Duke Research Blog

Following the people and events that make up the research community at Duke.

Author: Will Sheehan (Page 1 of 2)

Looking at Cooking as a Science Experiment

From five-star restaurants to Grandma’s homemade cookies, cooking is an art that has transformed the way we taste food. But haven’t you ever wondered how cooking works? How in the world did people discover how to make Dipping Dots or Jell-O?

Patrick Charbonneau is an Associate Professor of Chemistry here at Duke and last Friday he gave a delicious talk about the science of cooking (with samples!).

Patrick Charbonneau, Duke Chemist and Foodie

Around 10,000 years ago humans discovered that by fermenting milk you could turn it into yogurt, something that is more transportable, lasts longer, and digests easier. In the 1600s a new cooking apparatus called the “bone digester” (pressure cooker) allowed you to cook things faster while enhancing the flavor. When the 1800s came around, a scientist named Eben Horsford discovered that adding an acid with sodium bicarbonate creates baking powder. Soon enough scientific and kitchen minds started to collaborate, and new creations were made in the culinary world. As you can see, a lot of fundamental cooking techniques and ingredients we use today are a product of scientific discoveries.

Old-school pressure cookers. Forerunners of the Instant Pot.

Whisked Toffee

Freezer toffee, AKA caramel

A huge part of cooking is controlling the transformation of matter, or “a change in phase.” Professor Charbonneau presented a very cool example demonstrating how controlling this phase shift can affect your experience eating something. He made the same toffee recipe twice, but he changed it slightly as the melted toffee mixture was cooling. One version you stick straight in the freezer; the other you whisk as it cools. The whisked version turns out crumbly and sweeter; the other one turns into a chewy, shiny caramel. The audience got samples, and I could easily tell how different each version looked and tasted.

Charbonneau explained that while both toffees have the same ingredients, most people prefer the crumbly one because it seems sweeter (I agreed). This is because the chewier one takes longer to dissolve onto your taste buds, so your brain registers it as less sweet.

I was fascinated to learn that a lot of food is mostly just water. It’s weird to think a solid thing could be made of water, yet some foods are up to 99% water and still elastic! We have polymers — long repeating patterns of atoms in a chain — to thank for that. In fact, you can turn almost any liquid into a gel. Polymers take up little space but play a vital role in not only foods but other everyday objects, like contact lenses.

Charbonneau also showed us a seemingly magical way to make cake. He took about half a Dixie cup of cake batter, stuck a whipping siphon charged with nitrous oxide inside it for a second, then threw it in the microwave for thirty seconds. Boom, easy as cake. Out came a cup full of some pretty darn good fluffy chocolate cake. The gas bubbles in the butter and egg batter expand when they are heated up, causing the batter to gel and form a solid network.

Professor Charbonneau is doing stuff like this in his class here at Duke, “The Chemistry and Physics of Cooking,” all the time.

In the past ten years a surge in science-cooking related classes has emerged. The experiments you could do in a kitchen-lab are so cool and can make science appealing to those who might normally shy away from it.

Another cool thing I learned at the stations outside of Charbonneau’s talk was that Dipping Dots are made by dripping melted ice cream into a bowl of liquid nitrogen. The nitrogen is so cold that it flash-freezes the ice cream droplet into a ball-like shape!

Post by Will Sheehan

Will Sheehan

Artificial Intelligence Knows How You Feel

Ever wondered how Siri works? Afraid that super smart robots might take over the world soon?

On April 3rd researchers from Duke, NCSU and UNC came together for Triangle Machine Learning Day to provoke everyone’s curiosities about the complex field that is Artificial Intelligence. A.I. is an overarching term for smart technologies, ranging from self-driving cars to targeted advertising. We can arrive at artificial intelligence through what’s known as “machine learning.” Instead of explicitly programming a machine with the basic capabilities we want it to have, we can make it so that its code is flexible and adapts based on information it’s presented with. Its knowledge grows as a result of training it. In other words, we’re teaching a computer to learn.

Matthew Philips is working with Kitware to get computers to “see,” also known as “machine vision.” By providing thousands and thousands of images, a computer with the right coding can learn to actually make sense of what an image is beyond different colored pixels.

Machine vision has numerous applications. An effective way to search satellite imagery for arbitrary objects could be huge in the advancement of space technology – a satellite could potentially identify obscure objects or potential lifeforms that stick out in those images. This is something we as humans can’t do ourselves just because of the sheer amount of data there is to go through. Similarly, we could teach a machine to identify cancerous or malignant cells in an image, thus giving us a quick diagnosis if someone is at risk of developing a disease.

The problem is, how do you teach a computer to see? Machines don’t easily understand things like similarity, depth or orientation — things that we as humans do automatically without even thinking about. That’s exactly the type of problem Kitware has been tackling.

One hugely successful piece of Artificial Intelligence you may be familiar with is IBM’s Watson. Labeled as “A.I. for professionals,” Watson was featured on Sixty Minutes and even played Jeopardy on live television. Watson has visual recognition capabilities, can work as a translator, and can even understand things like tone, personality or emotional state. And obviously it can answer crazy hard questions. What’s even cooler is that it doesn’t matter how you ask the question – Watson will know what you mean. Watson is basically Siri on steroids, and the world got a taste of its power after watching it smoke its competitors on Jeopardy. However, Watson is not to be thought of as a physical supercomputer. It is a collection of technologies that can be used in many different ways, depending on how you train it. This is what makes Watson so astounding – through machine learning, its knowledge can adapt to the context it’s being used in.

Source: CBS News.

IBM has been able to develop such a powerful tool thanks to data. Stacy Joines from IBM noted, “Data has transformed every industry, profession, and domain.” From our smart phones to fitness devices, data is being collected about us as we speak (see: digital footprint). While it’s definitely pretty scary, the point is that a lot of data is out there. The more data you feed Watson, the smarter it is. IBM has utilized this abundance of data combined with machine learning to produce some of the most sophisticated AI out there.

Sure, it’s a little creepy how much data is being collected on us. Sure, there are tons of movies and theories out there about how intelligent robots in the future will outsmart humans and take over. But A.I. isn’t a thing to be scared of. It’s a beautiful creation that surpasses all capabilities even the most advanced purely programmable model has. It’s joining the health care system to save lives, advising businesses and could potentially find a new inhabitable planet. What we choose to do with A.I. is entirely up to us.

Post by Will Sheehan

Will Sheehan

Using Drones to Feed Billions

A drone flying over an agricultural field

Drones revolutionizing farming

As our population continues its rapid growth, food is becoming increasingly scarce. By the year 2050, we will need to double our current food production to feed the estimated 9.6 million mouths that will inhabit Earth.

A portrait of Maggie Monast

Maggie Monast

Thankfully, introducing drones and other high-tech equipment to farmers could be the solution to keeping our bellies full.

Last week, Dr. Ramon G. Leon of North Carolina State University and Maggie Monast of the Environmental Defense Fund spoke at Duke’s monthly Science & Society Dialogue, sharing their knowledge of what’s known as “precision agriculture.” At its core, precision agriculture is integrating technology with farming in order to maximize production.

It is easy to see that farming has already changed as a result of precision agriculture. The old family-run plot of land with animals and diverse crops has turned into large-scale, single-crop operations. This transition was made possible through the use of new technologies — tractors, irrigation, synthetic fertilizer, GMOs, pesticides — and is no doubt way more productive.

A portrait of Dr. Ramon G. Leon

Dr. Ramon G. Leon

So while the concept of precision agriculture certainly isn’t new, in today’s context it incorporates some particularly advanced and unexpected tools meant to further optimize yield while also conserving resources.

Drones equipped with special cameras and sensors, for example, can be flown over thousands of acres and gather huge amounts of data. This data produces a map of  things like pest damage, crop stress and yield. One image from a drone can easily help a farmer monitor what’s going on: where to cut back on resources, what needs more attention, and where to grow a certain type of crop. Some drones can even plant and water crops for you.

Blue River’s “See & Spray” focuses on cutting back herbicide use. Instead of spraying herbicide over an entire field and wasting most of it, this machine is trained to spray weeds directly, using 10% of the normal amount of herbicide.

Similarly, another machine called the Greenseeker can decide where, when and how much fertilizer should be applied based on the greenness of the crop. Fertilizing efficiently means saving money and emitting less ozone-depleting nitrous oxide.

As you can see, fancy toys like these are extremely beneficial, and there are more out there. They enable farmers to make faster, better decisions and understand their land on an unprecedented level. At the same time, farmers can cut back on their resource usage. This should eventually result in a huge productivity boom while helping out the environment. Nice.

One problem preventing these technologies from really taking off is teaching the farmers how to take advantage of them. As Dr. Leon put it, “we have all these toys, but nobody knows how to play with them.” However, this issue can resolved with enough time. Some older farmers love messing around with the drones, and the next generations of farmers will have more exposure to this kind of technology growing up. Sooner or later, it may be no big deal to spot drones circling above fields of wheat as you road trip through the countryside.

A piece of farm equipment in a field

A Greenseeker mounted on a Boom Sprayer

Precision agriculture is fundamental to the modern agricultural revolution. It increases efficiency and reduces waste, and farming could even become a highly profitable business again as the cost for these technologies goes down. Is it the solution to our environmental and production problems? I guess we’ll know by 2050!

Will Sheehan

Post By Will Sheehan

Student Ingenuity vs. Environmental Issues (like Cow Farts)

Lots of creative and potentially life changing ideas filled the Fitzpatrick CIEMAS atrium last weekend. From devices meant to address critical environmental issues such as global warming and lion fish invasiveness, to apps that help you become more sustainable, Duke’s Blueprint tech ideation conference showcased some awesome, good ol’ student-led ingenuity.

These bright students from around Durham (mostly from Duke) competed in teams to create something that would positively impact the environment. The projects were judged for applicability, daringness, and feasibility, among other things. During the Project Expo, all teams briefly presented to viewers like a school science fair.

One of the projects I liked a lot was called Entropy—a website with your own personal plant (I named mine “Pete”) that grows or dies depending on your sustainable actions throughout the day. The user answers simple yes or no questions, such as, “did you turn off the lights today?”

You can also complete daily goals to get accessories like a hat or mustache for your plant. The website connects to Facebook, so you can track your friends’ progress and see how green they’re living. Ultimately it’s just a good, fun way to keep your sustainability in check. Pete was looking super-cute after I spammed the yes button.

Another interesting innovation posed a solution to the difficulty of catching lion fish. Humans are a lion fish’s only predator, and we hunt them by spear fishing. Since lion fish are highly invasive, catching them en-masse could seriously benefit the biodiversity of the ocean (plus, they taste delicious). So one team came up with a canopy like contraption that attracts lion fish to hang out underneath it, and then snatches them all up at once like a net. Pretty neat idea, and if it was implemented on a large scale could be a huge benefit to the Earth’s oceans (and restaurants)!

After the expo, the top seven teams were selected and given three minutes to present to the judges and audience as a whole.

Every project was astounding. “Collide-o-scope” came up with a simple Arduino-based device to transmit elephant seismic activity to train drivers nearby in order to reduce the number of train-elephant collisions in India and Sri Lanka — currently a huge problem, for both us as humans and the elephant population.

Another team, “Manatee Marker,” proposed a system of solar powered buoys to detect manatees, with the hope of reducing frequent manatee-boat accidents. Considering that manatees are quiet, basically camouflaged, and thermally invisible, this was quite an ingenious task.

Perhaps my favorite project, “Algenie” stole the show. Methane gas is a huge factor to global warming — around twenty-five times more potent as a heat-trapping gas than Carbon Dioxide — and a lot of it comes from cow farts. However, we’ve recently discovered that putting seaweed in cow feed actually lowers methane emissions almost entirely! So this team came up with a vertical, three-dimensional way to grow algae — opposed to “two-dimensionally” growing across a pond — that would maximize production. Global warming is obviously a massive issue right now and Algenie is looking to change that. They ended up getting first place, and winning a prize of $1,000 along with GoPros for every team member.

Algenie’s prototype

At the end of the day, it wasn’t about the prize money. The competition was meant to generate creative and practical ideas, while promoting making a difference. After  attending the expo I felt more aware of all the environmental issues and influenced to help out. Even if you don’t feel like spending the time drafting up a crazy buoy manatee-detecting system, you can still do your part by living sustainably day to day.

Blueprint has done an awesome job of spurring young, enthusiastic students towards helping this planet — one cow fart at a time.

Post by Will Sheehan; Will SheehanPictures from Duke Conservation Tech

“I Heart Tech Fair” Showcases Cutting-Edge VR and More

Duke’s tech game is stronger than you might think.

OIT held an “I Love Tech Fair” in the Technology Engagement Center / Co-Lab on Feb. 6 that was open to anyone to come check out things like 3D printers and augmented reality, while munching on some Chick-fil-a and cookies. There was a raffle for some sweet prizes, too.

I got a full demonstration of the 3D printing process—it’s so easy! It requires some really expensive software called Fusion, but thankfully Duke is awesome and students can get it for free. You can make some killer stuff 3D printing, the technology is so advanced now. I’ve seen all kinds of things: models of my friend’s head, a doorstop made out of someone’s name … one guy even made a working ukulele apparently!

One of the cooler things at the fair was Augmented Reality books. These books look like ordinary picture books, but looking at a page through your phone’s camera, the image suddenly comes to life in 3D with tons of detail and color, seemingly floating above the book! All you have to do is download an app and get the right book. Augmented reality is only getting better as time goes on and will soon be a primary tool in education and gaming, which is why Duke Digital Initiative (DDI) wanted to show it off.

By far my favorite exhibit at the tech fair was  virtual reality. Throw on a headset and some bulky goggles, grab a controller in each hand, and suddenly you’re in another world. The guy running the station, Mark McGill, had actually hand-built the machine that ran it all. Very impressive guy. He told me the machine is the most expensive and important part, since it accounts for how smooth the immersion is. The smoother the immersion, the more realistic the experience. And boy, was it smooth. A couple years ago I experienced virtual reality at my high school and thought it was cool (I did get a little nauseous), but after Mark set me up with the “HTC Vive” connected to his sophisticated machine, it blew me away (with no nausea, too).

I smiled the whole time playing “Super Hot,” where I killed incoming waves of people in slow motion with ninja stars, guns, and rocks. Mark had tons of other games too, all downloaded from Steam, for both entertainment and educational purposes. One called “Organon” lets you examine human anatomy inside and out, and you can even upload your own MRIs. There’s an unbelievable amount of possibilities VR offers. You could conquer your fear of public speaking by being simulated in front of a crowd, or realistically tour “the VR Museum of Fine Art.” Games like these just aren’t the same were you to play them on, say, an Xbox, because it simply doesn’t have that key factor of feeling like you’re there. In Fallout 4, your heart pounds fast in your chest as you blast away Feral Ghouls and Super Mutants right in front of you. But in reality, you’re just standing in a green room with stupid looking goggles on. Awesome!

There’s another place on campus — the Bolt VR in Edens residence hall — that also has a cutting-edge VR setup going. Mark explained to me that Duke wants people to get experience with VR, as it will soon be a huge part of our lives. Having exposure now could give Duke graduates a very valuable head start in their career (while also making Duke look good). Plus, it’s nice to have on campus for offering students a fun break from all the hard work we put in.

If you’re bummed you missed out, or even if you don’t “love tech,” I recommend checking out the Tech Fair next time — February 13, from 6-8pm. See you there.

Post By Will Sheehan

Will Sheehan

Exercise is Good for Your Head and Might Fight Alzheimer’s

Recent studies have confirmed that exercising is just about the best thing you can do for your brain health.

Dan Blazer, MD is a psychiatrist who studies aging.

On Dec. 1 during the DIBS event, Exercise and the Brain, Duke psychiatrist Dan Blazer reported findings about the relationship between physical activity and brain health. After lots of research, study groups at the National Academy of Medicine  concluded that their number one recommendation to those experiencing “cognitive aging” is exercise.

Processing speed, memory, and reasoning decline over time in every one of us. But thankfully, simple things like riding a bike or playing pick up basketball can help keep our minds fresh and at their best possible level.

One cool thing a committee conducting the research did to advertise their findings was create keychains saying “take your brain for a walk.” There’s a little image of a brain with legs walking. They wanted to get the word out that physical activity has another benefit than just staying in shape — it can also support your cognitive health.

However, the committees are having a hard time motivating people to exercise in the first place. Even after hearing their findings, it’s not like people everywhere are suddenly going to get off their couches and hit the gym. A world with healthier people — both physically and mentally — sounds nice, but getting there is much more than a matter of publishing these studies.

And, as always, too much of a good thing can make it harmful. While there does seem to appear a potential “biological gradient,” where greater physical activity correlated with better outcomes, you can’t just run a marathon every day of the week and then ~boom~ aging hardly affects your brain anymore. You don’t want to do that to yourself. Just get a healthy amount of exercise and you’ll be keeping your brain young and smart.

One of the best parts about why exercising is so great for you and your brain is because it helps you sleep (and we all know how important sleep is). If you ever have trouble going to bed or are having disrupted sleeps, physical activity could be your savior. It’s a much healthier option for your brain than taking stuff like melatonin, and you’ll get fit in the process.

Regarding exercising and Alzheimer’s, a disease where vital mental functions deteriorate, studies have unfortunately been insufficient to conclude anything. But if getting Alzheimer’s is your worst fear, I’m sure staying active can’t hurt as a preventative. More research on this topic is being conducted as we speak.

When is the best time to start exercising, in order to reap the maximum cognitive benefits, you ask? Well, the sooner the better. As Blazer said, “exercising helps in maintaining or improving cognitive function in later life,” so you better get on that. Go outside and get moving!

Will Sheehan      Post by Will Sheehan

 

 

Duke’s Solar Benches Can Charge Your Phone

Aren’t the benches at Duke great? They’re nice structures where you can chill with your friends, eat your Panda Express, get homework done, or maybe even nap. But haven’t you ever been working on a bench outside the Bryan Center around dusk, and it’s getting hard to see those Econ notes? Or cursed under your breath because it’s such a beautiful day outside, but your laptop is about to die?

Benches with solar power have been installed in three spots, including the McClendon Bridge.

Yeah, me too.

That’s exactly what inspired Gerry Chen, a Junior here at Duke, to create the “Solar Bench.” With the support of Smart Home and ESG, Gerry adapted an ordinary swinging bench at Duke into one with iPhone chargers and fully controllable LED strip lights. So fear no more! Now you can send all the snaps you want on your phone without worries of draining your battery, or grind out hours of multi homework while watching the sunset. The best part? It’s all solar powered!

November 6-9 was Energy Week, and on Monday mechanical engineer Shomik Verma presented the “Smart Home Demo,” which featured the inception, design, and implementation of the Solar Bench idea (1). The main motive behind the benches is “to increase the vision and awareness of renewable energy around Duke.” In this sense Gerry took something that started off as a cool way to stay outside after dark, and expanded it into a mode of adding renewable energy to Duke’s campus.

Beneath the canopy is a weatherproof box with a power controller and a bunch of dongles.

These benches are a great addition, especially now that it gets dark at like 5:40 (I mean, come on). Right now there’s three of them—one on the McClendon Bridge, one in the Few Quad, and one at the Smart Home (which you should check out, too—there’s tons of cool stuff there).

It kind of seems like these benches can’t do that much, but keep in mind this is still a relatively new project which started in May. One upgrade that could be happening soon is implementing a way to monitor energy and bench usage. But Gerry’s also got some bigger plans in store. With “Gen 2” he hopes to add more durability, Wifi, laptop chargers, and even motion sensing technology. Now that’s a decked-out bench! There’s more solar benches to come, too. Gerry hopes to make the installation easier and ultimately increase production, especially on East Campus.

Right now, it costs about $950 to make one of these solar benches. Each one has a 250 Watt solar panel sitting on the roof that absorbs energy from the sun and stores it in a big battery at one end of the bench. Underneath the canopy, there’s a thing called a “charge controller” that takes the energy from the sun and battery and distributes it appropriately to the lights and chargers. That’s also where the on / off switch is, as well as knobs to adjust the brightness and color of the lights. On a full charge, the battery can last for four days with no more additional sunlight. Even late in the night, the bench has you covered.

Will demonstrates a proper solar-powered chill.

That’s what’s so cool about solar energy. It almost seems too easy. These benches are saving energy while also using a renewable source. In the process, they’re doing their part to inspire Duke to become a greener campus. In Shomik’s words, this is the sort of technology “that will revolutionize the daily lives of people throughout the world.”

Free, clean energy, that just powers this bad-ass bench nonstop? Who knew a star 93 million miles away could be so useful?!

Will SheehanBy Will Sheehan

The Internet of Things: Useful or Dangerous?

The Internet of Things has tons of possibilities and applications, but some of them could be malicious.

This week, the Duke Digital Initiative (DDI) held an open house in the Technology Engagement Center (TEC) where you could go in and check out the new equipment they’ve installed. They all have one central theme: the Internet of Things (IoT). What is the Internet of Things? It’s pretty simple. The Internet of Things “refers to the interconnectivity of devices on the internet.” In other words, if something can connect to things like wifi, social media, or your phone, it makes it an IoT device!

A classic example of an IoT device I’m sure you’re all familiar with is the Amazon Echo. You could ask it to order you something, look up a word, what the weather is like… you get the idea. Echo and Alexa are just one kind of IoT. We’re also talking lightbulbs, outlets, robots, thermostats…  Eventually your whole house might become an IoT device. The future is here!

Devices such as the Echo Dot, Philips Hue Smart Lightbulb, Samsung Smart Outlet, Meccano Robot, and Swipe-O-Matic are all showcased in the TEC. It’s part of the DDI’s “IoT Initiative” this year to give Duke faculty, staff, and students a better understanding of the power of IoT devices. As one expert on site said, “the devices are everywhere.”

The Co-Lab had actually hacked the Echo Dot and programmed in some of their own commands, so it was responding to questions like “Who is Maria?” and “Where is this place?”

The Meccano Robot (named “Techy”) was fun to mess around with, and a big hit among attendees. He’s more of a consumer-friendly toy, but just by using voice-commands I got him to give me a high-five and even tango.

Me, cheesin’ with Techy

The smart lightbulb was low-key the coolest thing there. By using multiple lights you can customize different “environments” like a TV watching environment or party environment, and the lights will change color/brightness accordingly with just a tap on your phone. The smart outlets were cool, too. They can be controlled remotely from your phone and even have timers set.

The student-built Swipe-O-Matic added me to the Co-Lab mailing list, just by swiping my Duke card.

One device — the “Swipe-O-Matic”—was actually invented by Duke students, and we used it to add my name to the Co-Lab mailing list just by swiping my Duke Card.

While these devices are all fun and useful, one expert I spoke with noted “there’s lots of consequences to using them—good, and bad.”

As they become more consumer available, if your machine is particularly vulnerable, bad people could hack into parts of your life. Think about a smart door lock. It’s super useful—you can create virtual keys for family members, let someone in remotely, or give your housekeepers access at certain times of the day. However, this could obviously go pretty badly if someone were to hack it and enter your house.

But don’t worry. As technology progresses, IoT devices will eventually be all around us. While security is an issue, these devices have way more good to them than bad. “Snapchat spectacles” are sunglasses that can record video and upload it straight to the Snapchat app. Someone at the TEC had the idea for “smart window blinds” that know when to open and close. Imagine a plant pot that sent you a notification when it needed to be watered. The uses are seemingly endless!

Will SheehanPost by Will Sheehan

Smoking Weed: the Good, Bad and Ugly

DURHAM, N.C. — Research suggests that the earlier someone is exposed to weed, the worse it is for them.

Very early on in our life, we develop basic motor and sensory functions. In adolescence, our teenage years, we start developing more complex functions — cognitive, social and emotional functions. These developments differ based on one’s experience growing up — their family, their school, their relationships — and are fundamental to our growth as healthy human beings.

This process has shown to be impaired when marijuana is introduced, according to Dr. Diana Dow-Edwards of SUNY Downstate Medical Center.

Sure, a lot of people may think marijuana isn’t so bad…but think again. At an Oct. 11 seminar at Duke’s Center on Addiction & Behavior Change, Dow-Edwards enlightened those who attended with correlations between smoking the reefer and things like IQ, psychosis and memory.

(https://media.makeameme.org/created/Littering-and-SMOKIN.jpg)

Dow-Edwards is currently a professor of physiology and pharmacology and clearly knows her stuff. She was throwing complicated graphs and large studies at us, all backing up her primary claim: the “dose-response relationship.” Basically the more you smoke (“dose”), the more of a biological effect it will have on you (“response”).

Looking at pot users after adolescence showed that occasionally smoking did not cause a big change in IQ, and frequently smoking affected IQ a little. However, looking at adults who smoked during adolescence correlated to a huge drop of around 7 IQ points for infrequent smokers and 10 points for frequent smokers. Here we see how both age and frequency play a role in weed’s effect on cognition. So if you are going to make the choice to light up, maybe wait until your executive functions mature around 24 years old.

Smoking weed earlier in life also showed a strong correlation with an earlier onset of psychosis, a very serious mental disorder in which you start to lose sense of reality. Definitely not good. I’m not trynna get diagnosed with psychosis any time soon!

One perhaps encouraging study for you smokers out there was that marijuana really had no effect on long-term memory. Non-smokers were better at verbal learning than heavy smokers…until after a three week abstinence break, where the heavy smokers’ memories recovered to match the control groups’. So while smoking weed when you have a test coming up maybe isn’t the best idea, there’s not necessarily a need to fear in the long run.

(Hanson et al, 2010)

A similar study showed that signs of depression and anxiety also normalized after 28 days of not smoking. Don’t get too hyped though, because even after the abstinence period, there was still “persistent impulsivity and reduced reward responses,” as well as a drop in attention accuracy.

A common belief about weed is that it is not addicting, but it actually is. What happens is that after repetitively smoking, feeling high no longer equates to feeling better than normal, but rather being sober equates to feeling worse than normal. This can lead to irritability, reduced appetite, and sleeplessness. Up to 1/2 of teens who smoke pot daily become dependent, and in broader terms, 9 percent of people who just experiment become dependent.

In summary, “marijuana interferes with normal brain development and maturation.” While it’s not going to kill you, it does effect your cognitive functions. Plus, you are at a higher risk for mental disorders like psychosis and future dependence. So choose wisely, my friends.

By Will Sheehan

Will Sheehan

Engineering Design Pod: The Newest Innovation Center

You guys have to check out the brand new Engineering Design Pod! What used to be the Blue Express Cafe, this giant oval-shaped room with huge glass windows under the LSRC is now a space for creation.

Duke Engineering Design Pod entrance

Duke Engineering’s new Design Pod for students is in the Levine Science Research Center.

There’s essentially all the equipment in there that an engineer could ever want, organized ever so beautifully in labeled drawers and hung on walls: screwdrivers, nails, hammers, saws, pool noodles… plus, there are scientific-looking tables (a.k.a. workbenches), rolly-stools, extension chords that come down from the ceiling, even TVs… this place is frickin’ awesome!

worktables in Duke Engineering Design Pod

Everything in the Design Pod is on wheels for easy reconfiguration

The “Design Pod” was created alongside Duke’s new engineering design course in order to to foster learning through hands-on experience. Students have tested out the 3D printer to create items such as a skull and even chess pieces. There’s a massive laser printer, foam cutter, panel saw, and more to come. At one end of the  room there are lots of cubbies, used for holding backpacks so they don’t get in the way. In the future, team projects will be stored there, too. Several big whiteboards on wheels are scattered around the room, which students take advantage of to outline their work and draw up ideas. Almost everything is on wheels, in fact, because as Dr. Ann Saterbak explained to me, the pod is “designed to be a flexible space.” It really is a special place, carefully geared toward collaboration and innovation. Just being in there made me want to create something!

UNC chess board

Awkward! One student made a UNC-themed chessboard in Duke’s new Design Pod.

Kyra McDonald, a freshman currently taking the engineering design course, says it’s her favorite class. The class is split up into teams and each team picks from a list of projects that they will pursue for the whole semester — examples include things like a flexible lemur feeder and a drone water sampler. What she likes so much about the class is rather than a typical lecture where you listen and take notes the whole time, this design course is all about working in your team and applying what you know to real-world scenarios.

Dr. Saterbak further developed this point. Although this is her first year at Duke, in her experience students not only get a good sense of what engineers actually do, but also leave with a “concrete, practical thing” which they are proud of and can talk about at job interviews. All the cool features that make up the design pod — the tools, the room, the flexibility — are there so Dr. Saterbak’s previous experience can become a reality for Duke students.

Duke Engineering Design Pod

A 3D printed skull in the Design Pod

Because they’re still in the pre-design phase, the freshman in the class haven’t really needed to use the space to its full potential.

But that will come as soon as the physical creation starts happening. Students in the class will have special access to the design pod off-hours, so get ready because the innovation levels are about to be booming!

Story and Photos By Will Sheehan Will Sheehan

Page 1 of 2

Powered by WordPress & Theme by Anders Norén