Research Blog

Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Only Mostly Dead? The Evolving Ethics of Evaluating Death

I recently had the pleasure of attending Professor Janet Malek’s lecture: Only Mostly Dead? The Evolving Ethical Evaluation of Death by Neurologic Criteria, a lecture sponsored by the Trent Center for Bioethics, Humanities & History of Medicine.

Dr. Malek is an associate professor in the Duke Initiative for Science & Society, and at the Baylor College of Medicine Center for Medical Ethics and Health Policy.

Janet Malek Ph.D.

We don’t often talk about death. On the surface, it seems like it would be a straight-forward concept. You’re either dead, or you’re not dead. Right? It turns out that clinically defining death is not so simple.

Popular media has some grasp on the ambiguity of the definition of death. Remember this scene from the popular movie, The Princess Bride? Suspecting that the protagonist is dead, his friends bring him to a miracle-worker and have the following conversation. 

Miracle Max: “Whoo-hoo-hoo, look who knows so much. It just so happens that your friend here is only MOSTLY dead. There’s a big difference between mostly dead and all dead. Mostly dead is slightly alive. With all dead, well, with all dead there’s usually only one thing you can do.

Inigo Montoya: What’s that?

Miracle Max: Go through his clothes and look for loose change.

In real life, death used to be determined by cardiopulmonary criteria – when the heart and lungs stop working.  In recent decades the idea that death can be determined using neurologic criteria – when the brain stops working – has gained acceptance. As neuroscience and technology has evolved, so too have our definitions. Now that we know more about how the brain works, we know that there may be some brain activity even after a person has met the criteria for death by neurologic criteria (DNC). This leads to philosophically rich and practically relevant questions of ethics – for example, when do we stop providing life-sustaining care? In the field of bioethics and beyond, there is high demand for discussion on this topic.

There has been controversy over defining death since the 1650’s — when a woman named Anne Greene woke up after being hanged. It wasn’t until the 1980’s that a consensus definition of death was first identified. Here is a brief history:

1950s

  • Widespread availability of ventilators led to the identification of a state described as death of the neurological system.

1960s

  • Advances in organ transplantation foster discussion on the ethics of defining death.
  • A committee at Harvard Medical School examined the definition of Brain Death. They created a definition of “Irreversible Coma,” which focused on loss of neurological function.

1980s

  • The 1980 Uniform Determination of Death Act (UDDA) provided a legal basis for clinically determining death as: an individual who has sustained either 1) irreversible cessation of circulatory and respiratory functions OR 2) irreversible cessation of functions of the entire brain.
  • 1981: President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research report. Findings are centered on questions of functioning of the organism as a whole and the brain’s role in coordinating it.

1990s-2000s

  • Clinicians arrive at general agreement that a patient in a state of coma or unresponsiveness, without brainstem reflexes and who fails an apnea test is dead by neurologic criteria. Largely it is accepted that “brain death is death” but there is not complete consensus.

2010-late

  • 2013: Case of Jahi McMath. A 13-year old girl was declared “brain dead” in California, and a death certificate was issued. However, the family fought to have her maintained on life support. They moved to New Jersey, the only state which recognized objections to brain death, and the “brain dead” declaration was reversed. Jahi lived there for 4 years before passing away. This famous case caused people to reconsider the concept of brain death.

2020s:

  • Recent innovations in heart transplantation technology will likely challenge the acceptance of the Dead Donor Rule (DDR) which requires that an individual is clinically declared dead before vital organs are removed for transplantation.
  • 2021: Assembly of the Determination of Death Committee, tasked with updating the Uniform Determination of Death Act (UDDA). Duke faculty (and founding director of Science & Society) Nita Farahany, is involved with this process.

What ethical issues and practical questions challenging Death by Neurologic Criteria (DNC) today? Dr. Malek shared the following case.

Following a tragic car accident, Ms. Jones, a 20-year-old college student, was brought to the hospital, having suffered significant anoxic brain injury. The medical team determined that she met criteria for DNC. However, her family refused to allow for further testing. Several days passed. Ms. Jones was maintained on life support, during which she did not show signs of improvement. After several difficult conversations, the family consented for assessment and Ms. Jones was declared dead — using the criteria associated with DNC.

What is the proper amount of time to continue life-sustaining treatment if a physician suspects the patient will never recover?

Although this may sound like an uncommon occurrence, nearly half of neurologists have been asked to continue neurologic support for patients that may meet criteria for DNC.

Obligating life support for patients suspected of meeting DNC, either through the family’s refusal for testing or by direct request, would likely result in ethical harms such as violation of the dignity of decedent, unjustly using scarce resources, or causing moral distress in caregivers.

However, it may be permissible to maintain life support in these situations. Dr. Malek says that we do not yet have a good ethical framework for this. Reasonable accommodations that are in line with professional guidelines probably have minimal impact, and might provide some psychosocial benefits to families.

Is consent required to test for DNC? Should it be?

Legal and professional standards favor the idea that testing for DNC likely falls under the category of implied consent, which assumes that a person would want reasonable medical care in the event of unconsciousness. In fact, 80% of neurologists think that getting consent for these evaluations is unnecessary.

These are extremely difficult questions, and there is continuing controversy over what the correct answers should be. Dr. Malek advises medical experts to work with healthcare administrators to develop clear institutional policies.

Post by Victoria Wilson, 2023 MA student in Bioethics & Science Policy

The Brain Science of Tiny Birds With Amazing Memories

A black-capped chickadee. Dmitriy Aronov, Ph.D., brought wild black-capped chickadees into the lab to study their memories.
Black-Capped Chickadee” by USFWS Mountain Prairie is licensed under CC BY 2.0.

Black-capped chickadees have an incredible ability to remember where they’ve cached food in their environments. They are also small, fast, and able to fly.

So how exactly can a neuroscientist interested in their memories conduct studies on their brains? Dmitriy Aronov, Ph.D., a neuroscientist at the Zuckerman Mind Brain Behavior Institute at Columbia University, visited Duke recently to talk about chickadee memory and the practicalities of studying wild birds in a lab.

Black-capped chickadees, like many other bird species, often store food in hiding places like tree crevices. This behavior is called caching, and the ability to hide food in dozens of places and then relocate it later represents an impressive feat of memory. “The bird doesn’t get to experience this event happening over and over again,” Aronov says. It must instantly form a memory while caching the food, a process that relies on episodic memory. Episodic memory involves recalling specific experiences from the past, and black-capped chickadees are “champions of episodic memory.”

They have to remember not just the location of cached food but also other features of each hiding place, and they often have only moments to memorize all that information before moving on. According to Aronov, individual birds are known to cache up to 5,000 food items per day! But how do they do it?

Chickadees, like humans, rely on the brain’s hippocampus to form episodic memories, and the hippocampus is considerably bigger in food-caching birds than in birds of similar size that aren’t known to cache food. Aronov and his team wanted to investigate how neural activity represents the formation and retrieval of episodic memories in black-capped chickadees.

Step one: find a creative way to study food-caching in a laboratory setting. Marissa Applegate, a graduate student in Aronov’s lab, helped design a caching arena “optimized for chickadee ergonomics,” Aronov says. The arenas included crevices covered by opaque flaps that the chickadees could open with their toes or beaks and cache food in. The chickadees didn’t need any special training to cache food in the arena, Aronov says. They naturally explore crevices and cache surplus food inside.

Once a flap closed over a piece of cached food (sunflower seeds), the bird could no longer see inside—but the floor of each crevice was transparent, and a camera aimed at the arena from below allowed scientists to see exactly where birds were caching seeds. Meanwhile, a microdrive attached to the birds’ tiny heads and connected to a cable enabled live monitoring of their brain activity, down to the scale of individual neurons.

An artistic rendering of one of the cache sites in an arena. “Arenas in my lab have between 64 and 128 of these sites,” Aronov says.
Drawing by Julia Kuhl.

Through a series of experiments, Aronov and his team discovered that “the act of caching has a profound effect on hippocampal activity,” with some neurons becoming more active during caching and others being suppressed. About 35% percent of neurons that are active during caching are consistently either enhanced or suppressed during caching—regardless of which site a bird is visiting. But the remaining 65% of variance is site-specific: “every cache is represented by a unique pattern of this excess activity in the hippocampus,” a pattern that holds true even when two sites are just five centimeters apart—close enough for a bird to reach from one to another.

Chickadees could hide food in any of the sites for retrieval at a future time. The delay period between the caching phase (when chickadees could store surplus food in the cache sites) and the retrieval phase (when chickadees were placed back in the arena and allowed to retrieve food they had cached earlier) ranged from a few minutes to an hour. When a bird returned to a cache to retrieve food, the same barcode-like pattern of neural activity reappeared in its brain. That pattern “represents a particular experience in a bird’s life” that is then “reactivated” at a later time.

Aronov said that in addition to caching and retrieving food, birds often “check” caching sites, both before and after storing food in them. Of course, as soon as a bird opens one of the flaps, it can see whether or not there’s food inside. Therefore, measuring a bird’s brain activity after it has lifted a flap makes it impossible to tell whether any changes in brain activity when it checks a site are due to memory or just vision. So the researchers looked specifically at neural activity when the bird first touched a flap—before it had time to open it and see what was inside. That brain activity, as it turns out, starts changing hundreds of milliseconds before the bird can actually see the food, a finding that provides strong evidence for memory.

What about when the chickadees checked empty caches? Were they making a memory error, or were they intentionally checking an empty site—even knowing it was empty—for their own mysterious reasons? On a trial-by-trial basis, it’s impossible to know, but “statistically, we have to invoke memory in order to explain their behavior,” he said.

A single moment of caching, Aronov says, is enough to create a new, lasting, and site-specific pattern. The implications of that are amazing. Chickadees can store thousands of moments across thousands of locations and then retrieve those memories at will whenever they need extra food.

It’s still unclear how the retrieval process works. From Aronov’s study, we know that chickadees can reactivate site-specific brain activity patterns when they see one of their caches (even when they haven’t yet seen what’s inside). But let’s say a chickadee has stored a seed in the bark of a particular tree. Does it need to see that tree in order to remember its cache site there? Or can it be going about its business on the other side of the forest, suddenly decide that it’s hungry for a seed, and then visualize the location of its nearest cache without actually being there? Scientists aren’t sure.

Post by Sophie Cox, Class of 2025

How Research Helped One Pre-med Discover a Love for Statistics and Computer Science

If you’re a doe-eyed first-year at Duke who wants to eventually become a doctor, chances are you are currently, or will soon, take part in a pre-med rite of passage: finding a lab to research in.

Most pre-meds find themselves researching in the fields of biology, chemistry, or neuroscience, with many hoping to make research a part of their future careers as clinicians. Undergraduate student and San Diego native Eden Deng (T’23) also found herself plodding a similar path in a neuroimaging lab her freshman year.

Eden Deng T’23

At the time, she was a prospective neuroscience major on the pre-med track. But as she soon realized, neuroimaging is done through fMRI. And to analyze fMRI data, you need to be able to conduct data analysis.

This initial research experience at Duke in the Martucci Lab, which looks at chronic pain and the role of the central nervous system, sparked a realization for Deng. “Ninety percent of my time was spent thinking about computational and statistical problems,” she explained to me. Analysis was new to her, and as she found herself struggling with it, she thought to herself, “why don’t I spend more time getting better at that academically?”

Deng at the Martucci Lab

This desire to get better at research led Deng to pursue a major in Statistics with a secondary in Computer Science, while still on the pre-med track. Many people might instantly think about how hard it must be to fit in so much challenging coursework that has virtually no overlap. And as Deng confirmed, her academic path not been without challenges.

For one, she’s never really liked math, so she was wary of getting into computation. Additionally, considering that most Statistics and Computer Science students want to pursue jobs in the technology industry, it’s been hard for her to connect with like-minded people who are equally familiar with computers and the human body.

“I never felt like I excelled in my classes,” Deng said. “And that was never my intention.” Deng had to quickly get used to facing what she didn’t know head-on. But as she kept her head down, put in the work, and trusted that eventually she would figure things out, the merits of her unconventional academic path started to become more apparent.

Research at the intersection of data and health

Last summer, Deng landed a summer research experience at Mount Sinai, where she looked at patient-level cancer data. Utilizing her knowledge in both biology and data analytics, she worked on a computational screener that scientists and biologists could use to measure gene expression in diseased versus normal cells. This will ultimately aid efforts in narrowing down the best genes to target in drug development. Deng will be back at Mount Sinai full-time after graduation, to continue her research before applying to medical school.

Deng presenting on her research at Mount Sinai

But in her own words, Deng’s most favorite research experience has been her senior thesis through Duke’s Department of Biostatistics and Bioinformatics. Last year, she reached out to Dr. Xiaofei Wang, who is part of a team conducting a randomized controlled trial to compare the merits of two different lung tumor treatments.

Generally, when faced with lung disease, the conservative approach is to remove the whole lobe. But that can pose challenges to the quality of life of people who are older, with more comorbidities. Recently, there has been a push to focus on removing smaller sections of lung tissue instead. Deng’s thesis looks at patient surgical data over the past 15 years, showing that patient survival rates have improved as more of these segmentectomies – or smaller sections of tissue removal – have become more frequent in select groups of patients.

“I really enjoy working on it every week,” Deng says about her thesis, “which is not something I can usually say about most of the work I do!” According to Deng, a lot of research – hers included – is derived from researchers mulling over what they think would be interesting to look at in a silo, without considering what problems might be most useful for society at large. What’s valuable for Deng about her thesis work is that she’s gotten to work closely with not just statisticians but thoracic surgeons. “Originally my thesis was going to go in a different direction,” she said, but upon consulting with surgeons who directly impacted the data she was using – and would be directly impacted by her results – she changed her research question. 

The merits of an interdisciplinary academic path

Deng’s unique path makes her the perfect person to ask: is pursuing seemingly disparate interests, like being a Statistics and Computer Science double-major on the pre-med, track worth it? And judging by Deng’s insights, the answer is a resounding yes.

At Duke, she says, “I’ve been challenged by many things that I wouldn’t have expected to be able to do myself” – like dealing with the catch-up work of switching majors and pursuing independent research. But over time she’s learned that even if something seems daunting in the moment, if you apply yourself, most, if not all things, can be accomplished. And she’s grateful for the confidence that she’s acquired through pursuing her unique path.

Moreover, as Deng reflects on where she sees herself – and the field of healthcare – a few years from now, she muses that for the first time in the history of healthcare, a third-party player is joining the mix – technology.

While her initial motivation to pursue statistics and computer science was to aid her in research, “I’ve now seen how its beneficial for my long-term goals of going to med school and becoming a physician.” As healthcare evolves and the introduction of algorithms, AI and other technological advancements widens the gap between traditional and contemporary medicine, Deng hopes to deconstruct it all and make healthcare technology more accessible to patients and providers.

“At the end of the day, it’s data that doctors are communicating to patients,” Deng says. So she’s grateful to have gained experience interpreting and modeling data at Duke through her academic coursework.

And as the Statistics major particularly has taught her, complexity is not always a good thing – sometimes, the simpler you can make something, the better. “Some research doesn’t always do this,” she says – she’s encountered her fair share of research that feels performative, prioritizing complexity to appear more intellectual. But by continually asking herself whether her research is explainable and applicable, she hopes to let those two questions be the North Stars that guide her future research endeavors.

At the end of the day, it’s data that doctors are communicating to patients.

Eden Deng

When asked what advice she has for first-years, Deng said that it’s important “to not let your inexperience or perceived lack of knowledge prevent you from diving into what interests you.” Even as a first-year undergrad, know that you can contribute to academia and the world of research.

And for those who might be interested in pursuing an academic path like Deng, there’s some good news. After Deng talked to the Statistics department about the lack of pre-health representation that existed, the Statistics department now has a pre-health listserv that you can join for updates and opportunities pertaining specifically to pre-med Stats majors. And Deng emphasizes that the Stats-CS-pre-med group at Duke is growing. She’s noticed quite a few underclassmen in the Statistics and Computer Science departments who vocalize an interest in medical school.

So if you also want to hone your ability to communicate research that you care about – whether you’re pre-med or not – feel free to jump right into the world of data analysis. As Deng concludes, “everyone has something to say that’s important.”

Post by Meghna Datta, Class of 2023

Spongy Moss, Living Jelly, and Other Early Spring Delights

Duke biology professor Paul Manos, Ph.D., looking at peat moss with Wild Ones members Gurnoor and Dhruv.

The Wild Ones club recently visited the Duke Forest with biology professor Paul Manos, Ph.D., and herpetology professor Ron Grunwald, Ph.D., to look for salamander eggs and other early spring delights.

It was warm and sunny, and wildflowers sprouted up alongside the trail, but most of the trees were still bare. “It’s kind of nice to look in a forest without any leaves,” says Manos. “They get in the way a lot.” We examined winged elm and shagbark hickory at the trailhead, then windflower and bluets right beside the path. Many early spring wildflowers take advantage of the higher levels of sunlight that reach the forest floor before trees develop leaves.

A shagbark hickory tree in the Duke Forest. “Shagbark” refers to the peeling strips on the trunk. The word “hickory,” meanwhile, comes from an Algonquin word for both the tree and a food made from pounded hickory nuts.

Manos was delighted to find a patch of sphagnum moss beside the trail. He says sphagnum, also known as peat moss, is usually found in higher latitudes, like the United Kingdom and Canada, where it grows in huge fields known as moorlands or quaking bogs.

When we reached a small pond, Grunwald swept a long-handled net through the water and leaf litter and pulled out a gelatinous glob that promptly became a highlight of my week/month/year: spotted salamander eggs. I don’t know what the rest of you spent your childhoods doing, but I spent a good portion of mine looking for frog eggs (and sometimes finding them) and wanting to find salamander eggs (and never finding them). But here they were, in front of me, tinted green with algae and glinting in the sunlight and close enough to touch.

Bluets are members of the coffee family, which Manos says is “known for having a lot of chemical diversity.” Many of the members of that family grow in the tropics, but some, like this bluet, live in more temperate regions.

This strikes me as an appropriate retort to many unrelated things. Calculus test? Yeah, okay, but I saw salamander eggs. The grosbeaks that Wild Ones went looking for two weeks ago are still thwarting me? Yes, and I still haven’t gotten over it. However: salamander eggs.

Sphagnum moss. It is wonderfully moist and spongy.
Photo by Lydia Cox, one of the student leaders of Wild Ones.

The egg mass was less firm and less slimy than I expected. It felt remarkably similar to jelly. “This gel,” Manos says, “apparently doesn’t allow oxygen to move through it very well,” but the developing spotted salamander larvae need oxygen. The solution is ingenious: a partnership with green algae. A species of algae grows on the egg masses and penetrates individual eggs, and eggs with more algae grow and develop faster.

The algae are photosynthetic, creating carbon and oxygen products from carbon dioxide gas and sunlight. That process likely provides supplemental oxygen to the salamander embryos, and one study found that the salamanders also absorb carbon produced by the algae’s photosynthesis.

Herpetology professor Ron Grunwald with spotted salamander eggs.

That carbon fixation is the first known example of carbon transfer from algae to a vertebrate host, though similar partnerships have been found in invertebrates, and the authors of the study speculate that similar processes may be occurring in other amphibians as well.

The particular species of algae that grows on spotted salamander eggs is in the Oophila, which according to Manos means “egg lover.” The partnership, however, is temporary. “It’s a very short-lived, ephemeral story,” Manos says.

“This is the best day of my life,” says Michelle, a Wild Ones member, while holding spotted salamander eggs. Comments from other students included “This feels weird,” “That is a sublime experience,” and “Nature’s fidget.”

In addition to the spotted salamander eggs, Grunwald also found a marbled salamander larva. Marbled salamanders and spotted salamanders are in the same genus, but they have different approaches to breeding. Marbled salamanders, Grunwald explains, lay their eggs in the fall “where they think a pond is going to be” instead of waiting for ephemeral pools to develop in spring. How do they decide where to lay eggs if the pond isn’t even there yet? Scientists aren’t sure, but salamanders “live in a chemical world,” Grunwald says, relying on taste and chemical signals.

Spotted salamander eggs and a marbled salamander larva, temporarily held in a plastic bag for viewing purposes.
Photo by Adam Kosinski, Wild Ones co-president.

Since marbled salamanders laid their eggs last fall, their larvae have had time to hatch and start developing, though they aren’t yet adults. Spotted salamanders, meanwhile, don’t breed until spring—when the ponds actually exist—so their eggs haven’t yet hatched. For the larvae of both species, developing in small, temporary ponds helps protect them from large predators like fish.

Both marbled and spotted salamanders are in a genus sometimes called mole salamanders because they live underground when they’re not breeding. “There’s an entire city underground here of burrows and holes and crevices,” Grunwald says, a “whole porous network of spaces.” The mole salamanders can shelter underground, but they can’t travel far without coming back to the surface. “It’s not a highway,” Grunwald says.

I would like to know what it is like to be a mole salamander, navigating by taste and smell and spending much of the year in small spaces underground.

Sam, a Wild Ones member, releasing the eggs back into the pond.

Before we left the forest, we went searching for lycophytes, an ancient lineage of plants that first evolved hundreds of millions of years ago. “In the Carboniferous Period 350 million years ago, these guys ruled,” Manos says. The lycophytes we saw in the Duke Forest were tiny, bright green sprigs in a small stream, but their ancestors were trees. Those ancient lycophyte trees are “responsible for all of the coal that we use,” says Manos. “The transformation of their organic material via millions of years of heat and pressure to metamorphic carbonized rock is the definition of coal.”

Quillwort, a modern-day descendant of ancient trees.

The lycophytes in the stream are members of the Isoetes genus, also known as quillworts. They look and feel much like grasses, but they are only distant relatives of true grasses. Grasses are flowering plants, while quillworts are lycophytes. Flowering plants and lycophytes diverged hundreds of millions of years ago. Lycophytes use spores to reproduce and have a life cycle similar to ferns. Even their leaves are anatomically and evolutionarily different from the leaves of flowering plants; lycophytes use “their own approach to making leaves,” according to Manos.

A representation of the evolutionary history of plants. Lycophytes, including the superficially grass-like quillwort we saw, are in the pteridophyte group, along with ferns. True grasses, on the other hand, are monocots, a branch of flowering plants.
Plant phylogeny.png, from Maulucioni via Wikimedia Commons, is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
By Sophie Cox

Post by Sophie Cox, Class of 2025

On being MIXED

Chances are, you have not felt betrayed by a Google form. But if you’re part of the 8% of multiracial students at Duke, perhaps you’re familiar.

If you check one box, it feels like you deny your identity as another. It is a constant battle of representation, of feeling a responsibility towards all of your communities while simultaneously feeling an imposter in all of them. There is always the issue of being too white for one group, too brown for another.

Since 2012, every county in the United States has reported a multiracial population. Dr. Sarah Gaither, an assistant professor of psychology & neuroscience at Duke, studies the identity crisis multiracial students face. In 2015, she published “‘Mixed’ Results: Multiracial Research and Identity Explorations” in Current Directions in Psychological Science. And on February 10, she organized a screening of MIXED, a documentary following the struggles and backlash facing mixed-race families. The film’s directors, Caty Borum and Leena Jayaswal of American University, joined the screening and provided a Q&A session for the audience.

Image courtesy of Dan Vahaba


Gaither’s research is featured in the film, as well as Duke SWIRL (Students With Interracial Legacies), a former student organization.

“Multiracials who identify as multiracial actually experience decreased self-esteem when asked to choose only one racial identity,” Gaither notes in her article. Sure enough, the documentary follows America’s slow response to progress. Despite being in the aftermath of our first biracial president, despite it being over 50 years since Loving v. Virginia, which legalized interracial marriage nationwide, there have only been two U.S. Censuses taken since the Census Bureau allowed more than one race to be checked on official forms. This caused a notable shift; between 2000 and 2010, the number of reported interracial people increased by 32%, likely because of the ability to “claim more than one race” as a legal identity.

Duke’s Undergraduate Student Body, Fall 2022 (Source: https://facts.duke.edu/)


Gaither’s research in the Duke Identity and Diversity Lab pledges to continue this research. She notes interesting extensions of multiracial identities, such as Latinx students and families who are subject to even more confusing checkboxes on aforementioned Google forms (What is your race and ethnicity? Because “Hispanic/Latino” is its own category).

“The process of racial self-identification can be more challenging as racial categories can be complex and/or ambiguous,” Gaither says. She also notes the identity crises genderqueer people face, and how restricting checkboxes can really be.

Image courtesy of Dan Vahaba

The documentary provides the viewer an opportunity to experience the inequities and bigotries that still exist toward multiracial families. Race, after all, is genetically irrelevant. The documentary team gives examples of questions they are often asked:


“Are you the nanny?”
“What is she?”
“Did you adopt those children?”
“Where did they come from?”


And I’ll add a few more, from experience:


“It’ll be two separate checks today?”
“Where do you get that hair from?”
“Is this your aunt?”


The point is: racial divides are projected by outsiders onto mixed families, and it creates a crisis of identity for mixed-race individuals. It is a phenomenon well documented by Gaither, Borum, Jayaswal, and others who have lived it.

Post by Olivia Ares, Class of 2025

Origami Robots: How Technology Moves at the Micro Level

Imagine a robot small enough to fit on a U.S. penny. Or even small enough to rest on Lincoln’s chest. It sounds preposterous enough. Now, imagine a robot small enough to rest on the chest of Lincoln – not the Lincoln whose head decorates the front side of the penny, but the even tinier version of him on the back. 

Before it was changed to a Union Shield, the tail side of pennies contained the Lincoln Memorial, including a miniscule representation of the seated Lincoln statue that rests inside. Barely visible to the naked eye, this miniature Lincoln is on the order of a few hundred micrometers wide. As incredible as it sounds, this is the scale of robots being built by Professor Itai Cohen and his lab at Cornell University. On February 22, Cohen shared several of his lab’s cutting-edge technologies with an audience in Duke’s Schiciano Auditorium. 

Dr. Itai Cohen from Cornell University begins his presentation by demonstrating the scale of the microrobots being developed by his lab.

To begin, Cohen describes the challenge of building robots as consisting of two distinct parts: the brain of the robot, and the brawn. The brain refers to the microchip, and the brawn refers to the “legs,” or actuating limbs of the robot. Between these two, the brain – believe it or not – is the easy part. As Cohen explains, “fifty years of Moore’s Law has solved this problem.” (In 1965, Gordon Moore theorized that roughly every two years, the number of transistors able to fit on microchips will double, suggesting that computational progress will become exponentially more efficient over time.) We now possess the ability to create ridiculously small microcircuits that fit on the footprint of a few micrometers. The brawn, on the other hand, is a major challenge. 

This is where Cohen and his lab come in. Their idea was to use standard fabrication tools used by the semiconductor industry to build the chips, and then build the robot around the chip by folding the robot into the 3D shape they desired. Think origami, but at the microscopic scale. 

Like any good origami artist, the researchers at the Cohen lab recognized that it all starts with the paper. Using the unique tools at the Cornell Nanoscale Facility, the Cohen team created the world’s thinnest paper, including one made out of a single sheet of graphene. To clarify, that’s a single atom thickness.

Next, it came to the folding.  As Cohen describes, there’s really two main options. The first is to shrink down the origami artist to the microscopic level. He concedes that science doesn’t know how to do that quite yet. Alas, the second strategy is to have the paper fold itself. (I will admit that as an uneducated listener, option number two sounds about as absurd as the first one.) Regardless, this turns out to be the more reasonable option.

Countless different iterations of microrobots can be fabricated using the origami folding technique.

The basic process works like this: a seven nanometer thick platinum layer is coated on one side with an inert material. When put in a solution and voltage applied, ions that are dissociated in the solvent will absorb onto the platinum surface. When this happens, a stress is created that bends the device. Reversing the voltage drives away the ions and unbends the device. Applying stiff elements to certain regions restricts the bending to occur only in desired locations. Devices about the thickness of a hair diameter can be created (folded and unfolded) using this method. 

This microscopic origami duck developed by the Cohen Lab graced the covered of Science Robotics in March 2021.

As incredible as this is, there is still one defect: it requires a wire to an external power source that attaches onto the device. To solve this problem, the Cohen lab uses photovoltaics (mini solar panels) that attach directly onto the device itself. When light is shined on the photovoltaic (via sunlight or lasers), it moves the limb. With this advance and some continuous tweaking, the Cohen lab was able to develop the world’s smallest walking robot. 

At just 40 microns by 70 microns by 2 microns thick, the smallest walking microrobot in the world is able to fold itself up and walk off the page.

The Cohen Lab also achieved “BroBot” – a microrobot that “flexes his muscles” when light is shined on the front photovoltaics and truly “looks like he belongs on a beach somewhere.”

The “BroBot,” complete with “chest hair,” was one of the earlier versions of the robot that eventually was refined into the world record-winning microrobot.

The Cohen Lab successfully eliminated the need for any external wire, but there was still more left to be desired. These robots, including “BroBot” and the Guinness World Record-winning microrobot, still required lasers to activate the limbs. In this sense, as Cohen explains, the robots were “still just marionettes” being controlled by “strings” in the form of laser pulses.

To go beyond this, the Cohen Lab began working with a commercial foundry, X-Fab, to create microchips that would act as a brain that could coordinate the limb movements. In this way, the robots would be able to move on their own, without using lasers pointed at specific photovoltaics. Cohen describes this moment as “cutting the strings on the marionette, and bringing Pinocchio to life.”

This is the final key step in the development of Ant Bot: a microrobot that moves all on its own. It uses a hexapod gate, meaning a tripod on each side. All that has to be done is placing the robot in sunlight, and the brain does the rest of the coordination.

“Ant Bot,” one of the most advanced of all microrobots to come out of the Cohen Lab, is able to move autonomously, without the aid of lasers.

The potential for these kinds of microrobots is nearly limitless. As Cohen emphasizes, the application for robots at the microscale is “basically anything you can imagine doing at the macroscale.” Cleaning surfaces, transporting cargo, building components. Perhaps conducting microsurgeries, or exploring new worlds that appear inaccessible. One particularly promising application is a robot that mimics that movement of cilia – the microscopic cellular hair responsible for countless locomotion and sensory functions in the body. A cilia-covered chip could become the basis of new portable diagnostic devices, enabling field testing that would be much easier, cheaper, and more efficient.

The researchers at the Cohen Lab envision a possible future where microscopic robots are used in swarms to restructure blood vessels, or probe large swathes of the human brain in a new form of healthcare based on quantum materials. 

Until now, few would have imagined that the ancient art of origami would predict and enable technology that could transform the future of medicine and accelerate the exploration of the universe.

Post by Kyla Hunter, Class of ’23

Warning: Birding Can Change You. Let It.

The Wild Ones, a student organization focused on enjoying and learning about nature, recently went to Flat River Waterfowl Compound to look for birds and my personal nemesis.

I have a nemesis (a bird that defies my searching). Actually, I have several, but I have been preoccupied with this particular nemesis for months.

I have seen an evening grosbeak exactly once, in a zoo, which emphatically does not count. For years, I have been fixated on-and-off (mostly on) with the possibility of seeing one in the wild.

Photo of a male evening grosbeak.
Evening Grosbeak” by sedge23 is licensed under CC BY 2.0.

They have thick, conical beaks. The males are sunset-colored. (But good luck finding one at sunset, even though the first recorded sighting supposedly happened at twilight, hence their name.) I daydream about flocks of them descending on my bird feeders at home or wandering onto Duke’s campus. That hasn’t happened yet (unless it has happened while I have not been watching, an excruciating possibility I will simply have to live with).

Evening grosbeaks usually live in Canada and the northern U.S., but they are known to irrupt into areas farther south. Irruptions often occur in response to lower supplies of seeds and cones in a bird’s typical range, making it possible to predict bird irruptions, at least if you’re the famous finch forecaster. (Fun fact: “irrupt” literally means “break into,” whereas “erupt” means “break out.”)

Breaking news: The grosbeaks are in Durham, and they have been since December. I will wait while you perform any necessary reactions, including screaming, jumping up and down in delight, charging outside because you simply have to go find them right now, or telling me I must be mistaken.

I am not mistaken. There is a flock of evening grosbeaks overwintering at Flat River Impoundment, 11.8 miles from Duke University. I know this because I get hourly rare bird alerts by email, and I have been receiving emails about evening grosbeaks nearly every day for almost three months. Put another way, evening grosbeaks have been actively and no doubt intentionally taunting me for weeks on end.

Adam Kosinski, Wild Ones co-president, with binoculars.

Wild Ones, a student organization I’m involved with, had been thinking of organizing a birding trip. For reasons I will not even attempt to deny, I suggested Flat River Waterfowl Impoundment. Last Sunday, seven undergraduates drove there, armed with field guides and binoculars and visions of evening grosbeaks bursting into sight (okay, maybe that was just me).

Flat River Waterfowl Impoundment.
Photo by Adam Kosinski.

The morning was chilly but sunny. Flat River is a gorgeous, swampy place full of small ponds and stretches of long grass edged with trees. As soon as we got there, we were serenaded with birdsong: the high, musical trill of pine warblers, the haunting coo of mourning doves, lilting Carolina wren songs, and squeaky-dog-toy brown-headed nuthatch calls.

Photo by Adam Kosinski.

It wasn’t long before people got to experience the frustrating side of birding. We were admiring a sparrow in a ditch, trying to guess its identity. Someone pulled out a field guide and flipped through the sparrow section only to turn back to the bird and find it gone. Birds can fly. But fortunately, we’d collectively noticed enough field marks to feel reasonably confident identifying it as a swamp sparrow.

A white-throated sparrow, one of several that was feeding on the buds of this tree. Note the white throat and yellow lores.
Photo by Lydia Cox, Wild Ones member. (We are not related, if you’re wondering.)

We found two other sparrow species later: song sparrows and white-throated sparrows. Sparrows tend to be small, brownish, and streaky, but certain features can help distinguish some of the common species around here. I’m personally not very familiar with the swamp sparrow, but it has a rusty cap and gray face. The song sparrow has brown stripes on its head, extensive streaking on its underside, and a dark spot on its breast. The white-throated sparrow has striking black-and-white stripes on the top of its head, yellow lores on its face (the spot in front of the eye), and yes, a white throat. (Just don’t rely too much on bird names for identification. Red-bellied woodpeckers definitely have red heads but usually only have red bellies if you’re rather imaginative, but beware—they’re still red-bellied, not red-headed woodpeckers. Meanwhile, there are dozens of warblers with yellow on them, but only one of them is a yellow warbler. Nashville warblers only pass through Nashville during migration, and American robins aren’t robins at all.)

A Cooper’s hawk with prey between its talons. Note the gray wings, the red barring on the bird’s underside, the dark bands on its tail, and the red eye.
Photo by Lydia Cox.

We saw Carolina chickadees flitting through trees, an Eastern phoebe doing its characteristic tail-wagging, and a Cooper’s hawk feeding on prey. Then, thrillingly, we spotted a bald eagle soaring through the sky. The bald eagle, America’s national bird since 1782, was in danger of extinction for years, largely due to the insecticide DDT, which made their eggs so thin that even being incubated by their parents could make them crack. However, the bald eagle was removed from the endangered species list in 2007, and populations have continued to increase.

A bald eagle in flight.
Photo by Lydia Cox.

Not long after the eagle sighting, we saw another flying raptor: an osprey. In fact, it must have been a good day for raptors because by the end of our trip we had recorded one osprey, two Cooper’s hawks, three bald eagles, and two red-tailed hawks.

We also saw a lot of birders—perhaps two dozen others, maybe more, not counting our own group. Each time we passed a group going in the opposite direction, I asked them if they’d found the grosbeaks.

A bald eagle nest.
Photo taken with my phone through my binoculars, a technique that is slowly teaching me a modicum of patience.

I think everyone I asked had seen them, and they were all eager to point us in the right direction. Birders like to use landmarks like “by the eagles’ nest” and “the fifth pine on the right” and  “past the crossbills.” We found the eagles’ nest, with help from some of the local birders. We think we found the fifth pine on the right, but there were a lot of pines there, so we’re not sure.

We did not find the red crossbills, another irruptive bird species overwintering here this year. (Crossbills are aptly named. The tips of their mandibles really do cross, which helps them access seeds inside cones.)

Red crossbills, another irruptive bird species, have also been overwintering at Flat River Waterfowl Impoundment, but Wild Ones did not see them.
Red Crossbills (Male)” by Elaine R. Wilson, www.naturespicsonline.com is licensed under CC BY-SA 3.0.

We found the spot where the evening grosbeaks had most recently been seen — just twenty minutes before we got there, according to the people we were talking to. We waited. We scrutinized the pine trees. We watched red-tailed hawks and bald eagles circle high above us. We admired the eagles’ nest, a huge collection of sticks high in a pine tree.

Adam Kosinski and Abby Saks, making sure there were no birds hiding underwater. (They were actually looking at interesting water creatures like crayfish and tadpoles.)

Would you like to guess what we did not find? My nemesis. Because the evening grosbeaks have devious minds and clearly flew all the way to Durham with the sole intent of hiding from me, dodging me, flying away as soon as I approached, and flying back again as soon as I was gone. (No, really. Other people reported them at Flat River that same day, both before and after our trip there.)

From left: Ethan Rehder, Barron Brothers, Sophie Cox, Gurnoor Majhail (Wild Ones co-president), and Lydia Cox.
Photo by Adam Kosinski.

Birding can be intensely frustrating. It can plant images in your mind that will haunt you and taunt you for the rest of your life. Like, for instance, the tiny blue bird I caught a brief glimpse of in the trees one early morning in Yellowstone. For years, I wondered if it could have been a cerulean warbler, but cerulean warblers don’t live in the western U.S. Or let’s talk about the green bird—yes, I swear it was green; no, I can’t prove it—that came to my bird feeders several years ago and never came back. Not while I was watching, anyway. The only thing I can think of for that one is a female painted bunting, but painted buntings aren’t usually in upstate South Carolina. (If my local volunteer eBird reviewer in South Carolina ever happens to read this, I promise I won’t report either of those mystery sightings to eBird.) Or, of course, the evening grosbeaks that flew away twenty minutes before we arrived.

Birding can also be thrilling, meditative, and by all accounts wonderful. Yes, that little blue bird in Yellowstone and the maybe-green one in my backyard are branded in my memory, as are countless more moments of maybe and almost and what if? I will never know what they were. I will probably never get over it.

But there are other moments that stick in my mind just as clearly. The bald eagle soaring above us on this Wild Ones trip. The black-capped chickadee that landed on my finger years ago while my brother and I rested our hands on a bird feeder and waited to see what would happen. My first glimpse of a black-throated blue warbler (I am so proud of whoever named that bird species), chasing an equally tiny Carolina chickadee in my backyard.

Warbler illustrations by James Ellsworth De Kay, a zoologist who described hundreds of animal species in the 19th century. From top to bottom: black-throated blue warbler, Cape May warbler, and Nashville warbler.
131. The Black-throated Blue Warbler (Sylvicola canadensis) 132. He Cape-May Warbler (Sylvicola maritima) 133. The Nashville Warbler (Syvicola ruficapilla) illustration from Zoology of New york (1842 – 1844) by James Ellsworth De Kay (1792-1851).” by Free Public Domain Illustrations by rawpixel is licensed under CC BY 2.0.

The Cape May warbler I saw with a close friend in a small field covered in purple wildflowers. The first time I heard the loud, ringing Teacher-teacher-teacher! song of the ovenbird. A blackpoll warbler, the first I’d ever seen, in a grove of trees in a swampy field that only birders seem to find reason to visit.

The moment two Carolina wrens took food from my hand for the first time. Prothonotary warblers (another nemesis bird) practically dripping from the trees on a rainy, buggy hike along a boardwalk. The downy woodpecker that landed on my gloved hand, apparently too impatient to wait for me to finish what I was doing with the suet feeder, and pecked at the suet with that sharp beak, her black tongue flicking in and out, her talons clinging to me with a trust that brought tears to my eyes.

Birding can change you. It can make your world come alive in a whole new way. It can make traveling somewhere new feel all the more magical — a new soundscape, new flashes of colors and patterns, a new set of beings that make a place what it is. In the same way, birding can make home feel all the more like home. Even when I can’t name all the birds that are making noise in my yard, there is a familiarity to their collective symphony, a comforting sense of “You are here.” I encourage you to watch and listen to birds, too, to join the quasi-cult that birding can be, to trek through somewhere wet and dark when the sky is just beginning to lighten—or to simply step outside, wherever you are, and listen and watch and wait right here and right now. You don’t even need to know their names (though once you start, good luck stopping). And you certainly don’t need a nemesis bird. In fact, your birding experience will be calmer without one. But that might not be up to you, in the end. Nemesis birds have minds of their own.

Post by Sophie Cox, Class of 2025

“Humans Are Selectively Pro-science” and Other Ways to Think About Polarization

Photo from DonkeyHotey on flickr.com. Licensed under Creative Commons license.

We live in a country where 80% of both Democrats and Republicans believe that the other political party “poses a threat that if not stopped will destroy America as we know it.” Lovely.

A 2020 study found that only 3.5% of voters would avoid voting for their preferred candidate if that candidate engaged in undemocratic behavior. In 2022, 72% of surveyed Republicans said that Democrats are more immoral than other Americans, and 83% of Democrats said that Republicans are more close-minded than other Americans. Political polarization is apparently increasing faster in the U.S. than in other democracies, but Americans aren’t just divided along political lines. Other aspects of identity, like religious beliefs, can spawn discord as well. In the U.S., 70% of atheists think religious organizations “do more harm than good,” but 44% of Americans still think that you must believe in God “in order to be moral and have good values.”

Most Americans agree that polarization is a problem. But what can be done about it? The Trent Center for Bioethics, Humanities, and History of Medicine recently hosted a conversation between two people who have spent much of their careers engaging with many different beliefs and perspectives. A recording of the talk can be found here.

Molly Worthen, Ph.D., Associate Professor of History at UNC and a freelance journalist, grew up in a “secular, totally nonreligious home,” but courses she took in college made her realize that “for a huge swath of humanity, over the course of our history,” religion has helped people find meaning and community. She has explored religion extensively through her work as a historian, author, and journalist. Worthen says she has “way too risk-averse a temperament to be a full-time journalist,” but one advantage of journalism is that it provides “an excuse to ask people questions.”

Emma Green, a journalist at The New Yorker, has also covered religion in her writing and spent time engaging with people and communities who hold a wide variety of beliefs. Green believes that “the most interesting stories are often about the debates communities are having within themselves.” These debates aren’t just about religion. In communities of all kinds, people with different and often opposing beliefs navigate disagreements with their best friends, neighbors, and family members as they engage with polarizing issues and try to find ways to coexist.

The process of interviewing people with differing worldviews and beliefs can bring challenges, but both Worthen and Green have found that those challenges are not insurmountable. “If you do your homework and you really make a good-faith effort to learn where a person is coming from,” Worthen says, “they will tell you their story. They will not shut down.”

Worthen has spent time with a community of Russian Orthodox Old Believers in Alberta. It was an opportunity to make a “concerted effort to really get inside the worldview of someone very different from myself.”

Green has also spent time talking to and learning from religious communities. She published an article about Hyattsville Mennonite Church in Pennsylvania, which had been welcoming gay members for over a decade and had originally been “disciplined” by the Allegheny Mennonite Conference for its open acceptance of homosexuality. A decade later, the Conference gathered to determine whether the Hyattsville church should be allowed to rejoin the Conference or be removed from it altogether. (A third option, according to Green’s article, was to dissolve the Conference.) Green was struck by how the Mennonite community approached the dispute. They followed the formal “Robert’s Rules of Order,” but they also sang together in four-part harmony. The central dispute, Green says, was “about whether they could stay in community with one another.” Ultimately, the gay members were allowed to stay, though Green says that some people left the congregation in protest.

Polarization is a word we hear a lot, but why is it that we seem to have such a hard time finding common ground when it comes to important—or even seemingly unimportant—issues? Worthen points out that there seems to be a new survey every few years showing that “humans are generally impervious to evidence” that goes against our existing beliefs.

“Barraging a human with evidence doesn’t really work,” Worthen says. According to her, theologians and philosophers have long said that “we are depraved, irrational creatures, and the social science has finally caught up with that.”

This hesitancy to even consider evidence that conflicts with our existing beliefs has implications on public trust in science. Too often, “believing in science” takes on political implications. 

According to Pew Research Center, only 13% of Republicans have “a great deal” of confidence in scientists, compared to 43% of Democrats. “Many people on the left think of the universities as belonging to them,” says Worthen, leading to a greater sense of trust in science. “There is a desire on the left to want science to line up” with their political views, Green agrees, but good science isn’t inherently aligned with a particular political party. Science involves uncertainty and “iterative self-correction,” Worthen says, but even acknowledging uncertainty can spawn controversy. And when science doesn’t perfectly align with someone’s political or ideological beliefs, it can make people uncomfortable. For instance, Worthen believes that “the retreating date of viability” for fetuses and better fetal imaging technology is “provoking… discomfort on the left” in conversations about abortion.

Evolucionismo_Teísta.jpg by Felipe Ligeiro FL on Wikimedia Commons. Licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

Similarly, evidence from evolutionary biology can be hard to reconcile with deeply held religious beliefs. Worthen describes an interview she did with Dr. Nathaniel Jeanson. He has a Ph.D. from Harvard in cell and developmental biology, but he is also a Young Earth creationist who believes the earth was created by God in six days. There are “plenty of conservative Christians who understand those days as metaphors,” Worthen says, but Jeanson takes the six-day timeframe described in the Bible literally. In Worthen’s article, she says that Jeanson “dutifully studied evolutionary biology during the day and read creationist literature at night.” One thing Worthen admired in Jeanson was his willingness to be “honest about who we are”: not very open to new evidence.

“I think very few humans are anti-science,” Worthen says. “It’s more that humans are selectively pro-science.”

It isn’t just politics that can cause people to distrust science. Green points out that people who have had frustrating experiences with traditional healthcare may look for “other pathways to achieving a sense of control.” When patients know that something is wrong, and mainstream medicine fails them in some way, they may turn to alternative treatments. “That feeling of not being understood by the people who are supposed to know better than you is actually pretty common,” Green says, and it can fuel “selective distrust.”

It can be helpful, Worthen says, for a clinician to present themselves as someone trustworthy within a larger system that some patients view as “suspect.”

Distrust in public health authorities has been a recurring theme during the Covid pandemic. Green recalls interviewing an orthodox Jewish man in New York about his community’s experiences during the pandemic. Many Orthodox Jewish communities were hit hard by Covid, and Green believes it’s important to recognize that there were many factors involved. Even well-meaning health officials often lacked the language skills to speak dialects of Yiddish and other languages, and the absence of strong, pre-existing relationships with Orthodox communities made it harder to build trust in the middle of a crisis.

Worthen spoke about vaccine hesitancy. “For most of the population who has gotten the [Covid] vaccine,” she says, “it’s not because they understand the science but because they’re willing to ‘outsource’” their health decisions to public health authorities. It is “important not to lose sight of… how much this is about trust rather than understanding empirical facts.”

Finally, both speakers discussed the impacts of social media on polarization. According to Green, “information ecosystems can develop in social media and become self-contained.” While “there are a lot of people out there who are quacks who purport to be experts,” social media has also created public health “stars” who offer advice and knowledge to a social media audience. Even that, however, can have downsides. “There isn’t a lot of space for uncertainty, which is a huge part of science,” Green says.

Worthen, meanwhile, believes that “social media is one of the main assets destroying our civilization…. I would encourage everyone to delete your accounts.”

Polarization is pervasive, dangerous, and difficult to change. “As a journalist, I basically never have answers,” Green says, but maybe learning from journalists and their efforts to understand many different perspectives can at least help us begin to ask the right questions. Learning to actually listen to each other could be a good place to start.

Post by Sophie Cox, Class of 2025

Post-COVID Public Health is in a Trust Fall

Dr. Heidi Larson, director of the Vaccine Confidence Project, described data from a recent Pew Center study, instructing us to “HANDLE WITH CARE!” as if a jeweled Fabergé egg and not a series of sampled statistics. 

The study’s title: “Americans’ Trust in Scientists, Other Groups Declines.” 

“Pew Research Center conducted this study to understand how much confidence Americans have in groups and institutions in society, including scientists and medical scientists.”
Credit to: Brian Kennedy, Alec Tyson, and Cary Funk

“Once seemingly buoyed by their central role in addressing the coronavirus outbreak,” Pew Center researchers write, the public’s trust in scientists and health professionals has sunk. This phenomenon is not confined to remote corners of Twitter or the turbulent backwaters of a few Facebook community chats. No, it’s palpable in the media, in conversation, in our collective consciousness. Why is this? And why now? 

Last month, The Duke Global Health Institute hosted a few health experts to answer these questions in the “Building Trust in Public Health: A Post-COVID Roadmap” panel. Jack Leslie, a visiting fellow at the Duke-Margolis Center for Health Policy, contextualized declines in public trust, citing increased populism and anti-elitism. It’s not difficult to chart the evolution of this zeitgeist. In the past three decades alone, Americans have become completely cocooned in media. 

Jack Leslie joins Duke University as a Senior Visiting Fellow at the Duke Global Health Institute (DGHI) and Visiting Fellow at the Duke-Margolis Center for Health Policy

CNN’s Ted Turner (i.e. the ‘Mouth of the South’) is accredited with the genesis of the 24 hour news cycle. He notably “didn’t bargain for… [the] insomniacs,” writes journalist Lisa Napoli, nor did he bargain for its longevity, or our inability to escape it. From coverage of the Iraq War to the OJ Simpson investigation to political partisanship in Washington, and of course, to COVID-19. 

The erosion of institutional faith is not unique to the government but, like an acid rain, weathers indiscriminately. It eats away at trust in churches, corporations, media institutes, universities, K-12 schools, etc. In fact last semester, I attended another Duke panel entitled “Policing the Pages,” in which increased polarization across the US contributed to concerted efforts to bar certain books (often those with LGBT and minority characters) from elementary school libraries and syllabi. A kind of censorship akin to dress codes and mandatory veggies in bagged lunches. 

This sentiment, unlike COVID-19, is not novel. Leslie described a “trifecta” of events, slowly chipping away at public trust: 1) the great recession of ‘08, 2) waves of immigration in the United States and Europe, and finally, 3) the pandemic.

For decades, and with little exception, science was lauded as infallible, an authority, bridging turbulent seas of dis- and mis-information. It was well-mannered, professorial, clad in wire-rimmed glasses and bowtie. “We had pretty high trust in scientists and public health institutions prior to the pandemic… relative to other institutions which have taken a hit over the past twenty years,” Leslie acknowledged.

Of course, this no longer is the case.

Dr. Heidi Larson is a professor of anthropology, risk, and decision science London School of Hygiene and Tropical Medicine.

Dr. Heidi Larson collected this pathos in anecdotes for the Global Listening Project, an oral history of personal pandemic experiences. Many described “…a feeling of disconnect with the government. [They] would give us these directives, but people felt they had no connection with their reality, their situation.” Larson, for example, recognized patterns of isolation in schools. There was a pervasive sense that neither legislator nor scientist had stepped foot into these schools before creating policies. Bureaucratic deflection so to speak.

Larson consequently felt a shift in COVID-19 rhetoric. What once was “upholding global unity,” “encouraging communal cooperation,” and “assuring responsive governance” became, as Larson put it, “getting a jab in the arm.” The disconnect between the Joe Publics, the John Qs, and their public institutions began to feel especially cavernous as the pandemic stretched weeks, months, then years. 

This begs the question, how can we rebuild trust in public health? 

Dr. Rispah Walumbe is a health policy advisor at Amref Health Africa, to support the advancement of the universal health coverage (UHC) agenda.

Dr. Rispah Walumbe, a global health policy and advocacy specialist, described the “orchestration” of multisectoral partnerships during the pandemic (in Africa, specifically) that combined “state and non-state actors with public and private sector actors and, of course, those on the social, economic, and political sides.”

She found that, at the start of the pandemic, trust was enhanced. The virus was identified as a “key problem” and was, to some degree, universally threatening. A conduit of centralized communication followed. As the pandemic elongated, the discrepancy between the populations disproportionately burdened by COVID (poor and minority communities) and those not so much grew wider. Communication became less effective. Still, Walumbe advocated for the continuity of engagement between health institutions and the public in the aftermath of the pandemic. Peel back the Oz-like bureaucratic curtains and increase transparency.   

Dr. Mandy Cohen served as the Secretary of the North Carolina Department of Health and Human Services as well as the Chief Operating Officer and Chief of Staff at the Centers for Medicare and Medicaid Services. She has been elected to the National Academy of Medicine and is an adjunct professor at the UNC Gillings School of Global Public Health.

Dr. Mandy Cohen, Secretary of North Carolina’s Department of Health and Human Services, agreed. In recent studies, she explained, NC ranked 2nd among the states for its general safety during the pandemic, which she attributed to the state’s prioritization of public trust. “Before we even had our first case, we were talking about how our crisis response was going to hinge on whether we could build and maintain trust with the public… we tried to be really tactical about trust, which can feel ephemeral and fleeting… and really broke it down into three buckets. The first was transparency, the second was competency, and the third was relationships.” 

Rebuilding trust in public health, thus, seems less a roadmap and more a spigot. Institutions must continue to fill the buckets Cohen described.

As the pandemic ebbs, however, the ubiquity of isolation, anxiety, and turmoil cannot be understated. A recent WHO article characterized this pervasive fear as “contagious,” pathologic, a kind of virus itself.

In this political cartoon, Sisyphus pushes a stone (the Delta variant) up the hill

In an age of mass misinformation, public health officials, doctors, and scientists now stand with the Sisyphean task of restoring public trust. And the panelists concurred: it is fragile. Volatile even.

Yet, as illustrated in this article, it is not elusive. Prioritize communication. Prioritize transparency. Prioritize competency, relationships, and community engagement.

I will defer to Walumbe who put it best during the conversation: “These institutions do not operate in a vacuum. Community is pivotal in thinking through trust, it’s how we’re organized across the world… that’s something that is critical in how we approached COVID-19 challenges…” and, presumably, in how we should continue.

Thank you to the panelists, moderator Dr. Krishna Udayakumar, and Dr. Mark McClellan, Director and Robert J. Margolis, M.D., Professor of Business, Medicine and Policy at the Margolis Center for Health Policy.

Post by Alex Clifford, Class of 2024

Why There Has Never Been Infrastructure ‘Justice for All’

Since coming to Duke nine years ago, I gained the realization that all rural communities are virtually the same… the infrastructure neglect is still the same.”

Catherine Coleman Flowers

Catherine Coleman Flowers is no stranger to action. Since the start of her career, she’s accomplished everything from working as the Vice Chair of the White House Environmental Justice Advisory Council to founding the Center for Rural Enterprise and Environmental Justice. An internationally recognized advocate for public health, Flowers has worked tirelessly to improve water and sanitation conditions across rural America.

Pictured above: Catherine Coleman Flowers
Credit: Credit: John D. and Catherine T. MacArthur Foundation

On February 9th, Duke University students got to hear from Flowers in a powerful seminar sponsored by Trinity College. A Practitioner in Residence at the Nicholas School of the Environment, Flowers discussed her incredible activism journey.

“I became an activist very, very young,” she said. Her family heritage nurtured her love for the environment early on, as well as her home state of Alabama. In high school, she began to read about the sanitation crisis happening in rural Alabama, Lowndes County in particular.

“I learned that poor people (there) were being targeted for arrest because they couldn’t afford sanitation systems,” Flowers said. The poverty rate in this historically Black county is double the national average, and sewage treatment is not provided for many residents. For those who can afford sanitation systems, they are often far from adequate, such as poorly maintained septic tanks. Issues like exposure to tropical parasites and improper installations are rampant throughout the county.

A man in Lowndes County assessing his septic tank. Credit: The Associated Press

“It builds upon the structural inequalities that make sure these areas remain poor,” Flowers said. Across the US, millions of rural areas face the same complications. From places like ‘Cancer Alley’ in New Orleans to the city of Mount Vernon in New York, sanitation systems are failing miserably.

“We saw families that couldn’t live in their houses half the time because of the sewage that was running into their home,” Flowers explained. Unsurprisingly, almost all of the areas facing these issues are home to minority communities. “The narrative used to be, ‘they don’t know how to maintain it,’ but that isn’t true. The technology isn’t working at all.

In November of 2021, Flowers filed the first-ever civil rights complaint against sanitation in Lowndes County. Thanks to her, as well as other prominent community activists, the issue garnered nationwide attention. In less than a year, the county received a $2.1 million grant from the USDA to begin solving the sewage crisis. Similar funding efforts have also been seen in Mount Vernon. “That is an example of what a solution can look like,” Flowers said.

“That’s the kind of power that you have as a Duke student,” Flowers said in closing. With almost one million dollars available for student funding annually and access to one of the greatest networks in the world, Duke students are in a remarkable position to make a change, she said. In North Carolina, counties like Duplin and Halifax are in need of outside help. “Growing up in the computer age, you can bring those skills needed to assist those applying for funds.”

Duke’s Environmental Justice Network

So, what can you do? Above all, Flowers emphasizes the importance of leading from behind. ” Don’t go in the community and try to lead from the front… People from the community need to be involved from the design to the implementation.”

As students, our assistance is needed in the form of support. From assisting with grant applications, to utilizing our network access to spread the word, there are so many ways to get involved. True equity is found not when we speak for the community, but rather when we strengthen the community’s ability to speak for itself.

Click here to get in contact with Ms.Catherine Coleman Flowers, and click here for more information about work you can do in the local community!

Post By Skylar Hughes, Class of 2025

Page 2 of 97

Powered by WordPress & Theme by Anders Norén