pining for drilling to return after the Pennsylvania Department for Environmental Protection discovered contamination of the town’s water supply by stray gas leaking from underground wells and promptly banned any shale drilling within a nine-mile radius of the site.

Heading south to the Permian Basin in West Texas, a leading region for oil production in the U.S. where, according to Raimi, “there are oil wells in people’s backyards and gas pipelines running through their lawns,” Raimi came across another incongruity. Though the community has long been supportive of the oil industry and its proposals for more drilling, he spoke to community members —including industry leaders in the shale movement — adamantly opposed to drilling

Balmorhea State Park in Texas. Image credit to Daniel Raimi.

in the pristine Balmorhea State Park, despite a company’s claim of having discovered an untapped oil reserve in the area.

In his last anecdote, Raimi highlighted perhaps the most contentious point in the shale debate: its ramifications for global climate change. In Barrow, Alaska, the northernmost city in the U.S. (300 miles north of Arctic Circle, to be exact), he spoke to local government officials who described million-dollar plans for protective measures against accelerating coastal erosion. This community also depends on increasingly scarce permafrost to keep cold the whale meat they subsist on for most of the year. Nevertheless, they also yearned for a greater presence of the oil industry.

All this was food for thought for an attentive audience. Raimi accomplished the stated goal of his presentation: getting pro- or anti-fracking audience members to at least see the other side of the debate. He offered some conclusions from his research in his closing words:

“Shale development has been a clear climate win in the short term, although climate benefits in the long term are less clear,” Raimi said. “Regardless, the current low-cost supply for natural gas is window of opportunity for policy that policymakers need to take advantage of.”

Post by Maya Iskandarani

 

Dopamine, Drugs, and Depression

The neurotransmitter dopamine plays a major role in mental illnesses like substance abuse disorders and depressive disorders, as well as a more general role in reward and motivational systems of the brain. But there are still certain aspects of dopamine activity in the brain that we don’t know much about.

Nii Antie Addy and his lab are interested in the role of dopamine in substance abuse and mood disorders.

Duke graduate Nii Antie Addy, PhD, and his lab at Yale School of Medicine have been focusing on dopamine activity in a specific part of the brain that has not been studied: the ventral tegmental area (VTA).

To understand the mechanisms underlying this association, Addy and his team looked at cue-induced drug-seeking behavior. Using classical conditioning, rats can be trained to pair certain cues with the reward of drug administration. When a rat receives an unexpected award, dopamine activity increases. After conditioning, dopamine is released in response to the cue more  than to the drug itself. Looking at the patterns of dopamine release in rats who are forced to undergo detoxification can thus provide insight into how these cues and neurotransmitter activity relate to relapse of substance abuse.

When rats are taught to self-administer cocaine, and each administration of the drug is paired with the cue, after a period of forced detoxification, the rodents continue to try to self-administer the drug, even when the drug is withheld and only the cue is presented. This finding again demonstrates the connection between the cue and drug-seeking behavior.

Studying the activity in the VTA gave additional insights into the regulation of this system. During the period of abstinence, when the rodents are forced to detox, researchers observed an increase in the activity of cholingergic neurons, or neurons in the brain system that respond to the neurotransmitter acetylcholine.

Using these observations, Addy and his team sought to identify which of the various receptors that respond to acetylcholine can be used to regulate the dopamine system behind drug-seeking behaviors. They discovered that a specific type of acetylcholine receptor, the muscarinic receptor, is involved in more general reward-seeking behaviors and thus may be a target for therapies.

Using Isradipine, a drug already approved by the FDA for treatment of high blood pressure, Addy designed an experiment to test the role of these muscarinic receptors. He co-opted the drug to act as a calcium antagonist in the VTA and thus increase dopamine activity in rodents during their forced detox and before returning them to access to cocaine. The outcome was promising: administration of Isradipine was associated with a decrease in the coke-seeking behavior of rodents then placed in the chamber with the cue.

The understanding of the role of cholinergic neurons in regulation of dopamine-related mental illnesses like substance-abuse also contributes insights into depressive and anxiety disorders. If the same pathway implicated in cue-induced drug-seeking were involved in depressive and anxious behaviors, then increasing cholinergic activity should increase pro-depressive behavior.

Addy’s experiment yielded exactly these results, opening up new areas to be further researched to improve the treatment of mood disorders.

Post by Sarah Haurin

 

MyD88: Villain of Allergies and Asthma

Even if you don’t have allergies yourself, I guarantee you can list at least three people you know who have allergies. Asthma, a respiratory disorder commonly associated with allergies, afflicts over 300 million individuals worldwide.

Seddon Y. Thomas, PhD of the NIEHS

Seddon Y. Thomas, PhD of the NIEHS

Seddon Y. Thomas who works at the National Institute of Environmental Health Sciences has been exploring how sensitization to allergens occurs. The work, which she described at a recent  session of the Immunology Seminar Series, specifically focuses on the relationship between sensitization and the adaptor molecule MyD88.

MyD88 transfers signals between some of the proteins and receptors that are involved in immune responses to foreign invaders. Since allergies entail inflammation caused by an immune response, Thomas recognized that MyD88 played a role in the immune system’s sensitization to inhaled allergens.

Her research aims to discover how MyD88 alters conventional dendritic cells (cDCs) which are innate immune cells that drive allergic inflammation. MyD88 signaling in cDCs sometimes preserves open chromatin — the availability of DNA for rapid replication — which allows gene changes to happen quickly and in turn causes allergic sensitization. Open chromatin regions permit the DNA manipulation that can lead to allergies and asthma. 

Florescence microscopy image of mouse dendritic cells with mRNA-loaded blood cells.

To conduct her experiments, Thomas examines what happens in mice when she deletes MyD88 from lung epithelial cells and from antigen-presenting cells. Lung epithelial cells form a protective tissue where inhaled air meets the lung and protects from foreign invaders. But sometimes it takes its job a little too seriously and reacts strongly to allergens.

Similarly, antigen-presenting cells are involved in the immune system’s mission to protect the body, but can become confused about who the enemy is. When the signaling adaptor MyD88 is removed from lung epithelial cells, the number of eosinophils, inflammatory white blood cells, decreases. When it is removed from antigen-presenting cells, another type of white blood cell, neutrophils, also decreases.

Thomas said this shows that MyD88 is necessary for the inflammation in the lungs that causes asthma and allergies.

In her future research, Thomas wishes to explore dendritic cell gene expression, the molecular pathways controlling gene expression, and how specific types of lung epithelial cells adjust immune responses. Because MyD88 plays a role in the genetic changes, it makes sense to continue research on the genetic side.    

Post by Lydia Goff            

Farewell, Electrons: Future Electronics May Ride on New Three-in-One Particle

“Trion” may sound like the name of one of the theoretical particles blamed for mucking up operations aboard the Starship Enterprise.

But believe it or not, trions are real — and they may soon play a key role in electronic devices. Duke researchers have for the first time pinned down some of the behaviors of these one-of-a-kind particles, a first step towards putting them to work in electronics.

A carbon nanotube, shaped like a rod, is wrapped in a helical coating of polymer

Three-in-one particles called trions — carrying charge, energy and spin — zoom through special polymer-wrapped carbon nanotubes at room temperature. Credit: Yusong Bai.

Trions are what scientists call “quasiparticles,” bundles of energy, electric charge and spin that zoom around inside semiconductors.

“Trions display unique properties that you won’t be able to find in conventional particles like electrons, holes (positive charges) and excitons (electron-hole pairs that are formed when light interacts with certain materials),” said Yusong Bai, a postdoctoral scholar in the chemistry department at Duke. “Because of their unique properties, trions could be used in new electronics such as photovoltaics, photodetectors, or in spintronics.”

Usually these properties – energy, charge and spin – are carried by separate particles. For example, excitons carry the light energy that powers solar cells, and electrons or holes carry the electric charge that drives electronic devices. But trions are essentially three-in-one particles, combining these elements together into a single entity – hence the “tri” in trion.

A diagram of how a trion is formed in carbon nanotubes.

A trion is born when a particle called a polaron (top) marries an exciton (middle). Credit: Yusong Bai.

“A trion is this hybrid that involves a charge marrying an exciton to become a uniquely distinct particle,” said Michael Therien, the William R. Kenan, Jr. Professor of Chemistry at Duke. “And the reason why people are excited about trions is because they are a new way to manipulate spin, charge, and the energy of absorbed light, all simultaneously.”

Until recently, scientists hadn’t given trions much attention because they could only be found in semiconductors at extremely low temperatures – around 2 Kelvin, or -271 Celcius. A few years ago, researchers observed trions in carbon nanotubes at room temperature, opening up the potential to use them in real electronic devices.

Bai used a laser probing technique to study how trions behave in carefully engineered and highly uniform carbon nanotubes. He examined basic properties including how they are formed, how fast they move and how long they live.

He was surprised to find that under certain conditions, these unusual particles were actually quite easy to create and control.

“We found these particles are very stable in materials like carbon nanotubes, which can be used in a new generation of electronics,” Bai said. “This study is the first step in understanding how we might take advantage of their unique properties.”

The team published their results Jan. 8 in the Proceedings of the National Academy of Sciences.

Dynamics of charged excitons in electronically and morphologically homogeneous single-walled carbon nanotubes,” Yusong Bai, Jean-Hubert Olivier, George Bullard, Chaoren Liu and Michael J. Therien. Proceedings of the National Academy of Sciences, Jan. 8, 2018 (online) DOI: 10.1073/pnas.1712971115

Post by Kara Manke

Meet Africa’s Bird Master of Vocal Imitation

The red-capped robin-chat (Cossypha natalensis) can mimic the songs and calls of dozens of other bird species – even their duets, says Duke researcher Tom Struhsaker.

The red-capped robin-chat (Cossypha natalensis) can mimic the songs and calls of dozens of other bird species – even their duets, says Duke researcher Tom Struhsaker.

Singing a duet in a foreign language isn’t just for opera stars — red-capped robin-chats do it too. These orange-brown birds with grey wings can imitate the sounds of 40 other bird species, even other species’ high-speed duets.

The latter finding comes from Tom Struhsaker, adjunct professor of evolutionary anthropology at Duke. Struhsaker didn’t set out to study robin-chats. His interest in their vocal abilities developed while studying monkeys in Kibale Forest in Uganda, where he lived for nearly two decades from 1970 to 1988.

Their typical song “sounds like a long, rambling human-like whistle,” Struhsaker said. But during the 18 years he spent studying and living in Kibale, Struhsaker also heard these birds impersonate the tambourine-like courtship call of the crested guineafowl, the crow of a rooster, and the “puweepuweepuwee” of a crowned eagle, among others.

“The robin-chat’s ability to imitate is so good that many a bird watcher has looked skyward vainly searching for a crowned eagle performing its aerial display, when in fact the source of the eagle’s undulating whistle was a robin-chat in the nearby understory,” Struhsaker said.

He also noticed that if he whistled, eavesdropping robin-chats would approach and call back, and if he tweaked the pitch and sequence of notes in his whistle, the birds sometimes changed their reply.

This suggests red-capped robin-chats may be lifelong learners, unlike many other bird species that only learn songs during critical time windows, Struhsaker said.

But the robin-chat doesn’t stop at mimicking others’ solo performances. Notably, Struhsaker also heard them imitate the duet of the black-faced rufous warbler.

Black-faced rufous warblers sing a rapid-fire “seee-oooo-ee” duet with their mates. The two birds take turns such that the male sings the “seee,” the female chimes in with the “oooo” and the male fires back with the final “ee,” with no pauses between the three notes. The partners sing back and forth so seamlessly that they are often mistaken for a single bird.

“In order to do this, birds have an incredibly rapid reaction time, much greater than that of humans,” Struhsaker said.

On two occasions he heard single robin-chats sing both the male and female parts of the warbler duet by themselves. On another occasion he heard two robin-chats make music together as the warblers do, with one singing the male warbler’s part and the other singing the female part.

“This suggests these birds have an unusually high level of auditory perception and reaction time and cognitive ability,” Struhsaker said.

CITATION:  “Two Red-Capped Robin-Chats Cossypha Natalensis Imitate Antiphonal Duet of Black-Faced Rufous Warblers Bathmocercus rufus,” Thomas Struhsaker. Journal of East African Natural History, Dec. 2017. https://doi.org/10.2982/028.106.0201.

 

Some Lemurs are Loners, Others Crave Connection

DURHAM, N.C. — If lemurs were on Facebook, Fern would have oodles of friends, liking and commenting on their posts. Captain Lee, on the other hand, would rarely send a friend request.

Best buddies Fern and Alena at the Duke Lemur Center in Durham, North Carolina. Photo by Ipek Kulahci.

Best buddies Fern and Alena at the Duke Lemur Center in Durham, North Carolina. Photo by Ipek Kulahci.

These are just two of the distinct personalities discovered in a recent study of group dynamics in ring-tailed lemurs, primate cousins that live in groups of up to two dozen on the island of Madagascar.

First author Ipek Kulahci spent several years studying ring-tailed lemurs housed at the Duke Lemur Center in North Carolina and the St. Catherines Island Lemur Program in Georgia. Along the way, she noticed a lot of variation in social behavior from one lemur the next. She observed socialite Fern, loner Captain Lee, best buddies Limerick and Herodotus and other lemur characters.

Some individuals seemed more outgoing than others. To try to quantify that, she followed four groups of ring-tailed lemurs over two consecutive years and recorded their behavior a minimum of four times a week for at least two months.

A social network of lemurs. Each circle represents an individual lemur, and lemurs who respond to each other’s calls are connected by arrows. Thicker arrows indicate lemurs who respond more frequently and have a stronger social bond.

A social network of lemurs. Each circle represents an individual lemur, and lemurs who respond to each other’s calls are connected by arrows. Thicker arrows indicate lemurs who respond more frequently and have a stronger social bond.

Using a method called social network analysis, she was able to measure how many connections each lemur had, with whom, and how strong those connections were. She was also able to figure out which lemurs were most influential in each group — either because they connected others, or because they had well-connected friends.

Kulahci and colleagues found that lemurs behaved consistently no matter what their age, sex or social situation. Some lemurs like Fern tended to seek connection; reinforcing social bonds by frequently picking through their friends’ fur and responding to other lemurs’ calls and scent marks.

Their interactions weren’t always amicable — the more socially active lemurs were also more likely to chase others or pick fights with individuals with whom they weren’t on friendly terms. “But they have a drive to interact with others, rather than be a loner,” said Kulahci, now a postdoctoral researcher at University College Cork in Ireland.

The researchers also found that lemurs, like us, don’t bond with just anyone. Whether they were extroverted or shy, all lemurs had an inner circle of groupmates they tended to groom, call back, or otherwise keep in touch with more than others.

Ipek Kulahci, postdoctoral researcher at University College Cork in Ireland.

Ipek Kulahci, postdoctoral researcher at University College Cork in Ireland.

“They essentially have buddies,” Kulahci said.

“This is important because social connectedness influences health, immunity, survival,” Kulahci said. “This is true for animals as well as humans.”

The results appeared online Dec. 9, 2017, in the journal Animal Behaviour.

Other authors on this study include Asif Ghazanfar and Daniel Rubenstein of Princeton University. This study was funded by grants from the Animal Behavior Society, American Society of Mammalogists, American Society of Primatologists and Princeton University.

CITATION:  “Consistent Individual Variation Across Interaction Networks Indicates Social Personalities in Lemurs,” Ipek Kulahci, Asif Ghazanfar and Daniel Rubenstein. Animal Behaviour, Dec. 9, 2017.  https://doi.org/10.1016/j.anbehav.2017.11.012

by Robin Smith

by Robin Smith

Jonathan Mattingly: Mathematics and Maps to Define Democracy

Jonathan Mattingly is the chair of mathematics at Duke and an alumnus of the NC School of Science and Math

What began as an undergraduate project looking at how to create a “typical” map of congressional districts expanded to a national investigation for Duke mathematics chair Jonathan Mattingly. He was generous enough to speak to me about some of his recent work in mathematically investigating gerrymandering and the communication which followed between lawmakers and statisticians.

By strategically manipulating certain lines, it is possible to ensure a certain number of seats for one party even if that party does not win the majority vote. What “Team Gerrymandering” set out to do was to create an algorithm which would create the least biased map possible. The use of the term “fair” is complex in this instance, as politics and geography are very rarely simple enough to be split fairly.

An example of a mathematical model of precincts and districts.

In Wisconsin, the algorithm which “Team Gerrymandering” developed was used to prove that the voting districts were being disproportionately drawn in favor of the Republican votes, a trend which had was also been seen after the 2015 elections in North Carolina districts.

By strategically manipulating certain lines, it is possible to ensure a certain number of seats for one party even if that party does not win the majority vote. What “Team Gerrymandering” set out to do was to create an algorithm which would create the least biased map possible. The use of the term “fair” is complex in this instance, as politics and geography are very rarely simple enough to be split fairly.

The algorithm developed was then submitted as an brief amicus curae brief and used (it was used as a piece of appellate evidence) in the Wisconsin case Whitford vs. Bill. case. The mathematicians hoped to , in an attempt to prove that the districting of Wisconsin is an outlier in comparison to thousands of other mapping simulations run under their algorithm, which provide statistically sound data.

A problem such as this is a prime example of the bridge between the Humanities and STEM fields, which become increasingly separate as the level of expertise rises. as this truly bridges the humanities and STEM fields:, a solution has been found, but effectively communicating it was not as simple.

When asked about explaining and publishing this work in order to submit it as evidence, Mattingly admitted that it was, at times difficult, but it only further proved how important the effort is.

“It starts with a conversation. I’m willing to explain it, but you have to be willing to listen.”

A team full of lawyers looking to win a case is arguably a highly motivated audience, but this is not always the case. Mattingly, who is a 1988 graduate of the NC School of Science and Math which I attend, mentioned being at parties and hearing people state, “Oh, I’m no good at math, it’s just numbers and letters to me,” but he could never recount anyone saying “Oh, I don’t see the point in using language, or reading a dictionary.” These may seem like harmless comments, but a subconscious form of selective ignorance is still selective ignorance.

In light of the gerrymandering case, and “Team Gerrymandering’s” involvement in it, we are called to think again about the importance of fields we are not necessarily involved in, especially the STEM fields. What other patterns aren’t we noticing because we failed to look? Where else could we be improving if we were willing to listen? If we both don’t try, then we aren’t getting anywhere.”

The results of the Whitman vs Gill case are expected in June of 2018, and until then, the conversation must continue.

UPDATE: On Jan. 9, a federal court panel struck down North Carolina’s Congressional district maps on the grounds that they had been gerrymandered to favor Republicans. Mattingly commented.

Guest post by Paris Geolas, a senior at the North Carolina School of Science and Math

Beatriz Morris: Providing Pediatric Care in Two Languages

“‘Betty, education is the most important thing,” her father said. “We lost our home, our land, our cars, our farm, everything we have ever owned. But what I have in my head, no one can take away from me.’”

Six-year-old Beatriz glanced back up at her father and then towards the new life ahead of her. She would remember this moment in all of her years to come.

Beatriz Morris MD

Beatriz Morris, MD, practices pediatric medicine in English and Spanish at Duke Children’s Primary Care near the Southpoint Mall.

Beatriz and her family immigrated to the United States from Cuba seeking religious freedom and an escape from communism with nothing more than the clothes on their backs. Beatriz’s father instilled a lesson in her that day which she now sees as a life philosophy. She prioritizes learning, for it is the one thing no one else has power over.

Learning English at the age of six was not a hard task for Beatriz, and she is still bilingual. Today, she is Dr. Beatriz Morris, practicing pediatric medicine at Duke Children’s Primary Care near the Southpoint Mall. She completed her residency at Emory University and  has been in practice for over 20 years, but never imagined she would be walking the path that she is today.

“I never thought I would be a pediatrician. It was not on my list, it was not anything to me,” said Dr. Morris. She uses a proverb to remind us to never say never. “Never say you’re not going to be drinking from this water because you will be drinking gallons.”

Dr. Morris went to undergraduate school intending to pursue art, with a specific career goal in mind – to illustrate medical textbooks. To meet the requirements for a medical illustration major in graduate school, she ended up receiving enough credits in both art and science to double major for her bachelor’s degree. But in applying to illustration school, she never could have predicted what happened next.

“I went to medical school because I did not get into art school,” Dr. Morris explained. “Eventually I did an internship year at a rotation after medical school, doing a little bit of everything. The good thing was that I started in pediatrics.”

From there on out, Dr. Morris never looked back. She has been practicing in pediatrics for over twenty years, embracing both her Hispanic and American heritages. Speaking both Spanish and English allows Dr. Morris to make her patients comfortable by not only knowing their languages, but also having a deep understanding of both cultures.

Dr. Morris explained how that something seemingly simple, such as the phrasing of questions, can determine a patient’s comfort level. For example, in American culture, it is polite of the doctor to ask permission of the patient before beginning the consultation, such as saying ‘Do you mind if we talk about your weight?’

In Hispanic culture, this verbiage would make the doctor appear unknowledgeable to the patient. The patient is more trusting of the doctor through confidence, by saying something like ‘Let me tell you what you need to do about your weight.’

“A lot of times people feel more comfortable speaking in their own language,” she said. “There are colloquialisms of phrases, things like that, that make talking in their native language a lot easier for them.”

Dr. Morris wakes up every day excited to do her job. She reflected on the moment when she knew that pediatrics was the specialty she was meant to work in. On her internship rotation, Dr. Morris spoke to a nurse, who then told her that she would make a great pediatrician.

“That moment was when I started thinking that pediatrics might be a calling for me. This might be something that I did not think of, but it might be my purpose in life. This career has been the best choice I have made.”

Her advice to those looking for a lifelong fulfilling career is best described by how you feel waking up in the morning. Is waking up to go to work dreadful, or are you opening your eyes happy, knowing that you have the privilege to do what you love for another day?

“Don’t do something because it will be easy, for money, or because your parents tell you to,” she advised. “Do something because it is in your heart. If they close the door on you, open the window,” Dr. Morris said.

Samantha GonskiGuest Post by Samantha Gonski, a senior at North Carolina School of Science and Math

David Carlson: Engineering and Machine Learning for Better Medicine

How can we even begin to understand the human brain?  Can we predict the way people will respond to stress by looking at their brains?  Is it possible, even, to predict depression based on observations of the brain?

These answers will have to come from sets of data, too big for human minds to work with on our own. We need mechanical minds for this task.

Machine learning algorithms can analyze this data much faster than a human could, finding patterns in the data that could take a team of researchers far longer to discover. It’s just like how we can travel so much faster by car or by plane than we could ever walk without the help of technology.

David Carlson Duke

David Carlson in his Duke office.

I had the opportunity to speak to David Carlson, an assistant professor of Civil and Environmental Engineering with a dual appointment at the Department of Biostatistics and Bioinformatics at Duke University.  Through machine learning algorithms, Carlson is connecting researchers across campus, from doctors to statisticians to engineers, creating a truly interdisciplinary research environment around these tools.

Carlson specializes in explainable machine learning: algorithms with inner workings comprehensible by humans. Most deep machine learning today exists in a “black box” — the decisions made by the algorithm are hidden behind layers of reasoning that give it incredible predictive power but make it hard for researchers to understand the “why” and the “how” behind the results. The transparent algorithms used by Carlson offer a way to capture some of the predictive power of machine learning without sacrificing our understanding of what they’re doing.

In his most recent research, Carlson collaborated with Dr. Kafui Dzirasa, associate professor of psychiatry and behavioral sciences and assistant professor in neurobiology and neurosurgery, on the effects of stress on the brains of mice, trying to understand the underlying causes of depression.

“What’s happening in neuroscience is the amount of data we’re sorting through is growing rapidly, and it’s really beginning to outstrip our ability to use classical tools,” Carlson says. “A lot of these classical tools made a lot more sense when you had these small data sets, but now we’re talking about this canonically overused word, Big Data”

With machine learning algorithms, it’s easier than ever to find trends in these huge sets of data.  In his most recent study, Carlson and his fellow researchers could find patterns tied to stress and even to how susceptible a mouse was to depression. By continuing this project and looking at new ways to investigate the brain and check their results, Carlson hopes to help improve treatments for depression in the future.

In addition to his ongoing research into depression, Carlson has brought machine learning to a number of other collaborations with the medical center, including research into autism and patient care for diabetes. When there’s too much data for the old ways of data analysis, machine learning can step in, and Carlson sees potential in harnessing this growing technology to improve health and care in the medical field.

“What’s incredibly exciting is the opportunities at the intersection of engineering and medicine,” he said. “I think there’s a lot of opportunities to combine what’s happening in the engineering school and also what’s happening at the medical center to try to create ways of better treating people and coming up with better ways for making people healthier.”

Guest Post by Thomas Yang, a junior at North Carolina School of Math and Science.

Page 2 of 60

Powered by WordPress & Theme by Anders Norén