Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Field Research (Page 1 of 10)

Durham Traffic Data Reveal Clues to Safer Streets

Ghost bikes are a haunting site. The white-painted bicycles, often decorated with flowers or photographs, mark the locations where cyclists have been hit and killed on the street.

A white-painted bike next to a street.

A Ghost Bike located in Chapel Hill, NC.

Four of these memorials currently line the streets of Durham, and the statistics on non-fatal crashes in the community are equally sobering. According to data gathered by the North Carolina Department of Transportation, Durham county averaged 23 bicycle and 116 pedestrian crashes per year between 2011 and 2015.

But a team of Duke researchers say these grim crash data may also reveal clues for how to make Durham’s streets safer for bikers, walkers, and drivers.

This summer, a team of Duke students partnered with Durham’s Department of Transportation to analyze and map pedestrian, bicycle and motor vehicle crash data as part of the 10-week Data+ summer research program.

In the Ghost Bikes project, the team created an interactive website that allows users to explore how different factors such as the time-of-day, weather conditions, and sociodemographics affect crash risk. Insights from the data also allowed the team to develop policy recommendations for improving the safety of Durham’s streets.

“Ideally this could help make things safer, help people stay out of hospitals and save lives,” said Lauren Fox, a Duke cultural anthropology major who graduated this spring, and a member of the DATA+ Ghost Bikes team.

A map of Durham county with dots showing the locations of bicycle crashes

A heat map from the team’s interactive website shows areas with the highest density of bicycle crashes, overlaid with the locations of individual bicycle crashes.

The final analysis showed some surprising trends.

“For pedestrians the most common crash isn’t actually happening at intersections, it is happening at what is called mid-block crossings, which happen when someone is crossing in the middle of the road,” Fox said.

To mitigate the risks, the team’s Executive Summary includes recommendations to install crosswalks, median islands and bike lanes to roads with a high density of crashes.

They also found that males, who make up about two-thirds of bicycle commuters over the age of 16, are involved in 75% of bicycle crashes.

“We found that male cyclists over age 16 actually are hit at a statistically higher rate,” said Elizabeth Ratliff, a junior majoring in statistical science. “But we don’t know why. We don’t know if this is because males are riskier bikers, if it is because they are physically bigger objects to hit, or if it just happens to be a statistical coincidence of a very unlikely nature.”

To build their website, the team integrated more than 20 sets of crash data from a wide variety of different sources, including city, county, regional and state reports, and in an array of formats, from maps to Excel spreadsheets.

“They had to fit together many different data sources that don’t necessarily speak to each other,” said faculty advisor Harris Solomon, an associate professor of cultural anthropology and global health at Duke.  The Ghost Bikes project arose out of Solomon’s research on traffic accidents in India, supported by the National Science Foundation Cultural Anthropology Program.

In Solomon’s Spring 2017 anthropology and global health seminar, students explored the role of the ghost bikes as memorials in the Durham community. The Data+ team approached the same issues from a more quantitative angle, Solomon said.

“The bikes are a very concrete reminder that the data are about lives and deaths,” Solomon said. “By visiting the bikes, the team was able to think about the very human aspects of data work.”

“I was surprised to see how many stakeholders there are in biking,” Fox said. For example, she added, the simple act of adding a bike lane requires balancing the needs of bicyclists, nearby residents concerned with home values or parking spots, and buses or ambulances who require access to the road.

“I hadn’t seen policy work that closely in my classes, so it was interesting to see that there aren’t really simple solutions,” Fox said.

[youtube https://www.youtube.com/watch?v=YHIRqhdb7YQ&w=629&h=354]

 

Data+ is sponsored by Bass Connections, the Information Initiative at Duke, the Social Science Research Institute, the departments of Mathematics and Statistical Science and MEDx.

Other Duke sponsors include DTECH, Duke Health, Sanford School of Public Policy, Nicholas School of the Environment, Development and Alumni Affairs, Energy Initiative, Franklin Humanities Institute, Duke Institute for Brain Sciences, Office for Information Technology and the Office of the Provost, as well as the departments of Electrical & Computer Engineering, Computer Science, Biomedical Engineering, Biostatistics & Bioinformatics and Biology.

Government funding comes from the National Science Foundation. Outside funding comes from Accenture, Academic Analytics, Counter Tools and an anonymous donation.

Community partnerships, data and interesting problems come from the Durham Police Department, Durham Neighborhood Compass, Cary Institute of Ecosystem Studies, Duke Marine Lab, Center for Child and Family Policy, Northeast Ohio Medical University, TD Bank, Epsilon, Duke School of Nursing, University of Southern California, Durham Bicycle and Pedestrian Advisory Commission, Duke Surgery, MyHealth Teams, North Carolina Museum of Art and Scholars@Duke.

Writing by Kara Manke; video by Lauren Mueller and Summer Dunsmore

A Summer Well-Spent In and Around Toxic Waste Sites

Edison, NJ is just 40 miles from Manhattan and 70 miles from Philadelphia. It’s also home to the US EPA’s Emergency Response Team (ERT), where I spent the summer as an intern.

Stella Wang and an EPA contractor used lifts to test oil being pumped out of these huge tanks. It was found to be contaminated with mercury, benzene and lead.

At the start of my internship, I had little idea of how ERT functioned. Unlike the 10 regional offices of the Environmental Protection Agency, ERT is a “headquarters” or Washington, DC-based group, which means it responds to incidents all over the country such as oil spills, train derailments, and natural disasters.

For example, my mentor, an air specialist who generally works from his cubicle in Edison, aided in the immediate aftermath of Hurricane Katrina by employing equipment to analyze air for hazardous pollutants. Other ERT team members have conducted sediment sampling to expedite the hazardous waste removal process, given consultation advice to other EPA members for long-term remedial site work, and led the innovation of new technology.

I was able to shadow and help my mentor and fellow ERT members with their Superfund site removal work. I created accurate maps showing injection well locations, learned how to use air monitoring instruments, and helped perform chemical lab experiments that will be employed for future site analysis.

Perhaps my favorite part of the internship was traveling to a myriad of active sites. At these sites, I not only got to see how ERT members worked with EPA’s on-scene coordinators, but also observed the physical removal and remediation processes. I was fortunate to visit a particular site multiple times — I witnessed the removal of contaminated oil from an abandoned lot as the summer progressed.

Stella Wang (left) and an EPA air specialist calibrating a air monitoring instrument before a public event.

At another site, I saw the beginning of an injection process intended to prevent the contamination of underground drinking water by hexavalent chromium. By pumping sodium lactate into underground wells, the hexavalent is converted into the insoluble and benign chromium-3 ion. If the injection process works, the community will no longer be threatened by this particular hazardous material.

ERT also acts in anticipation of possible contamination to protect the public. At largely attended events like the Democratic National Convention, a few ERT members will arrive with monitoring equipment. They pride themselves in their real-time data collection for a reason: throughout the event, they can detect whether a contaminant has been released and immediately instigate an emergency response to protect attendees.

Thanks to various ERT members, I felt accepted and welcome. They were open and patient with my never-ending questions about their career paths and other things. They’ve graciously taken me out to lunch so that they could get to know me better, ensuring my inclusion in their small community.

Of course, the experiences I had this summer, while brief, have taught me a tremendous amount and I have a clearer sense of how this division of the US federal government functions. But, it would be inaccurate and unjust to omit the impact that its people made on me.

Stella Wang, Duke 2019Guest post by Stella Wang, Class of 2019

Science on the Trail

Duke launches free two-week girls science camp in Pisgah National Forest.

Duke launches free two-week girls science camp in Pisgah National Forest.

DURHAM, N.C. — To listen to Destoni Carter from Raleigh’s Garner High School, you’d never know she had a phobia of snails. At least until her first backpacking trip, when a friend convinced her to let one glide over her outstretched palm.

Destoni Carter

Destoni Carter from Raleigh’s Garner High School was among eight high schoolers in a new two-week camp that combines science and backpacking.

Soon she started picking them up along the trail. She would collect a couple of snails, put them on a bed of rocks or soil or leaves, and watch to see whether they were speedier on one surface versus another, or at night versus the day.

The experiment was part of a not-so-typical science class.

From June 11-23, 2017, eight high school girls from across North Carolina and four Duke Ph.D. students left hot showers and clean sheets behind, strapped on their boots and packs, and ventured into Pisgah National Forest.

For the high schoolers, it was their first overnight hike. They experienced a lot of things you might expect on such a trip: Hefty packs. Sore muscles. Greasy hair. Crusty socks. But they also did research.

The girls, ages 15-17, were part of a new free summer science program, called Girls on outdoor Adventure for Leadership and Science, or GALS. Over the course of 13 days, they learned ecology, earth science and chemistry while backpacking with Duke scientists.

Duke ecology Ph.D. student Jacqueline Gerson came up with the idea for the program. “Backpacking is a great way to get people out of their comfort zones, and work on leadership development and teambuilding,” said Gerson, who also teamed up with co-instructors Emily Ury, Alice Carter and Emily Levy, all Ph.D. students in ecology or biology at Duke.

Marwa Hassan of Riverside High School in Durham studying stream ecology as part of a two-week summer science program in Pisgah National Forest. Photo by Savannah Midgette.

Marwa Hassan of Riverside High School in Durham studying stream ecology as part of a two-week summer science program in Pisgah National Forest. Photo by Savannah Midgette.

The students hauled 30- to 40-pound loads on their backs for up to five miles a day, through all types of weather. For the first week and a half they covered different themes each day: evolution, geology, soil formation, aquatic chemistry, contaminants. Then on the final leg they chose an independent project. Armed with hand lenses, water chemistry test strips, measuring tapes and other gear, each girl came up with a research question, and had two days to collect and analyze the data.

Briyete Garcia-Diaz of Kings Mountain High School surveyed rhododendrons and other trees at different distances from streambanks to see which species prefer wet soils.

Marwa Hassan of Riverside High School in Durham waded into creeks to net mayfly nymphs and caddisfly larvae to diagnose the health of the watershed.

Savannah Midgette of Manteo High School counted mosses and lichens on the sides of trees, but she also learned something about the secret of slug slime.

“If you lick a slug it makes your tongue go numb. It’s because of the protective coating they have,” Midgette said.

High schoolers head to the backcountry to learn the secret of slug slime and other discoveries of science and self in new girls camp

High schoolers head to the backcountry to learn the secret of slug slime and other discoveries of science and self in new girls camp

The hiking wasn’t always easy. On their second day they were still hours from camp when a thunderstorm rolled in. “We were still sore from the previous day. It started pouring. We were soaking wet and freezing. We did workouts to keep warm,” Midgette said.

At camp they took turns cooking. They stir fried chicken and vegetables and cooked pasta for dinner, and somebody even baked brownies for breakfast. Samantha Cardenas of Charlotte Country Day School discovered that meals that seem so-so at home taste heavenly in the backcountry.

“She would be like, ugh, chicken in a can? And then eat it and say: ‘That’s the most amazing thing I’ve ever had,’” said co-instructor Emily Ury.

Savannah Midgette and Briyete Garcia-Diaz drawing interactions within terrestrial systems as part of a new free summer science program called Girls on outdoor Adventure for Leadership and Science, or GALS. Learn more at https://sites.duke.edu/gals/.

Savannah Midgette and Briyete Garcia-Diaz drawing interactions within terrestrial systems as part of a new free summer science program called Girls on outdoor Adventure for Leadership and Science, or GALS. Learn more at https://sites.duke.edu/gals/.

The students were chosen from a pool of over 90 applicants, said co-instructor Emily Levy. There was no fee to participate in the program. Thanks to donations from Duke Outdoor Adventures, Project WILD and others, the girls were able to borrow all the necessary camping gear, including raincoats, rain pants, backpacks, tents, sleeping bags, sleeping pads and stoves.

The students presented their projects on Friday, June 23 in Environment Hall on Duke’s West Campus. Standing in front of her poster in a crisp summer dress, Destoni Carter said going up and down steep hills was hard on her knees. But she’s proud to have made it to the summit of Shining Rock Mountain to see the stunning vistas from the white quartz outcrop near the top.

“I even have a little bit of calf muscle now,” Carter said.

Funding and support for GALS was provided by Duke’s Nicholas School of the Environment, Duke ecologist Nicolette Cagle, the Duke Graduate School and private donors via GoFundMe.

2017 GALS participants (left to right): Emily Levy of Duke, Destoni Carter of Garner High School, Zyrehia Polk of East Mecklenburg High School, Rose DeConto of Durham School of the Arts, Briyete Garcia-Diaz of Kings Mountain High School, Marwa Hassan of Riverside High School, Jackie Gerson of Duke, Daiana Mendoza of Harnett Central High School, Savannah Midgette of Manteo High School, Samantha Cardenas of Charlotte Country Day School and Alice Carter of Duke.

2017 GALS participants (left to right): Emily Levy of Duke, Destoni Carter of Garner High School, Zyrehia Polk of East Mecklenburg High School, Rose DeConto of Durham School of the Arts, Briyete Garcia-Diaz of Kings Mountain High School, Marwa Hassan of Riverside High School, Jackie Gerson of Duke, Daiana Mendoza of Harnett Central High School, Savannah Midgette of Manteo High School, Samantha Cardenas of Charlotte Country Day School and Alice Carter of Duke.

 

Marine Parasites — Little Guys That Make a Big Difference

If you’re anything like me, the first images that come to mind when you hear the words “marine biology” are singing whales, dolphins racing each other, sharks flying out of the water, maybe a swordfish brawl or two — all the big, flashy stuff.

Of all the things “marine biology” invokes, parasites are probably at the very bottom of my list.

Not so for Joe Morton, a PhD student at the Nicholas School of the Environment and self-taught expert on the parasites that inhabit marine organisms. In fact, Morton posits that parasites play one of the most important roles in all of ecology, by modifying the behavior of ecologically influential host species. And he’s got the research to back it up.

Once back at the lab, Morton takes his place behind the microscope to study his research subjects: marine parasites. Courtesy: Joe Morton.

Morton’s academic quest into the world of marine parasites began about six years ago when he was a master’s student at UNC’s Institute of Marine Sciences — just down the road from Duke’s own Marine Lab, where he’s now stationed. Having just read Carl Zimmer’s pop-science book Parasite Rex, Morton wondered whether the marsh periwinkle snails (Littoraria irrorata) he was studying could be infected.

“In my spare time, I would go into the lab at night with a hammer and crack open a bunch of snails to see what I would find,” Morton said. “I didn’t find anything in the literature at the time about Littoraria harboring parasites, which I thought was really unusual because they’re really well-known, important marsh gastropod.”

Morton began to systematically collect Littoraria from local salt marshes, determine their infection status, then examine how the parasites affected the behavior of infected individuals and, in turn, how these behavioral changes affected the ecological health of the salt marsh. This way, Morton figured out that Littoraria infected with digenean trematodes (a class of parasite) climbed and grazed on marsh grass less often than uninfected Littoraria. He also noticed that infected Littoraria congregated at salt marsh “die-off borders,” the edges where marsh grasses stop growing sparsely and start growing in healthy amounts.

A microsopic view of digenean trematodes, the parasites that infect marsh periwinkle snails. Courtesy: Joe Morton.

Based on these observations, Morton designed an experiment to test whether the prevalence of infection among Littoraria correlated with marsh grass health.

“I found that, even under drought stress conditions, parasites could effectively slow the rate at which the marsh died off and help maintain marsh ecosystem structure,” Morton said. “More structure means more nursery habitat for fish. It means more nursery habitat for fiddler crabs. Increased filtration rate of water into the sediment because of crab burrows. The point is, parasites help to increase ecosystem resistance to drought stress.”

Joe Morton traipses through the salt marsh on a windy day. Courtesy: Joe Morton.

Morton was the first to demonstrate this relationship between parasites and marsh health in a behavioral experiment. It’s been a major focus of his research ever since.

“Parasites constitute more than half the life on the planet, but until very recently, parasites were somewhat ignored by ecologists,” Morton said.

Indeed, Morton’s former advisor once told him “never study anything smaller than your thumb.” According to Morton, this was a very widely-held view in ecology up until the last few decades.

“That was very much the idea at the time: these are small things; they probably mean a lot to individual organisms, but they’re may not be important to ecosystems. And now we know that’s just not the case,” Morton said. “Almost everywhere we look, parasites are there; they’re ubiquitous. And they have an important role to play.”

Though parasites are a hot topic in ecology nowadays, Morton, a self-declared “lifelong contrarian,” has a very distinct memory of a childhood moment foreshadowing his current research focus.

“I remember sitting in a barber shop and reading Popular Science magazine, which has an annual list of the ten worst jobs in science. I remember right at the top of the list was ‘parasitic worm biologist.’ And something in my head was just like ‘yeah, I’ll do that,’” Morton said.

Post by Maya Iskandarani

Scientists Engineer Disease-Resistant Rice Without Sacrificing Yield

Researchers have developed a way to make rice more resistant to bacterial blight and other diseases without reducing yield. Photo by Max Pixel.

Researchers have successfully developed a novel method that allows for increased disease resistance in rice without decreasing yield. A team at Duke University, working in collaboration with scientists at Huazhong Agricultural University in China, describe the findings in a paper published May 17, 2017 in the journal Nature.

Rice is one of the most important staple crops, responsible for providing over one-fifth of the calories consumed by humans worldwide. Diseases caused by bacterial or fungal pathogens present a significant problem, and can result in the loss of 80 percent or more of a rice crop.

Decades of research into the plant immune response have identified components that can be used to engineer disease-resistant plants. However, their practical application to crops is limited due to the decreased yield associated with a constantly active defense response.

“Immunity is a double-edged sword, ” said study co-author Xinnian Dong, professor of biology at Duke and lead investigator of the study. “There is often a tradeoff between growth and defense because defense proteins are not only toxic to pathogens but also harmful to self when overexpressed,” Dong said. “This is a major challenge in engineering disease resistance for agricultural use because the ultimate goal is to protect the yield.”

Previous studies have focused on altering the coding sequence or upstream DNA sequence elements of a gene. These upstream DNA elements are known as promoters, and they act as switches that turn on or off a gene’s expression. This is the first step of a gene’s synthesis into its protein product, known as transcription.

By attaching a promoter that gives an “on” signal to a defense gene, a plant can be engineered to be highly resistant to pathogens, though at a cost to growth and yield. These costs can be partially alleviated by attaching the defense gene to a “pathogen specific” promoter that turns on in the presence of pathogen attack.

To further alleviate the negative effects of active defense, the Dong group sought to add an additional layer of control. They turned newly discovered sequence elements, called upstream open reading frames (uORFs), to help address this problem. These sequence elements act on the intermediate of a gene, or messenger (RNA, a molecule similar to DNA) to govern its “translation” into the final protein product. A recent study by the Dong lab in an accompanying paper in Nature has identified many of these elements that respond in a pathogen-inducible manner.

The Dong group hypothesized that adding this pathogen-inducible translational regulation would result in a tighter control of defense protein expression and minimize the lost yield associated with enhanced disease resistance.

To test this hypothesis, the researchers started with Arabidopsis, a flowering plant commonly used in laboratory research. They created a DNA sequence that contains both the transcriptional and translational elements (uORFs) and fused them upstream of the potent “immune activator” gene called snc1. This hybrid sequence was called a “transcriptional/translational cassette” and was inserted into Arabidopsis plants.

When plants have snc1 constitutively active, they are highly resistant to pathogens, but have severely stunted growth. Strikingly, plants with the transcriptional/translational cassette not only have increased resistance, but they also lacked growth defects and resembled healthy wild-type plants. These results show the benefits of adding translational control in engineering plants that have increased resistance without significant costs.

The Dong group then sought to apply these findings to engineer disease-resistant rice, as it is one of the world’s most important crops. They created transgenic rice lines containing the transcriptional/translational cassette driving expression of another potent “immune activator” gene called AtNPR1. This gene was chosen as it has been found to confer broad spectrum pathogen resistance in a wide variety of crop species, including rice, citrus, apple and wheat.

The dry yellowish leaves on these rice plants are a classic symptom of bacterial blight, a devastating disease that affects rice fields worldwide. Photo by Meng Yuan.

The transgenic rice lines containing the transcriptional/translational cassette were infected with bacterial/fungal pathogens that cause three major rice diseases — rice  blight, leaf streak, and fungal blast. These showed high resistance to all three pathogens, indicating broad spectrum resistance could be achieved. Importantly, when grown in the field, their yield — both in terms of grain quantity and quality per plant — was almost unaffected. These results indicate a great potential for agricultural applications.

This strategy is the first known use of adding translational control for the engineering of disease-resistant crops with minimal yield costs. It has many advantages, as it is broadly applicable to a variety of crop species against many pathogens. Since this strategy involves activating the plants’ endogenous defenses, it may also reduce the use of pesticides on crops and hence protect the environment.

Additionally, these findings may be broadly applicable to other systems as well. These upstream elements (uORFs) are widely present in organisms from yeast to humans, with nearly half of all human transcripts containing them. “The great potential in using these elements in controlling protein translation during specific biological processes has yet to be realized,” Dong said.

Corresponding author Xinnian Dong can be reached at xdong@duke.edu or (919) 613-8176.

CITATION:  “uORF-Mediated Translation Allows Engineered Plant Disease Resistance Without Fitness Costs,” Guoyong Xu, Meng Yuan,   Chaoren Ai, Lijing Liu, Edward Zhuang, Sargis Karapetyan, Shiping Wang and Xinnian Dong. Nature, May 17, 2017. DOI: 10.1038/nature22372

 

Guest post by Jonathan Motley

Students Share Research Journeys at Bass Connections Showcase

From the highlands of north central Peru to high schools in North Carolina, student researchers in Duke’s Bass Connections program are gathering data in all sorts of unique places.

As the school year winds down, they packed into Duke’s Scharf Hall last week to hear one another’s stories.

Students and faculty gathered in Scharf Hall to learn about each other’s research at this year’s Bass Connections showcase. Photo by Jared Lazarus/Duke Photography.

The Bass Connections program brings together interdisciplinary teams of undergraduates, graduate students and professors to tackle big questions in research. This year’s showcase, which featured poster presentations and five “lightning talks,” was the first to include teams spanning all five of the program’s diverse themes: Brain and Society; Information, Society and Culture; Global Health; Education and Human Development; and Energy.

“The students wanted an opportunity to learn from one another about what they had been working on across all the different themes over the course of the year,” said Lori Bennear, associate professor of environmental economics and policy at the Nicholas School, during the opening remarks.

Students seized the chance, eagerly perusing peers’ posters and gathering for standing-room-only viewings of other team’s talks.

The different investigations took students from rural areas of Peru, where teams interviewed local residents to better understand the transmission of deadly diseases like malaria and leishmaniasis, to the North Carolina Museum of Art, where mathematicians and engineers worked side-by-side with artists to restore paintings.

Machine learning algorithms created by the Energy Data Analytics Lab can pick out buildings from a satellite image and estimate their energy consumption. Image courtesy Hoël Wiesner.

Students in the Energy Data Analytics Lab didn’t have to look much farther than their smart phones for the data they needed to better understand energy use.

“Here you can see a satellite image, very similar to one you can find on Google maps,” said Eric Peshkin, a junior mathematics major, as he showed an aerial photo of an urban area featuring buildings and a highway. “The question is how can this be useful to us as researchers?”

With the help of new machine-learning algorithms, images like these could soon give researchers oodles of valuable information about energy consumption, Peshkin said.

“For example, what if we could pick out buildings and estimate their energy usage on a per-building level?” said Hoël Wiesner, a second year master’s student at the Nicholas School. “There is not really a good data set for this out there because utilities that do have this information tend to keep it private for commercial reasons.”

The lab has had success developing algorithms that can estimate the size and location of solar panels from aerial photos. Peshkin and Wiesner described how they are now creating new algorithms that can first identify the size and locations of buildings in satellite imagery, and then estimate their energy usage. These tools could provide a quick and easy way to evaluate the total energy needs in any neighborhood, town or city in the U.S. or around the world.

“It’s not just that we can take one city, say Norfolk, Virginia, and estimate the buildings there. If you give us Reno, Tuscaloosa, Las Vegas, Pheonix — my hometown — you can absolutely get the per-building energy estimations,” Peshkin said. “And what that means is that policy makers will be more informed, NGOs will have the ability to best service their community, and more efficient, more accurate energy policy can be implemented.”

Some students’ research took them to the sidelines of local sports fields. Joost Op’t Eynde, a master’s student in biomedical engineering, described how he and his colleagues on a Brain and Society team are working with high school and youth football leagues to sort out what exactly happens to the brain during a high-impact sports game.

While a particularly nasty hit to the head might cause clear symptoms that can be diagnosed as a concussion, the accumulation of lesser impacts over the course of a game or season may also affect the brain. Eynde and his team are developing a set of tools to monitor both these impacts and their effects.

A standing-room only crowd listened to a team present on their work “Tackling Concussions.” Photo by Jared Lazarus/Duke Photography.

“We talk about inputs and outputs — what happens, and what are the results,” Eynde said. “For the inputs, we want to actually see when somebody gets hit, how they get hit, what kinds of things they experience, and what is going on in the head. And the output is we want to look at a way to assess objectively.”

The tools include surveys to estimate how often a player is impacted, an in-ear accelerometer called the DASHR that measures the intensity of jostles to the head, and tests of players’ performance on eye-tracking tasks.

“Right now we are looking on the scale of a season, maybe two seasons,” Eynde said. “What we would like to do in the future is actually follow some of these students throughout their career and get the full data for four years or however long they are involved in the program, and find out more of the long-term effects of what they experience.”

Kara J. Manke, PhD

Post by Kara Manke

Where Some Ski, Others Do Science

For most people, Lost Trail is a ski spot located at 7,000 feet in the Rocky Mountains on the border of Idaho and Montana. Skiers and snowboarders descend down steep slopes, past forests and alpine meadows that get more than 25 feet of snow each year. But for a team of researchers led by Duke biology professor Thomas Mitchell-Olds, buried beneath the snow is a hidden population of native plants on the cusp of dividing into two new species.

Molly Rivera-Olds shovels snow at Lost Trail Pass.

Studying a spindly North American wildflower called Boechera stricta, Mitchell-Olds and colleagues suspected that a process called chromosomal inversion — in which part of a chromosome breaks off and reattaches itself upside down — plays a central role in speciation. To test the idea, they planted Boechera stricta seedlings in a mountaintop meadow near the Lost Trail resort.

To reach the meadow, the researchers carried thousands of seedlings up the mountain in specially constructed backpacks. They also lugged up nine empty garbage cans and filled them with snow to water the plants throughout the summer.

Once the seedlings matured, the researchers measured flowering time, seed production, and survival. They found that plants with the chromosomal inversion had a leg up on the steep slopes of the Rocky Mountains. Eventually, the researchers say, this can lead to plants with the inverted DNA splitting off and forming a new species.

The findings were published April 3, 2017 in the journal Nature Ecology & Evolution.

# # #

CITATION:  “Young Inversion with Multiple Linked QTLs Under Selection in a Hybrid Zone,” Cheng-Ruei Lee, Baosheng Wang et al. Nature Ecology & Evolution, April 3, 2017. DOI:10.1038/s41559-017-0119.

Guest post by Molly Rivera-Olds

 

 

 

 

 

The Fashion Trend Sweeping East Campus

During the months of January and February, there was one essential accessory seen on many first-year Duke students’ wrists: the Jawbone. The students were participating in a study listed on DukeList by Ms. Madeleine George solely for first-year students regarding their lives at Duke. The procedures for the study were simple:

  1. Do a preliminary test involving a game of cyberball, a game psychologists have adapted for data collection.
  2. Wear the Jawbone for the duration of the study (10 days)
  3. Answer the questions sent to your phone every four hours. You will need to answer five a day. The questions are brief.
  4. Answer all the questions every day (you can miss one of the question times) and get $32.

About a hundred first-year Duke students participated.

Some of the questions on the surveys asked how long you slept, how stressed you felt, what time did you woke up, did you talk to your parents today, how many texts did you send, and so on. It truly did feel as though it were a study on the daily life of Duke students. However, there was a narrower focus on this study.

Ms. Madeleine George

Ms. George is a Ph.D. candidate in developmental psychology in her 5th year at Duke. She is interested in relationships and how daily technology usage and social support such as virtual communication can influence adolescent and young adult well-being.

Her dissertation is about how parents may be able to provide daily support to their children in their first year of college as face to face interactions are replaced by virtual communication through technology in modern society. This was done in three pieces.

The jawbone study is the third part. George is exploring why these effects occur, if they are uniquely a response to parents, or if people can simply feel better from other personal interactions. Taking the data from the surveys, George has been using models that allow for comparison between each person to themselves and basic ANOVA tests that allow her to examine the differences between groups. She’s still working on that analysis.

For her first test, she found that students who talked to their parents were feeling worse. But, on days students had a stressor, they were in a better mood after talking to their parents. In addition, based on the cyberball experiment where students texted a parent, stranger, or no one, George infers that texting anyone is better than no one because it can make people feel supported.

So far, George seems to have found that technology doesn’t necessarily take away relationship value and quality. Online relationships tend to reflect offline relationships. While talking with parents might not always make a student feel better, there can be circumstances where it can be beneficial.

Post by Meg Shieh.

Rooftop Observatory Tracks Hurricane Rain and Winter Snow

Jonathan Holt replaces the protective cover over the rain gauge.

Jonathan Holt replaces the protective cover over the rain gauge.

On Friday night, while most of North Carolina braced against the biting sleet and snow with hot cocoa and Netflix, a suite of research instruments stood tall above Duke’s campus, quietly gathering data on the the storm.

The instruments are part of a new miniature cloud and precipitation-monitoring laboratory installed on the roof of Fitzpatrick CIEMAS by graduate student Jonathan Holt and fellow climate researchers in Ana Barros’s lab.

The team got the instruments up and running in early October, just in time for their rain gauge to register a whooping six inches of rain in six hours at the height of Hurricane Matthew — an accumulation rate comparable to that of Hurricane Katrina when it made landfall in Mississippi. Last weekend, they collected similar data on the winter storm, their Micro Rain Radar tracking the rate of snowfall throughout the night.

The rooftop is just the latest location where the Barros group is gathering precipitation data, joining sites in the Great Smokies, the Central Andes of Peru, and Southern Africa. These three instruments, with a fourth added in early January, are designed to continuously track the precipitation rate, the size and shape of raindrops or snow flakes – which climatologists collectively dub hydrometeors — and the formation and height of clouds in the air above Duke.

Ana Barros, a professor of civil and environmental engineering at Duke, says that her team uses these field observations, combined with atmospheric data from institutions like NOAA and NASA, to study how microscopic particles of dust, smoke, or other materials in the air called aerosols interact with water vapor to form clouds and precipitation. Understanding these interactions is a key prerequisite to building accurate weather and climate models.

“What we are trying to do here is to actually follow the lifecycle of water droplets in the air, and understand how that varies depending on weather systems, on conditions, on the climatic region and the location on the landscape,” Barros said.

A distrometer on the roof of Fitzpatrick CIEMAS.

A laser beam passing between the two heads of the distrometer detects the numbers and sizes of passing raindrops or snowflakes.

Besides tracking dramatic events like Matthew, Barros says they are also interested in gathering data on light rainfall, defined as precipitation at a rate of less than 3 mm of an hour, throughout the year. Light rainfall is a significant source of water in the region, comprising about 35 percent of the annual rainfall. Studies have shown that it is particularly prone to climate change because even modest bumps in temperature can cause these small water droplets to evaporate back to gas.

Eliminating this water source, “is not a dramatic change,” Barros said. “But it is one of those very important changes that has implications for how we manage water, how we use water, how we design infrastructure, how we have to actually plan for the future.”

Barros says she is unaware of any similar instrument suites in North Carolina, putting their rooftop site in position to provide unique insights about the region’s climate. And unlike their mountainous field sites, instruments on the roof are less prone to being co-opted by itchy bears.

“When we can gather long term rain gauge data like this, that puts our research group in a really unique position to come up with results that no one else has, and to draw conclusions about climate change that no one else can,” Holt said. “It is fun to have a truly unique perspective into the meteorology, hydrology and weather in this place.”

Micro Rain Radar data from Hurricane Matthew and the snowstorm on Jan. 6th.

The Micro Rain Radar (MRR) shoots radio waves into the sky where they reflect off water droplets or snowflakes, revealing the size and height of clouds or precipitation. The team collected continuous MRR data during Hurricane Matthew (top) and last Friday’s snow storm (bottom), creating these colorful plots that illustrate precipitation rates during the storms.

Kara J. Manke, PhD

Post by Kara Manke

Evolutionary Genetics Shaping Health and Behavior

Dr. Jenny Tung is interested in the connections between genes and behavior: How does behavior influence genetic variation and regulation and how do genetic differences influence behavior?

A young Amboseli baboon hitches a ride with its mother. (Photo by Noah Snyder-Mackler)

A young Amboseli baboon hitches a ride with its mother. (Photo by Noah Snyder-Mackler)

An assistant professor in the Departments of Evolutionary Anthropology and Biology at Duke, Tung is interested in evolution because it gives us a window into why the living world is the way it is. It explains how organisms relate to one another and their environment. Genetics explains the actual molecular foundation for evolutionary change, and it gives part of the answer for trait variation. Tung was drawn as an undergrad towards the combination of evolution and genetics to explain every living thing we see around us; she loves the explanatory power and elegance to it.

Tung’s longest collaborative project is the Amboseli Baboon Research Project (ABRP), located in the Amboseli ecosystem of East Africa. She co-leads it with Susan Alberts, chair of evolutionary anthropology at Duke, Jeanne Altmann at Princeton, and Beth Archie at Notre Dame.

Tung has spent months at a time on the savannah next to Mount Kilimanjaro for this project. The ABRP monitors hundreds of baboons in several social groups and studies social processes at several levels. Recently the project has begun to include genetics and other aspects of baboon biology, including the social behaviors within the social groups and populations, and how these behaviors have changed along with the changing Amboseli ecosystem. Tung enjoys different aspects of all of her projects, but is incredibly grateful to be a part of the long-term Amboseli study.

Jenny Tung

Jenny Tung is an assistant professor in evolutionary anthropology and biology.

The process of discovery excites Tung. It is hard for her to pin down a single thing that makes research worth it, but “new analyses, discussions with students who teach me something new, seeing a great talk that makes you think in a different way or gives you new research directions to pursue” are all very exciting, she said.

Depending on the project, the fun part varies for her; watching a student develop as a scientist through their own project is rewarding, and she loves collaborating with extraordinary scientists. Specific sets of collaborators make the research worth it. “When collaborations work, you really push each other to be better scientists and researchers,” Tung said.

Raechel ZellerGuest post by Raechel Zeller, North Carolina School of Science and Math, Class of 2017

Page 1 of 10

Powered by WordPress & Theme by Anders Norén