Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Uncategorized

Cheating Time to Watch Liquids do the Slow Dance

Colorful spheres simulating liquid molecules shift around inside a cube shape

The team’s new algorithm is able to simulate molecular configurations of supercooled liquids below the glass transition. The properties of these configurations are helping to solve a 70-year paradox about the entropy of glasses. Credit: Misaki Ozawa and Andrea Ninarello, Université de Montpellier.

If you could put on a pair of swimming goggles, shrink yourself down like a character from The Magic School Bus and take a deep dive inside a liquid, you would see a crowd of molecules all partying like it’s 1999.

All this frenetic wiggling makes it easy for molecules to rearrange themselves and for the liquid as a whole to change shape. But for supercooled liquids — liquids like honey that are cooled below their freezing point without crystallizing – the lower temperature slows down the dancing like Etta James’ “At Last.” Lower the temperature enough, and the slow-down can be so dramatic that it takes centuries or even millennia for the molecules to rearrange and the liquid to move.

Scientists can’t study processes that last longer than their careers. But Duke chemists and their Simons Foundation collaborators have found a way to cheat time, simulating the slow dance of deeply supercooled liquids. Along the way, they have found new physical properties of “aged” supercooled liquids and glasses.

A droplet rises above a surface of water

Credit: Ruben Alexander via Flickr.

To understand just how slow deeply supercooled liquids move, consider the world’s longest-running experiment, the University of Queensland’s Pitch Drop Experiment. A single drop of pitch forms every eight to thirteen years — and this pitch is moving faster than deeply supercooled liquids.

“Experimentally there is a limit to what you can observe, because even if you managed to do it over your entire career, that is still a maximum of 50 years,” said Patrick Charbonneau, an associate professor of chemistry and physics at Duke. “For many people that was considered a hard glass ceiling, beyond which you couldn’t study the behavior of supercooled liquids.”

Charbonneau, who is an expert on numerical simulations, said that using computers to simulate the behavior of supercooled liquids has even steeper time limitations. He estimates that, given the current rate of computer advancement, it would take 50 to 100 years before computers would be powerful enough for simulations to exceed experimental capabilities – and even then the simulations would take months.

To break this glass ceiling, the Charbonneau group collaborated with Ludovic Berthier and his team, who were developing an algorithm to bypass these time constraints. Rather than taking months or years to simulate how each molecule in a supercooled liquids jiggles around until the molecules rearrange, the algorithm picks individual molecules to swap places with each other, creating new molecular configurations.

This allows the team to explore new configurations that could take millennia to form naturally. These “deeply supercooled liquids and ultra-aged glasses” liquids are at a lower energy, and more stable, than any observed before.

“We were cheating time in the sense that we didn’t have to follow the dynamics of the system,” Charbonneau said. “We were able to simulate deeply supercooled liquids well beyond is possible in experiments, and it opened up a lot of possibilities.”

Two columns of blue and red spheres represent simulations of vapor-deposited glasses.

Glasses that are grown one layer at a time have a much different structure than bulk glasses. The team used their new algorithm to study how molecules in these glasses rearrange, and found that at low temperatures (right), only the molecules at the surface are mobile. The results may be used to design better types of glass for drug delivery or protective coatings. Credit: Elijah Flenner.

Last summer, the team used this technique to discover a new phase transition in low-temperature glasses. They recently published two additional studies, one of which sheds light on the “Kauzmann paradox,” a 70-year question about the entropy of supercooled liquids below the glass transition. The second explores the formation of vapor-deposited glasses, which have applications in drug delivery and protective coatings.

“Nature has only one way to equilibrate, by just following the molecular dynamics,” said Sho Yaida, a postdoctoral fellow in Charbonneau’s lab. “But the great thing about numerical simulations is you can tweak the algorithm to accelerate your experiment.”

Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling.” Ludovic Berthier, Patrick Charbonneau, Daniele Coslovich, Andrea Ninarello, Misaki Ozawa and Sho Yaida. PNAS, Oct. 24, 2017. DOI: 10.1073/pnas.1706860114

The origin of ultrastability in vapor-deposited glasses.” Ludovic Berthier, Patrick Charbonneau, Elijah Flenner and Francesco Zamponi. PRL, Nov. 1, 2017. DOI: 10.1103/PhysRevLett.119.188002

Post by Kara Manke

Creative Solutions to Brain Tumor Treatment

Survival rates for brain tumors have not improved since the 1960s; NIH Image Gallery.

Invasive brain tumors are among the hardest cancers to treat, and thus have some of the worst prognoses.

Dean of the Pratt School of Engineering, Ravi Bellamkonda, poses for his portrait inside and outside CIEMAS.

Displaying the survival rates for various brain tumors to the Genomic and Precision Medicine Forum on Thursday, Oct. 26, Duke professor Ravi Bellamkonda noted, “These numbers have not changed in any appreciable way since the 1960s.”

Bellakonda is the dean of the Pratt School of Engineering and a professor of biomedical engineering, but he is first a researcher. His biomedical engineering lab is working toward solutions to this problem of brain tumor treatment.

Unlike many other organs, which can sacrifice some tissue and remain functional, the brain does not perform the same way after removing the tumor. So a tumor without clearly defined boundaries is unsafe to remove without great risk to other parts of the patient’s brain, and in turn the patient’s quality of life.

Bellakonda hypothesized that brain tumors have characteristics that could be manipulated to treat these cancers. One key observation of brain tumors’ behavior is the tendency to form along white matter tracts. Put simply, tumors often spread by taking advantage of the brain’s existing structural pathways.

Bellakonda set out to build a device that would provide brain tumors a different path to follow, with the hope of drawing the tumor out of the brain where the cells could be killed.

The results were promising. Tests on rats and dogs with brain tumors showed that the device successfully guided out and killed tumor cells. Closer examination revealed that the cells killed were not cells that had multiplied as the tumor grew into the conduit, but were actually cells from the primary tumor.

The Bellamkonda lab’s device successfully guided and killed brain tumors in rats.

In addition to acting as a treatment device, Bellakonda’s device could be co-opted for other uses. Monitoring the process of deep brain tumors proves a difficult task for neurooncologists, and by bringing cells from deep within the tumor to the surface, this device could make biopsies significantly easier.

Although the device presents promising results, Bellakonda challenged his lab to take what they have learned from the device to develop a less invasive technique.

Another researcher in the Bellakonda lab, Tarun Saxena, engaged in research to utilize the body’s natural protection mechanisms to contain brain tumors. Creating scar tissue around tumors can trick the brain into treating the tumor as a wound, leading to immunological responses that effectively contain and suppress the tumor’s growth.

Visiting researcher Johnathan Lyon proposed utilizing electrical fields to lead a tumor to move away from certain brain regions. Moving tumors away from structures like the pons, which is vital for regulation of vital functions like breathing, could make formerly untreatable tumors resectable. Lyon’s 3D cultures using this technique displayed promising results.

Another Bellakonda lab researcher, Nalini Mehta, has been researching utilizing a surprising mechanism to deliver drugs to treat tumors throughout the brain: salmonella. Salmonella genetically engineered to not invade cells but to easily pass through the extracellular matrix of the brain have proven to be effective at delivering treatment throughout the brain.

While all of these therapies are not quite ready to be used to treat the masses, Bellakonda and his colleagues’ work presents reasonable hope of progress in the way brain tumors are treated.

By Sarah Haurin

Powered by WordPress & Theme by Anders Norén