Duke Research Blog

Following the people and events that make up the research community at Duke.

Category: Environment/Sustainability (Page 1 of 8)

Duke’s Solar Benches Can Charge Your Phone

Aren’t the benches at Duke great? They’re nice structures where you can chill with your friends, eat your Panda Express, get homework done, or maybe even nap. But haven’t you ever been working on a bench outside the Bryan Center around dusk, and it’s getting hard to see those Econ notes? Or cursed under your breath because it’s such a beautiful day outside, but your laptop is about to die?

Benches with solar power have been installed in three spots, including the McClendon Bridge.

Yeah, me too.

That’s exactly what inspired Gerry Chen, a Junior here at Duke, to create the “Solar Bench.” With the support of Smart Home and ESG, Gerry adapted an ordinary swinging bench at Duke into one with iPhone chargers and fully controllable LED strip lights. So fear no more! Now you can send all the snaps you want on your phone without worries of draining your battery, or grind out hours of multi homework while watching the sunset. The best part? It’s all solar powered!

November 6-9 was Energy Week, and on Monday mechanical engineer Shomik Verma presented the “Smart Home Demo,” which featured the inception, design, and implementation of the Solar Bench idea (1). The main motive behind the benches is “to increase the vision and awareness of renewable energy around Duke.” In this sense Gerry took something that started off as a cool way to stay outside after dark, and expanded it into a mode of adding renewable energy to Duke’s campus.

Beneath the canopy is a weatherproof box with a power controller and a bunch of dongles.

These benches are a great addition, especially now that it gets dark at like 5:40 (I mean, come on). Right now there’s three of them—one on the McClendon Bridge, one in the Few Quad, and one at the Smart Home (which you should check out, too—there’s tons of cool stuff there).

It kind of seems like these benches can’t do that much, but keep in mind this is still a relatively new project which started in May. One upgrade that could be happening soon is implementing a way to monitor energy and bench usage. But Gerry’s also got some bigger plans in store. With “Gen 2” he hopes to add more durability, Wifi, laptop chargers, and even motion sensing technology. Now that’s a decked-out bench! There’s more solar benches to come, too. Gerry hopes to make the installation easier and ultimately increase production, especially on East Campus.

Right now, it costs about $950 to make one of these solar benches. Each one has a 250 Watt solar panel sitting on the roof that absorbs energy from the sun and stores it in a big battery at one end of the bench. Underneath the canopy, there’s a thing called a “charge controller” that takes the energy from the sun and battery and distributes it appropriately to the lights and chargers. That’s also where the on / off switch is, as well as knobs to adjust the brightness and color of the lights. On a full charge, the battery can last for four days with no more additional sunlight. Even late in the night, the bench has you covered.

Will demonstrates a proper solar-powered chill.

That’s what’s so cool about solar energy. It almost seems too easy. These benches are saving energy while also using a renewable source. In the process, they’re doing their part to inspire Duke to become a greener campus. In Shomik’s words, this is the sort of technology “that will revolutionize the daily lives of people throughout the world.”

Free, clean energy, that just powers this bad-ass bench nonstop? Who knew a star 93 million miles away could be so useful?!

Will SheehanBy Will Sheehan

Who Gets Sick and Why?

During his presentation as part of the Chautauqua lecture series, Duke sociologist Dr. Tyson Brown explained his research exploring the ways racial inequalities affect a person’s health later in life. His project mainly looks at the Baby Boomer generation, Americans born between 1946 and 1964.

With incredible increases in life expectancy, from 47 years in 1900 to 79 today, elderly people are beginning to form a larger percentage of the population. However among black people, the average life expectancy is three and a half years shorter.

“Many of you probably do not think that three and half years is a lot,” Brown said. “But imagine how much less time that is with your family and loved ones. In the end, I think all of us agree we want those extra three and a half years.”

Not only does the black population in America have shorter lives on average but they also tend to have sicker lives with higher blood pressures, greater chances of stroke, and higher probability of diabetes. In total, the number of deaths that would be prevented if African-American people had the same life expectancy as white people is 880,000 over a nine-year span. Now, the question Brown has challenged himself with is “Why does this discrepancy occur?”

Brown said he first concluded that health habits and behaviors do not create this life expectancy gap because white and black people have similar rates of smoking, drinking, and illegal drug use. He then decided to explore socioeconomic status. He discovered that as education increases, mortality decreases. And as income increases, self-rated health increases. He said that for every dollar a white person makes, a black person makes 59 cents.

This inequality in income points to the possible cause for the racial inequality in health, he said.  Additionally, in terms of wealth instead of income, a black person has 6 cents compared to the white person’s dollar. Possibly even more concerning than this inconsistency is the fact that it has gotten worse, not better, over time. Before the 2006 recession, blacks had 10-12 cents of wealth for every white person’s dollar.

Brown believes that this financial stress forms one of many stressors in black lives including chronic stressors, everyday discrimination, traumatic events, and neighborhood disorder which affect their health.

Over time, these stressors create something called physiological dysregulation, otherwise known as wear and tear, through repeated activation of  the stress response, he said. Recognition of the prevalence of these stressors in black lives has lead to Brown’s next focus on the extent of the effect of stressors on health. For his data, he uses the Health and Retirement Study and self-rated health (proven to predict mortality better than physician evaluations). For his methods, he employs structural equation modeling. Racial inequalities in socioeconomic resources, stressors and biomarkers of physiological dysregulation collectively explain 87% of the health gap with any number of causes capable of filling the remaining percentage.

Brown said his next steps include using longitudinal and macro-level data on structural inequality to understand how social inequalities “get under the skin” over a person’s lifetime. He suggests that the next steps for society, organizations, and the government to decrease this racial discrepancy rest in changing economic policy, increasing wages, guaranteeing work, and reducing residential segregation.

Post by Lydia Goff

The Internet of Things: Useful or Dangerous?

The Internet of Things has tons of possibilities and applications, but some of them could be malicious.

This week, the Duke Digital Initiative (DDI) held an open house in the Technology Engagement Center (TEC) where you could go in and check out the new equipment they’ve installed. They all have one central theme: the Internet of Things (IoT). What is the Internet of Things? It’s pretty simple. The Internet of Things “refers to the interconnectivity of devices on the internet.” In other words, if something can connect to things like wifi, social media, or your phone, it makes it an IoT device!

A classic example of an IoT device I’m sure you’re all familiar with is the Amazon Echo. You could ask it to order you something, look up a word, what the weather is like… you get the idea. Echo and Alexa are just one kind of IoT. We’re also talking lightbulbs, outlets, robots, thermostats…  Eventually your whole house might become an IoT device. The future is here!

Devices such as the Echo Dot, Philips Hue Smart Lightbulb, Samsung Smart Outlet, Meccano Robot, and Swipe-O-Matic are all showcased in the TEC. It’s part of the DDI’s “IoT Initiative” this year to give Duke faculty, staff, and students a better understanding of the power of IoT devices. As one expert on site said, “the devices are everywhere.”

The Co-Lab had actually hacked the Echo Dot and programmed in some of their own commands, so it was responding to questions like “Who is Maria?” and “Where is this place?”

The Meccano Robot (named “Techy”) was fun to mess around with, and a big hit among attendees. He’s more of a consumer-friendly toy, but just by using voice-commands I got him to give me a high-five and even tango.

Me, cheesin’ with Techy

The smart lightbulb was low-key the coolest thing there. By using multiple lights you can customize different “environments” like a TV watching environment or party environment, and the lights will change color/brightness accordingly with just a tap on your phone. The smart outlets were cool, too. They can be controlled remotely from your phone and even have timers set.

The student-built Swipe-O-Matic added me to the Co-Lab mailing list, just by swiping my Duke card.

One device — the “Swipe-O-Matic”—was actually invented by Duke students, and we used it to add my name to the Co-Lab mailing list just by swiping my Duke Card.

While these devices are all fun and useful, one expert I spoke with noted “there’s lots of consequences to using them—good, and bad.”

As they become more consumer available, if your machine is particularly vulnerable, bad people could hack into parts of your life. Think about a smart door lock. It’s super useful—you can create virtual keys for family members, let someone in remotely, or give your housekeepers access at certain times of the day. However, this could obviously go pretty badly if someone were to hack it and enter your house.

But don’t worry. As technology progresses, IoT devices will eventually be all around us. While security is an issue, these devices have way more good to them than bad. “Snapchat spectacles” are sunglasses that can record video and upload it straight to the Snapchat app. Someone at the TEC had the idea for “smart window blinds” that know when to open and close. Imagine a plant pot that sent you a notification when it needed to be watered. The uses are seemingly endless!

Will SheehanPost by Will Sheehan

How Climate Change Limits Educational Access

Regions with agricultural economies suffer greatly from climate change.

The effects of climate change can creep into nearly every aspect of life in heavy-hit areas. They may even limit children’s access to education, says Nicholas School of the Environment graduate Heather Randell.

“Investments in education are an important pathway out of poverty, yet lack of access remains a barrier,” Randall said in a presentation to Nicholas School students and faculty.

Randell became interested in the relationship between climate change and education when she visited Ethiopia before pursuing her doctorate. She noticed many school-age kids were working rather than pursuing an education, and began to wonder what factors influence children’s time use.

Heather Randell PhD is a sociologist and demographer for the National Socio-Environmental Synthesis Cener (SESYNC).

Although the UN’s Millennium Development Goals and Beyond 2015 aimed to ensure universal primary education for all school-age children, 20 percent of children in Sub-Saharan Africa were still out of school in 2017.

Using data from the Ethiopian Rural Household Survey, Randell found that when children experience milder temperatures and more ample rainfall during their early life, they are more likely to stay in school longer. This trend can be attributed to the close ties between the economy and climate in agricultural areas like those in rural Ethiopia.

Agricultural economies are inherently dependent on temperature and rainfall. Increased temperature and decreased rainfall lower crop yield, which in turn decreases individual families’ incomes.

Children in Ethiopia are less likely to continue their education if they experienced hotter temperatures and less rainfall in their early childhood.

With less disposable income, families are more likely to spend their money on necessities like food rather than on schooling fees. Families are also more likely to pull children out of school so kids can work and contribute to the diminished family income.

After finding these patterns in Ethiopia, Randell expanded her research to include regions in the tropics, including Central America, the Caribbean, South America, East Africa, West Africa and Southeast Asia. Each of these regions has variations in their typical rainfall and temperatures, but all are inherently susceptible to climate change because of their location near the equator.

From her research in Ethiopia, Randell found two mechanisms by which climate change influences educational outcomes.

Comparing standardized census and climate data from these regions, Randell found a similar pattern, with increased temperature and changes in rainfall being associated with decreased educational outcomes.

This study also found that climate change and its negative effects often outweigh typical advantages that improve educational access, such as parents who have had a longer schooling.

Randell concluded her talk by stating that true and lasting change to educational accessibility will only be brought about by policy change. School must be less expensive and more accessible, and more importantly, livelihood diversification must be taught and encouraged. Families must learn how to generate income in ways other than agriculture so that their income and familial decisions are more resilient to climate variability.

By Sarah Haurin

Students Bring Sixty Years of Data to Life on the Web

For fields like environmental science, collecting data is hard.

Fall colors by Mariel Carr

Fall colors in the Hubbard Brook Experimental Forest, in New Hampshire’s White Mountains.

Gathering results on a single project can mean months of painstaking measurements, observations and notes, likely in limited conditions, hopefully to be published in a highly specialized journal with a target audience made up mostly of just other specialists in the field.

That’s why when, this past summer, Duke students Devri Adams, Camila Restrepo and Annie Lott set out with  graduate students Richard Marinos, Matt Ross and Professor Emily Bernhardt to combine over six decades of data on the Hubbard Brook Experimental Forest into a workable, aesthetically pleasing visualization website, they were really breaking new ground in the way the public can appreciate this truly massive store of information.

The site’s navigation shows users what kinds of data they might explore in beautiful fashion.

Spanning some 8,000 acres of New Hampshire’s sprawling White Mountain National Forest, Hubbard Brook has captured the thoughts and imaginations of generations of environmental researchers. Over 60 years of study and authorized experimentation in the region have brought us some of the longest continuous environmental data sets ever collected, tracking changes across a variety of factors for the second half of the 20th century.

Now, for the first time ever, this data has been brought together into a comprehensive, agile interface available to specialists and students alike. This website is developed with the user constantly in mind. At once in-depth and flexible, each visualization is designed so that a casual viewer can instantly grasp a variety of factors all at the same time—pH, water source, molecule size and more all made clearly evident from the structures of the graphs.

Additionally, this website’s axes can be as flexible as you need them to be; users can manipulate them to compare any two variables they want, allowing for easy study of all potential correlations.

All code used to build this website has been made entirely open source, and a large chunk of the site was developed with undergrads and high schoolers in mind. The team hopes to supplement textbook material with a series of five “data stories” exploring different studies done on the forest. The effects of acid rain, deforestation, dilutification, and calcium experimentation all come alive on the website’s interactive graphs, demonstrating the challenges and changes this forest has faced since studies on it first began.

The team hopes to have created a useful and user-friendly interface that’s easy for anyone to use. By bringing data out of the laboratory and onto the webpage, this project brings us one step further in the movement to make research accessible to and meaningful for the entire world.

Post by Daniel Egitto

Disaster Plans and the Mentally Ill

Houston, Miami, San Juan — Category 5 hurricanes, the most destructive storm systems, have made a record-breaking 6 landfalls this year. This represents a quarter of the total category 5 hurricane landfalls that the Atlantic has seen since 1851.

With statistics like these, disaster relief plans are becoming more important than ever. But do these plans do enough for marginalized groups, specifically the mentally ill?

Allan K. Chrisman, M.D., believes more can be done. As a career psychiatrist who has been deployed by the Red Cross in the aftermath of storms like Katrina and Matthew, Chrisman has seen and experienced the importance of including the mentally ill in disaster relief plans.

At his talk to physicians in Duke’s Hospital on Sept. 28, Chrisman, an emeritus  professor at Duke, highlighted specific aspects of disaster relief that are not doing enough for the one in four U.S. adults suffering from mental illness each year.

According to Chrisman, this part of the population is often less prepared for impending storms. When storms do hit, existing symptoms can be exacerbated, or new symptoms can appear.  Disruption of routine, inconsistency of taking medication and the overall stress that comes with emergencies all contribute to this exacerbation of mental illness.

While the Red Cross has an “everyone is welcome,” policy for their shelters, not being able to identify the needs of the mentally ill seeking sanctuary limits the organization’s ability to help. As a deployed psychiatrist, Chrisman worked with displaced mentally ill people to ensure they continued to get the care they needed even during the stress of a weather emergency.

One tool used by Chrisman and his colleagues to help these groups is the C-MIST framework. This system categorizes “functional-based needs” based on communication, maintaining health, independence, service and support, and transportation. It seeks to ensure not only that individuals are being given an option for a safe space in the wake of emergencies, but also that these spaces offer them the specific services they require.

Chrisman emphasized the need “to provide round-the-clock access to qualified mental health resources.”

He said that by following these inclusive protocols, disaster relief programs can do even more to protect the most vulnerable parts of the population.

By Sarah Haurin

New Blogger Daniel Egitto: Freshman and Aspiring Journalist

Hi, I’m Daniel Egitto, a freshman at Duke with an intended major in English. I’m from Florida, and I spent the better part of my childhood growing up in some small, quiet suburbs surrounded by pretty much nothing but farms, rivers and untouched forest for acres and acres around. Out where I lived, it was nearly impossible to ever get more than a few miles from the wilderness that still covers a huge chunk of Florida today. Mazes of pine and oak forests made up my backyard, crisscrossed with bubbling springs and dotted with the occasional deer, coyote or alligator peeking out of the trees. It was there in those Florida woods, kayaking and hiking through some of America’s last wild places, that I first fell in love with the natural world and the conservationist issues facing our country today.

Daniel Egitto in a tree

Incoming freshman Daniel Egitto is pursuing an English major for a future career in journalism.

Because despite its treasure trove of both scientific and recreational gems, Florida has a truly terrible history of protecting natural heritage. Governor Rick Scott, for example, brought in a gag rule on the words “climate change” appearing in any state environmental document, while at the same time the well-being of those springs I came to know and love in my childhood has faced rising challenges due to unsustainable farming practices and water use policies. An unacceptable number of Americans are still unaware of both the struggles and opportunities this country’s biodiversity has always offered, and because of this I have come to develop a passion for both science education and topical journalism in general.

In high school my experiences led me to reach out into my community, engaging with children about basic scientific concepts at a local robotics camp and “Science Saturdays” series. I also became heavily involved with my school’s newly-founded newspaper, where I helped shift its focus onto important yet poorly-publicized struggles of both our society and our world as a whole.

As I enter into my first year on Duke campus, I hope to work with the Duke Research Blog to further both my interests and my goals. I’m currently pursuing a future career in journalism, and by working with Duke Research I hope we can all help nurture a more informed and understanding world.

In addition to my work with this blog, I also intend to get involved with the Chronicle and Me Too Monologues on campus.

New Blogger Nina Cervantes: Economics Senior from the Sunny State

Hi all!  My name is Nina Cervantes and I’m a senior economics major at Duke also pursuing a certificate in markets and management studies and a minor in history. I’m from a town about 30 minutes away from San Diego, California and am blessed to say only about 20 minutes away from the beach!

Something that really defines me is my desire to challenge many sides of myself in the hopes of developing into a well-rounded individual. Whether it be challenging my creative side by writing (for both school and on the personal blog that I recently started), or by challenging my quantitative side by participating as a research assistant in the Duke Environmental Justice lab leveraging data to reveal environmental injustices, I love to bolster as many facets of myself as possible.

Nina Cervantes hitting a volleyball

Nina Cervantes playing volleyball at the beach.

This desire led me to working a Marketing Communications internship this past summer at RTI International, the original research institute in North Carolina’s Research Triangle Park. During the course of my internship, part of my role was communicating sometimes dense research into digestible content marketing pieces for potential clients and the general public that might be perusing RTI’s work. This included connecting with subject matter experts who had actually conducted the studies and working through the material to be able to understand it well enough to communicate its power and potential to the world. This aspect of my internship was definitely one of the most rewarding parts, so blogging for Duke Research seemed like the perfect opportunity for me to transfer the skills I learned at RTI International, while also continuing to build my communication and analytical skills.

In addition to writing for the Duke Research Blog, I am also heavily involved with the Duke Women’s Basketball program and this is the 3rd year I have participated as a student manager. Like I said previously, I also started working on the research team for Duke’s Environmental Justice Lab last year and am very excited to start seeing some results of my first research experience at Duke!

Looking forward, I’m excited to have the opportunity to meet some really influential leaders in the research world, connect to the power and potential of their research, and then share it with you all in the best way I can. To me, there are few things more rewarding than sharing the power of a new discovery!

Post by Nina Cervantes

A Summer Well-Spent In and Around Toxic Waste Sites

Edison, NJ is just 40 miles from Manhattan and 70 miles from Philadelphia. It’s also home to the US EPA’s Emergency Response Team (ERT), where I spent the summer as an intern.

Stella Wang and an EPA contractor used lifts to test oil being pumped out of these huge tanks. It was found to be contaminated with mercury, benzene and lead.

At the start of my internship, I had little idea of how ERT functioned. Unlike the 10 regional offices of the Environmental Protection Agency, ERT is a “headquarters” or Washington, DC-based group, which means it responds to incidents all over the country such as oil spills, train derailments, and natural disasters.

For example, my mentor, an air specialist who generally works from his cubicle in Edison, aided in the immediate aftermath of Hurricane Katrina by employing equipment to analyze air for hazardous pollutants. Other ERT team members have conducted sediment sampling to expedite the hazardous waste removal process, given consultation advice to other EPA members for long-term remedial site work, and led the innovation of new technology.

I was able to shadow and help my mentor and fellow ERT members with their Superfund site removal work. I created accurate maps showing injection well locations, learned how to use air monitoring instruments, and helped perform chemical lab experiments that will be employed for future site analysis.

Perhaps my favorite part of the internship was traveling to a myriad of active sites. At these sites, I not only got to see how ERT members worked with EPA’s on-scene coordinators, but also observed the physical removal and remediation processes. I was fortunate to visit a particular site multiple times — I witnessed the removal of contaminated oil from an abandoned lot as the summer progressed.

Stella Wang (left) and an EPA air specialist calibrating a air monitoring instrument before a public event.

At another site, I saw the beginning of an injection process intended to prevent the contamination of underground drinking water by hexavalent chromium. By pumping sodium lactate into underground wells, the hexavalent is converted into the insoluble and benign chromium-3 ion. If the injection process works, the community will no longer be threatened by this particular hazardous material.

ERT also acts in anticipation of possible contamination to protect the public. At largely attended events like the Democratic National Convention, a few ERT members will arrive with monitoring equipment. They pride themselves in their real-time data collection for a reason: throughout the event, they can detect whether a contaminant has been released and immediately instigate an emergency response to protect attendees.

Thanks to various ERT members, I felt accepted and welcome. They were open and patient with my never-ending questions about their career paths and other things. They’ve graciously taken me out to lunch so that they could get to know me better, ensuring my inclusion in their small community.

Of course, the experiences I had this summer, while brief, have taught me a tremendous amount and I have a clearer sense of how this division of the US federal government functions. But, it would be inaccurate and unjust to omit the impact that its people made on me.

Stella Wang, Duke 2019Guest post by Stella Wang, Class of 2019

Mapping Electricity Access for a Sixth of the World's People

DURHAM, N.C. — Most Americans can charge their cell phones, raid the fridge or boot up their laptops at any time without a second thought.

Not so for the 1.2 billion people — roughly 16 percent of the world’s population — with no access to electricity.

Despite improvements over the past two decades, an estimated 780 million people will still be without power by 2030, especially in rural parts of sub-Saharan Africa, Asia and the Pacific.

To get power to these people, first officials need to locate them. But for much of the developing world, reliable, up-to-date data on electricity access is hard to come by.

Researchers say remote sensing can help.

For ten weeks from May through July, a team of Duke students in the Data+ summer research program worked on developing ways to assess electricity access automatically, using satellite imagery.

“Ground surveys take a lot of time, money and manpower,” said Data+ team member Ben Brigman. “As it is now, the only way to figure out if a village has electricity is to send someone out there to check. You can’t call them up or put out an online poll, because they won’t be able to answer.”

India at night

Satellite image of India at night. Large parts of the Indian countryside still aren’t connected to the grid, but remote sensing, machine learning could help pinpoint people living without power. Credits: NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from Miguel Román, NASA’s Goddard Space Flight Center

Led by researchers in the Energy Data Analytics Lab and the Sustainable Energy Transitions Initiative, “the initial goal was to create a map of India, showing every village or town that does or does not have access to electricity,” said team member Trishul Nagenalli.

Electricity makes it possible to pump groundwater for crops, refrigerate food and medicines, and study or work after dark. But in parts of rural India, where Nagenalli’s parents grew up, many households use kerosene lamps to light homes at night, and wood or animal dung as cooking fuel.

Fires from overturned kerosene lamps are not uncommon, and indoor air pollution from cooking with solid fuels contributes to low birth weight, pneumonia and other health problems.

In 2005, the Indian government set out to provide electricity to all households within five years. Yet a quarter of India’s population still lives without power.

Ultimately, the goal is to create a machine learning algorithm — basically a set of instructions for a computer to follow — that can recognize power plants, irrigated fields and other indicators of electricity in satellite images, much like the algorithms that recognize your face on Facebook.

Rather than being programmed with specific instructions, machine learning algorithms “learn” from large amounts of data.

This summer the researchers focused on the unsung first step in the process: preparing the training data.

Phoenix power plant

Satellite image of a power plant in Phoenix, Arizona

Fellow Duke students Gouttham Chandrasekar, Shamikh Hossain and Boning Li were also part of the effort. First they compiled publicly available satellite images of U.S. power plants. Rather than painstakingly framing and labeling the plants in each photo themselves, they tapped the powers of the Internet to outsource the task and hired other people to annotate the images for them, using a crowdsourcing service called Amazon Mechanical Turk.

So far, they have collected more than 8,500 image annotations of different kinds of power plants, including oil, natural gas, hydroelectric and solar.

The team also compiled firsthand observations of the electrification rate for more than 36,000 villages in the Indian state of Bihar, which has one of the lowest electrification rates in the country. For each village, they also gathered satellite images showing light intensity at night, along with density of green land and other indicators of irrigated farms, as proxies for electricity consumption.

Using these data sets, the goal is to develop a computer algorithm which, through machine learning, teaches itself to detect similar features in unlabeled images, and distinguishes towns and villages that are connected to the grid from those that aren’t.

“We would like to develop our final algorithm to essentially go into a developing country and analyze whether or not a community there has access to electricity, and if so what kind,” Chandrasekar said.

Electrification map of Bihar, India

The proportion of households connected to the grid in more than 36,000 villages in Bihar, India

The project is far from finished. During the 2017-2018 school year, a Bass Connections team will continue to build on their work.

The summer team presented their research at the Data+ Final Symposium on July 28 in Gross Hall.

Data+ is sponsored by Bass Connections, the Information Initiative at Duke, the Social Science Research Institute, the departments of mathematics and statistical science and MEDx. This project team was also supported by the Duke University Energy Initiative.

Writing by Robin Smith; video by Lauren Mueller and Summer Dunsmore

Page 1 of 8

Powered by WordPress & Theme by Anders Norén