Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Sophie Cox Page 2 of 3

Warning: Birding Can Change You. Let It.

The Wild Ones, a student organization focused on enjoying and learning about nature, recently went to Flat River Waterfowl Compound to look for birds and my personal nemesis.

I have a nemesis (a bird that defies my searching). Actually, I have several, but I have been preoccupied with this particular nemesis for months.

I have seen an evening grosbeak exactly once, in a zoo, which emphatically does not count. For years, I have been fixated on-and-off (mostly on) with the possibility of seeing one in the wild.

Photo of a male evening grosbeak.
Evening Grosbeak” by sedge23 is licensed under CC BY 2.0.

They have thick, conical beaks. The males are sunset-colored. (But good luck finding one at sunset, even though the first recorded sighting supposedly happened at twilight, hence their name.) I daydream about flocks of them descending on my bird feeders at home or wandering onto Duke’s campus. That hasn’t happened yet (unless it has happened while I have not been watching, an excruciating possibility I will simply have to live with).

Evening grosbeaks usually live in Canada and the northern U.S., but they are known to irrupt into areas farther south. Irruptions often occur in response to lower supplies of seeds and cones in a bird’s typical range, making it possible to predict bird irruptions, at least if you’re the famous finch forecaster. (Fun fact: “irrupt” literally means “break into,” whereas “erupt” means “break out.”)

Breaking news: The grosbeaks are in Durham, and they have been since December. I will wait while you perform any necessary reactions, including screaming, jumping up and down in delight, charging outside because you simply have to go find them right now, or telling me I must be mistaken.

I am not mistaken. There is a flock of evening grosbeaks overwintering at Flat River Impoundment, 11.8 miles from Duke University. I know this because I get hourly rare bird alerts by email, and I have been receiving emails about evening grosbeaks nearly every day for almost three months. Put another way, evening grosbeaks have been actively and no doubt intentionally taunting me for weeks on end.

Adam Kosinski, Wild Ones co-president, with binoculars.

Wild Ones, a student organization I’m involved with, had been thinking of organizing a birding trip. For reasons I will not even attempt to deny, I suggested Flat River Waterfowl Impoundment. Last Sunday, seven undergraduates drove there, armed with field guides and binoculars and visions of evening grosbeaks bursting into sight (okay, maybe that was just me).

Flat River Waterfowl Impoundment.
Photo by Adam Kosinski.

The morning was chilly but sunny. Flat River is a gorgeous, swampy place full of small ponds and stretches of long grass edged with trees. As soon as we got there, we were serenaded with birdsong: the high, musical trill of pine warblers, the haunting coo of mourning doves, lilting Carolina wren songs, and squeaky-dog-toy brown-headed nuthatch calls.

Photo by Adam Kosinski.

It wasn’t long before people got to experience the frustrating side of birding. We were admiring a sparrow in a ditch, trying to guess its identity. Someone pulled out a field guide and flipped through the sparrow section only to turn back to the bird and find it gone. Birds can fly. But fortunately, we’d collectively noticed enough field marks to feel reasonably confident identifying it as a swamp sparrow.

A white-throated sparrow, one of several that was feeding on the buds of this tree. Note the white throat and yellow lores.
Photo by Lydia Cox, Wild Ones member. (We are not related, if you’re wondering.)

We found two other sparrow species later: song sparrows and white-throated sparrows. Sparrows tend to be small, brownish, and streaky, but certain features can help distinguish some of the common species around here. I’m personally not very familiar with the swamp sparrow, but it has a rusty cap and gray face. The song sparrow has brown stripes on its head, extensive streaking on its underside, and a dark spot on its breast. The white-throated sparrow has striking black-and-white stripes on the top of its head, yellow lores on its face (the spot in front of the eye), and yes, a white throat. (Just don’t rely too much on bird names for identification. Red-bellied woodpeckers definitely have red heads but usually only have red bellies if you’re rather imaginative, but beware—they’re still red-bellied, not red-headed woodpeckers. Meanwhile, there are dozens of warblers with yellow on them, but only one of them is a yellow warbler. Nashville warblers only pass through Nashville during migration, and American robins aren’t robins at all.)

A Cooper’s hawk with prey between its talons. Note the gray wings, the red barring on the bird’s underside, the dark bands on its tail, and the red eye.
Photo by Lydia Cox.

We saw Carolina chickadees flitting through trees, an Eastern phoebe doing its characteristic tail-wagging, and a Cooper’s hawk feeding on prey. Then, thrillingly, we spotted a bald eagle soaring through the sky. The bald eagle, America’s national bird since 1782, was in danger of extinction for years, largely due to the insecticide DDT, which made their eggs so thin that even being incubated by their parents could make them crack. However, the bald eagle was removed from the endangered species list in 2007, and populations have continued to increase.

A bald eagle in flight.
Photo by Lydia Cox.

Not long after the eagle sighting, we saw another flying raptor: an osprey. In fact, it must have been a good day for raptors because by the end of our trip we had recorded one osprey, two Cooper’s hawks, three bald eagles, and two red-tailed hawks.

We also saw a lot of birders—perhaps two dozen others, maybe more, not counting our own group. Each time we passed a group going in the opposite direction, I asked them if they’d found the grosbeaks.

A bald eagle nest.
Photo taken with my phone through my binoculars, a technique that is slowly teaching me a modicum of patience.

I think everyone I asked had seen them, and they were all eager to point us in the right direction. Birders like to use landmarks like “by the eagles’ nest” and “the fifth pine on the right” and  “past the crossbills.” We found the eagles’ nest, with help from some of the local birders. We think we found the fifth pine on the right, but there were a lot of pines there, so we’re not sure.

We did not find the red crossbills, another irruptive bird species overwintering here this year. (Crossbills are aptly named. The tips of their mandibles really do cross, which helps them access seeds inside cones.)

Red crossbills, another irruptive bird species, have also been overwintering at Flat River Waterfowl Impoundment, but Wild Ones did not see them.
Red Crossbills (Male)” by Elaine R. Wilson, www.naturespicsonline.com is licensed under CC BY-SA 3.0.

We found the spot where the evening grosbeaks had most recently been seen — just twenty minutes before we got there, according to the people we were talking to. We waited. We scrutinized the pine trees. We watched red-tailed hawks and bald eagles circle high above us. We admired the eagles’ nest, a huge collection of sticks high in a pine tree.

Adam Kosinski and Abby Saks, making sure there were no birds hiding underwater. (They were actually looking at interesting water creatures like crayfish and tadpoles.)

Would you like to guess what we did not find? My nemesis. Because the evening grosbeaks have devious minds and clearly flew all the way to Durham with the sole intent of hiding from me, dodging me, flying away as soon as I approached, and flying back again as soon as I was gone. (No, really. Other people reported them at Flat River that same day, both before and after our trip there.)

From left: Ethan Rehder, Barron Brothers, Sophie Cox, Gurnoor Majhail (Wild Ones co-president), and Lydia Cox.
Photo by Adam Kosinski.

Birding can be intensely frustrating. It can plant images in your mind that will haunt you and taunt you for the rest of your life. Like, for instance, the tiny blue bird I caught a brief glimpse of in the trees one early morning in Yellowstone. For years, I wondered if it could have been a cerulean warbler, but cerulean warblers don’t live in the western U.S. Or let’s talk about the green bird—yes, I swear it was green; no, I can’t prove it—that came to my bird feeders several years ago and never came back. Not while I was watching, anyway. The only thing I can think of for that one is a female painted bunting, but painted buntings aren’t usually in upstate South Carolina. (If my local volunteer eBird reviewer in South Carolina ever happens to read this, I promise I won’t report either of those mystery sightings to eBird.) Or, of course, the evening grosbeaks that flew away twenty minutes before we arrived.

Birding can also be thrilling, meditative, and by all accounts wonderful. Yes, that little blue bird in Yellowstone and the maybe-green one in my backyard are branded in my memory, as are countless more moments of maybe and almost and what if? I will never know what they were. I will probably never get over it.

But there are other moments that stick in my mind just as clearly. The bald eagle soaring above us on this Wild Ones trip. The black-capped chickadee that landed on my finger years ago while my brother and I rested our hands on a bird feeder and waited to see what would happen. My first glimpse of a black-throated blue warbler (I am so proud of whoever named that bird species), chasing an equally tiny Carolina chickadee in my backyard.

Warbler illustrations by James Ellsworth De Kay, a zoologist who described hundreds of animal species in the 19th century. From top to bottom: black-throated blue warbler, Cape May warbler, and Nashville warbler.
131. The Black-throated Blue Warbler (Sylvicola canadensis) 132. He Cape-May Warbler (Sylvicola maritima) 133. The Nashville Warbler (Syvicola ruficapilla) illustration from Zoology of New york (1842 – 1844) by James Ellsworth De Kay (1792-1851).” by Free Public Domain Illustrations by rawpixel is licensed under CC BY 2.0.

The Cape May warbler I saw with a close friend in a small field covered in purple wildflowers. The first time I heard the loud, ringing Teacher-teacher-teacher! song of the ovenbird. A blackpoll warbler, the first I’d ever seen, in a grove of trees in a swampy field that only birders seem to find reason to visit.

The moment two Carolina wrens took food from my hand for the first time. Prothonotary warblers (another nemesis bird) practically dripping from the trees on a rainy, buggy hike along a boardwalk. The downy woodpecker that landed on my gloved hand, apparently too impatient to wait for me to finish what I was doing with the suet feeder, and pecked at the suet with that sharp beak, her black tongue flicking in and out, her talons clinging to me with a trust that brought tears to my eyes.

Birding can change you. It can make your world come alive in a whole new way. It can make traveling somewhere new feel all the more magical — a new soundscape, new flashes of colors and patterns, a new set of beings that make a place what it is. In the same way, birding can make home feel all the more like home. Even when I can’t name all the birds that are making noise in my yard, there is a familiarity to their collective symphony, a comforting sense of “You are here.” I encourage you to watch and listen to birds, too, to join the quasi-cult that birding can be, to trek through somewhere wet and dark when the sky is just beginning to lighten—or to simply step outside, wherever you are, and listen and watch and wait right here and right now. You don’t even need to know their names (though once you start, good luck stopping). And you certainly don’t need a nemesis bird. In fact, your birding experience will be calmer without one. But that might not be up to you, in the end. Nemesis birds have minds of their own.

Post by Sophie Cox, Class of 2025

“Humans Are Selectively Pro-science” and Other Ways to Think About Polarization

Photo from DonkeyHotey on flickr.com. Licensed under Creative Commons license.

We live in a country where 80% of both Democrats and Republicans believe that the other political party “poses a threat that if not stopped will destroy America as we know it.” Lovely.

A 2020 study found that only 3.5% of voters would avoid voting for their preferred candidate if that candidate engaged in undemocratic behavior. In 2022, 72% of surveyed Republicans said that Democrats are more immoral than other Americans, and 83% of Democrats said that Republicans are more close-minded than other Americans. Political polarization is apparently increasing faster in the U.S. than in other democracies, but Americans aren’t just divided along political lines. Other aspects of identity, like religious beliefs, can spawn discord as well. In the U.S., 70% of atheists think religious organizations “do more harm than good,” but 44% of Americans still think that you must believe in God “in order to be moral and have good values.”

Most Americans agree that polarization is a problem. But what can be done about it? The Trent Center for Bioethics, Humanities, and History of Medicine recently hosted a conversation between two people who have spent much of their careers engaging with many different beliefs and perspectives. A recording of the talk can be found here.

Molly Worthen, Ph.D., Associate Professor of History at UNC and a freelance journalist, grew up in a “secular, totally nonreligious home,” but courses she took in college made her realize that “for a huge swath of humanity, over the course of our history,” religion has helped people find meaning and community. She has explored religion extensively through her work as a historian, author, and journalist. Worthen says she has “way too risk-averse a temperament to be a full-time journalist,” but one advantage of journalism is that it provides “an excuse to ask people questions.”

Emma Green, a journalist at The New Yorker, has also covered religion in her writing and spent time engaging with people and communities who hold a wide variety of beliefs. Green believes that “the most interesting stories are often about the debates communities are having within themselves.” These debates aren’t just about religion. In communities of all kinds, people with different and often opposing beliefs navigate disagreements with their best friends, neighbors, and family members as they engage with polarizing issues and try to find ways to coexist.

The process of interviewing people with differing worldviews and beliefs can bring challenges, but both Worthen and Green have found that those challenges are not insurmountable. “If you do your homework and you really make a good-faith effort to learn where a person is coming from,” Worthen says, “they will tell you their story. They will not shut down.”

Worthen has spent time with a community of Russian Orthodox Old Believers in Alberta. It was an opportunity to make a “concerted effort to really get inside the worldview of someone very different from myself.”

Green has also spent time talking to and learning from religious communities. She published an article about Hyattsville Mennonite Church in Pennsylvania, which had been welcoming gay members for over a decade and had originally been “disciplined” by the Allegheny Mennonite Conference for its open acceptance of homosexuality. A decade later, the Conference gathered to determine whether the Hyattsville church should be allowed to rejoin the Conference or be removed from it altogether. (A third option, according to Green’s article, was to dissolve the Conference.) Green was struck by how the Mennonite community approached the dispute. They followed the formal “Robert’s Rules of Order,” but they also sang together in four-part harmony. The central dispute, Green says, was “about whether they could stay in community with one another.” Ultimately, the gay members were allowed to stay, though Green says that some people left the congregation in protest.

Polarization is a word we hear a lot, but why is it that we seem to have such a hard time finding common ground when it comes to important—or even seemingly unimportant—issues? Worthen points out that there seems to be a new survey every few years showing that “humans are generally impervious to evidence” that goes against our existing beliefs.

“Barraging a human with evidence doesn’t really work,” Worthen says. According to her, theologians and philosophers have long said that “we are depraved, irrational creatures, and the social science has finally caught up with that.”

This hesitancy to even consider evidence that conflicts with our existing beliefs has implications on public trust in science. Too often, “believing in science” takes on political implications. 

According to Pew Research Center, only 13% of Republicans have “a great deal” of confidence in scientists, compared to 43% of Democrats. “Many people on the left think of the universities as belonging to them,” says Worthen, leading to a greater sense of trust in science. “There is a desire on the left to want science to line up” with their political views, Green agrees, but good science isn’t inherently aligned with a particular political party. Science involves uncertainty and “iterative self-correction,” Worthen says, but even acknowledging uncertainty can spawn controversy. And when science doesn’t perfectly align with someone’s political or ideological beliefs, it can make people uncomfortable. For instance, Worthen believes that “the retreating date of viability” for fetuses and better fetal imaging technology is “provoking… discomfort on the left” in conversations about abortion.

Evolucionismo_Teísta.jpg by Felipe Ligeiro FL on Wikimedia Commons. Licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

Similarly, evidence from evolutionary biology can be hard to reconcile with deeply held religious beliefs. Worthen describes an interview she did with Dr. Nathaniel Jeanson. He has a Ph.D. from Harvard in cell and developmental biology, but he is also a Young Earth creationist who believes the earth was created by God in six days. There are “plenty of conservative Christians who understand those days as metaphors,” Worthen says, but Jeanson takes the six-day timeframe described in the Bible literally. In Worthen’s article, she says that Jeanson “dutifully studied evolutionary biology during the day and read creationist literature at night.” One thing Worthen admired in Jeanson was his willingness to be “honest about who we are”: not very open to new evidence.

“I think very few humans are anti-science,” Worthen says. “It’s more that humans are selectively pro-science.”

It isn’t just politics that can cause people to distrust science. Green points out that people who have had frustrating experiences with traditional healthcare may look for “other pathways to achieving a sense of control.” When patients know that something is wrong, and mainstream medicine fails them in some way, they may turn to alternative treatments. “That feeling of not being understood by the people who are supposed to know better than you is actually pretty common,” Green says, and it can fuel “selective distrust.”

It can be helpful, Worthen says, for a clinician to present themselves as someone trustworthy within a larger system that some patients view as “suspect.”

Distrust in public health authorities has been a recurring theme during the Covid pandemic. Green recalls interviewing an orthodox Jewish man in New York about his community’s experiences during the pandemic. Many Orthodox Jewish communities were hit hard by Covid, and Green believes it’s important to recognize that there were many factors involved. Even well-meaning health officials often lacked the language skills to speak dialects of Yiddish and other languages, and the absence of strong, pre-existing relationships with Orthodox communities made it harder to build trust in the middle of a crisis.

Worthen spoke about vaccine hesitancy. “For most of the population who has gotten the [Covid] vaccine,” she says, “it’s not because they understand the science but because they’re willing to ‘outsource’” their health decisions to public health authorities. It is “important not to lose sight of… how much this is about trust rather than understanding empirical facts.”

Finally, both speakers discussed the impacts of social media on polarization. According to Green, “information ecosystems can develop in social media and become self-contained.” While “there are a lot of people out there who are quacks who purport to be experts,” social media has also created public health “stars” who offer advice and knowledge to a social media audience. Even that, however, can have downsides. “There isn’t a lot of space for uncertainty, which is a huge part of science,” Green says.

Worthen, meanwhile, believes that “social media is one of the main assets destroying our civilization…. I would encourage everyone to delete your accounts.”

Polarization is pervasive, dangerous, and difficult to change. “As a journalist, I basically never have answers,” Green says, but maybe learning from journalists and their efforts to understand many different perspectives can at least help us begin to ask the right questions. Learning to actually listen to each other could be a good place to start.

Post by Sophie Cox, Class of 2025

What Should We Do with the Works of “Immoral Artists”?

How should we engage with books, songs, or other works of art created by artists, dead or alive, who have done bad things or hold morally problematic views?

The list of artists who have been accused of doing or saying disparaging, criminal, or morally reprehensible things is long. Paul Gauguin. Michael Jackson. Woody Allen. J.K. Rowling. Kanye West. Pablo Picasso. R. Kelly. Louis C.K. Bill Cosby. Many more.

J.K. Rowling, the author of the landmark Harry Potter series, has become controversial because of her 2020 tweets about transgender people.

It’s one thing to firmly condemn their actions and reject their beliefs. But what should we do with their art—as individuals and as institutions?

The Kenan Institute of Ethics recently held a conversation to discuss exactly that issue. The discussion was moderated by Jesse Summers, Ph.D., and featured speakers Erich Hatala Matthes, Ph.D., Associate Professor of Philosophy at Wellesley College and author of “Drawing the Line: what to do with the work of immoral artists from museums to the movies,” and Tom Rankin, Professor of the Practice of Art and Documentary Studies and Director of the MFA in Experimental and Documentary Arts at Duke University.

Why should we care about morality in art, anyway? Why not just appreciate the art and separate it from the artist?

Matthes believes that in some cases, “to not engage with the moral dimensions of a work would be to not take the work seriously.” He thinks Shakespeare’s works belong in this category. “Trickier cases,” he adds, “might come from works that aren’t explicitly engaged” with morality, but even in those cases, “the moral life of the artist can actually become a lens through which to read aspects of the work.”

Film director Woody Allen with his wife and former step-daughter Soon Yi Previn in 2009. (David Shankbone via Wikimedia Commons)

We already consider context when viewing art, not just “formal features of the work.” What was the artist responding to? What were the politics at the time? Matthes believes it makes sense to consider the “moral life” of the artist, too. That “doesn’t mean the artist’s moral life is always going to be relevant” to engaging with the art, but he thinks it’s worth at least acknowledging.

According to Rankin, “When we look at a piece of art or hear something, what we hope is that it propels us” to consider moral issues. How, he asks, can we not look at a painting or photo and wonder, “Where did this come from? Who made it? What was their agenda? What is their point of view? What was their background?”

So where does that leave us, Rankin asks, when it comes to “work that was made a hundred years ago but is really powerful… and yet when we look at it a hundred years later it has all kinds of flaws?” Should museums remove paintings by famous artists if racist or sexist views come to light? Should individuals boycott books, songs, and video games created (or inspired) by artists who have made harmful statements toward individuals or groups of people? How should college classes address works by immoral artists?

Matthes says the term “immoral artists” in his book is intentionally provocative. “I don’t actually think it’s productive” to think of people as good or bad, moral or immoral, he says. “There’s a huge range” in the morality or lack thereof in artists’ actions, and Matthes believes there should also be a range in our responses, but he doesn’t believe that “great art can ever just excuse immorality.” He wants to reject the idea that “artists need to be a little inhuman” and “outside the norms of society.” He thinks that mindset encourages us to think of artists as not subject to the same rules. They should not be “immune to moral criticism,” he says.

Rankin agrees: “I do balk a little bit at having to be the one to decide who’s bad and who’s good,” but at the same time, he believes that “artists make work in response to who they are.” So “What do we confront first? The life of the artist or the work itself? It’s not one or the other,” he says.

Both speakers believe that context is often key to interpreting and evaluating art. Matthes says that it might be “really obscene” to choose Michael Jackson music at your wedding if you know one of your guests has experienced child abuse, given the child sexual assault allegations against Jackson. However, Matthes doesn’t believe that completely “cancelling” Jackson’s music is the solution, either.

Similarly, Matthes doesn’t believe that “we should necessarily continue with big exhibitions honoring Paul Gauguin,” a painter who had sexual relationships with young girls and employed racist terminology. According to Matthes, Gauguin “represents a paternalistic energy of a particular time” that we should “interrogate.” As for the notion that we should extend a degree of lenience to historical artists and view them as a product of their times, Matthes is “disinclined” to think of morality as relative to time period. The time when a work of art was created might affect how we engage with it or assign blame, but “Gauguin did a lot of morally horrific things, and the fact that it was in a different time and place doesn’t change that.”

Nevertheless, Matthes thinks we can and should still engage with and respond to the work of “immoral artists.” His concern, he says, is that taking art off of walls and bookshelves and not talking about it “isn’t reckoning with the legacy.” He also doesn’t “see a reason to put certain types of art on a pedestal and treat them differently…. Artistic expression is a fundamental part of human life.”

What if an individual doesn’t want to engage with such art at all? What if the actions of an artist, dead or alive, are so objectionable to someone that they want nothing to do with it? Matthes is okay with that attitude, though he does think it’s “missing an opportunity.”

Completely disengaging from art on account of its creator’s moral life “feels like a way of not taking the moral criticism seriously,” Matthes says. “It’s not something you would be wrong to fail to do,” but he believes in engaging with moral issues, even those that “it would be easier to just ignore.”

Michael Jackson’s album Thriller sold 32 million copies in 1983.

But he acknowledges that personal identities can play a role in how or whether we engage with the work of immoral artists. Matthes believes it’s important to consider “the position you’re coming from” when you read or think about these issues. On the other hand, people and groups who may be more directly impacted by an artist’s problematic views “also have really thoughtful, nuanced ways” of engaging—or not engaging—with the art.

Matthes believes that “we have a lot of moral latitude when it comes to our individual engagement” with art. He finds it difficult to make the argument that reading, listening to, or viewing art in your own home is directly harmful to others, even if the artist in question is still alive.

Summers, meanwhile, points out that if someone is upset by an artist, there could be cases where “you’re taking it out on your friends… when you should be taking it out on the band.”

Institutions like universities, however, might need to take further considerations. “Different moral norms might apply,” Matthes suggests, “based on the positions of power we occupy.” Classrooms, for instance, are a “semi-public” space. They can help provide context in conversations about “morally problematic art” and encourage people to “think really carefully and critically.” If a class is going to engage with such topics, though, Matthes thinks it’s important to spell that out to students beforehand.

Powerful conversations can take place outside of classrooms, too — in book clubs and even informal conversations with friends. “You don’t want to let the moral concerns completely drive the bus” when engaging with art, Matthes says, “but I think it’s important not to ignore them.”

Rankin concludes by reminding us that it isn’t just artists who face decisions about how to respond to the world. For instance, even among those who don’t think of themselves as photographers, anyone who carries a cell phone is making choices every time they take a photo — about what they’re presenting and why.

Post by Sophie Cox, Class of 2025

Recovery, Resilience, and Coexistence: Nature-based Solutions on the Coast

When it comes to balancing the needs of humans and the needs of nature, “Historically it was ‘develop or conserve’ or ‘develop or restore,’” says Carter Smith, Ph.D., a Lecturing Fellow in the Division of Marine Science & Conservation who researches coastal restoration.

However, according to Brian Silliman, Ph.D., Rachel Carson Distinguished Professor of Marine Conservation Biology, “We are having a new paradigm shift where it’s not just… ‘nature over here’ and ‘humans over here.’”

Instead, conservation initiatives are increasingly focusing on coexistence with nature and ecological resilience, according to this panel discussion of marine science experts during Duke Research and Innovation Week 2023.

Nature-based solutions — protecting and restoring natural shoreline habitats — have a proven role in protecting and restoring coastal ecosystems. According to the International Union for Conservation of Nature (IUCN), “Nature-based solutions… address societal challenges effectively and adaptively, simultaneously benefiting people and nature.”

The panel, moderated by Andrew J. Read, Ph.D., Stephen A. Toth Distinguished Professor of Marine Biology and Professor of Marine Conservation Biology, also included Brian Silliman, Carter Smith, and Stephanie Valdez, a Ph.D. Student in Marine Science & Conservation.

Living shorelines can help protect coastal ecosystems from storms while also offering benefits for climate and conservation. Photos by Carter Smith.

According to Smith, nature-based solutions can “leverage nature and the power of healthy ecosystems to protect people” while also preserving biodiversity and mitigating climate change. She spoke about living shorelines as an effective and ecologically responsible way to protect coastal ecosystems.

“The traditional paradigm in coastal protection is that you build some kind of hard, fixed structure” like a seawall, Smith said, but conventional seawalls can have negative effects on biodiversity, habitats, nutrient cycling, and the environment at large. “In this case, coastal protection and biodiversity really are at odds.”

After multiple hurricanes, living shorelines had significantly less visible damage or erosion than sites with conventional hardscape protection, like seawalls.

Nicholas Lecturing Fellow Carter Smith

That’s where living shorelines come in. Living shorelines incorporate plants and natural materials like sand and rock to stabilize coastal areas and protect them from storms while also creating more natural habitats and minimizing environmental destruction. But “if these structures are actually going to replace conventional infrastructure,” Smith says, it’s important to show that they’re effective.

Smith and colleagues have studied how living shorelines fared during multiple hurricanes and have found that living shorelines had significantly less “visible damage or erosion” compared to sites with conventional storm protection infrastructure.

After Hurricane Matthew in 2016, for instance, both natural marshes and conventional infrastructure (like seawalls) lost elevation due to the storm. Living shorelines, on the other hand, experienced almost no change in elevation.

Smith is also investigating how living shorelines may support “community and psychosocial resilience” along with their benefits to biodiversity and climate. She envisions future community fishing days or birdwatching trips to bring people together, encourage environmental education, and foster a sense of place.

PhD student Stephanie Valdez then spoke about the importance of coastal ecosystems.

Blue carbon ecosystems,” which include sea grasses, marshes, and mangroves, provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon, she said. These ecosystems can bury carbon much faster than terrestrial ecosystems, which has important implications when it comes to climate change.

In the atmosphere, carbon dioxide and other greenhouse gasses contribute to global warming, but plants pull carbon dioxide out of the air during photosynthesis and convert it to carbohydrates, releasing oxygen as a byproduct. Therefore, ecosystems rich in fast-growing plants can serve as carbon sinks, reducing the amount of atmospheric carbon, Valdez explained.

Unfortunately, blue carbon ecosystems have suffered significant loss from human activities and development. We’ve replaced these wild areas with farms and buildings, polluted them with toxins and waste, and decimated habitats that so many other creatures rely on. But given the chance, these places can sometimes grow back. Valdez discussed a 2013 study which found that seagrass restoration led to a significantly higher carbon burial rate within just a few years.

Sea grasses, marshes, and mangroves provide services like stabilizing sediments, reducing the destructive force of powerful waves, and storing carbon.

PhD Student Stephanie Valde

Valdez also talked about the importance of recognizing and encouraging natural ecological partnerships within and between species. Humans have taken advantage of such partnerships before, she says. Consider the “Three Sisters:” beans, corn, and squash, which Native Americans planted close proximity so the three crops would benefit each other. Large squash leaves could provide shade to young seedlings, beans added nitrogen to the soil, and cornstalks served as a natural beanpole.

Recognizing that mutualistic relationships exist in natural ecosystems can help us preserve habitats like salt marshes. Valdez points to studies showing that the presence of oysters and clams can positively impact seagrasses and marshes. In restoration, it’s important “that we’re not focusing on one species alone but looking at the ecosystem as a whole”—from top predators to “foundation species.”

“There is hope for successful restoration of these vital ecosystems and their potential to aid in climate change mitigation,” Valdez said.

Finally, Prof. Brian Silliman discussed the role of predators in wider ecosystem restoration projects. Prioritizing the protection, restoration, and sometimes reintroduction of top predators isn’t always popular, but Silliman says predators play important roles in ecosystems around the world.

“One of the best examples we have of top predators facilitating ecosystems and climate change mitigation are tiger sharks in Australia,” he says. When the sharks are around, sea turtles eat fewer aquatic plants. “Not because [the sharks] eat a lot of sea turtles but because they scare them toward the shoreline,” reducing herbivory.

However, Silliman said it’s unclear sometimes whether the existence of a predator is actually responsible for a given benefit. Other times, though, experiments provide evidence that predators really are making a difference. Silliman referenced a study showing that sea otters can help protect plants, like seagrasses, in their habitats.

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

And crucially, “Predators increase stress resistance.” When physical stressors reach a certain point in a given ecosystem, wildlife can rapidly decline. But wildlife that’s used to coexisting with a top predator may have a higher stress threshold. In our ever-changing world, the ability to adapt is as important as ever.

“I think there is great optimism and opportunity here,” Silliman says. The other speakers agree. “Right now,” Valdez says, “as far as restoration and protection goes, we are at the very beginnings. We’re just at the forefront of figuring out how to restore feasibly and at a level of success that makes it worth our time.”

Restoring or reintroducing top predators in their natural habitats can help stabilize ecosystems impacted by climate change and other stressors.

Brian Silliman

Smith emphasized the important role that nature-based solutions can play. Even in areas where we aren’t achieving the “full benefit of conserving or restoring a habitat,” we can still get “some benefit in areas where if we don’t use nature-based solutions,” conservation and restoration might not take place at all.

According to Valdez, “Previously we would see restoration or… conservation really at odds with academia itself as well as the community as a whole.” But we’re reaching a point where “People know what restoration is. People know what these habitats are. And I feel like twenty or thirty years ago that was not the case.” She sees “a lot of hope in what we are doing, a lot of hope in what is coming.”

“There’s so much that we can learn from nature… and these processes and functions that have evolved over millions and millions of years,” Smith adds. “The more we can learn to coexist and to integrate our society with thriving ecosystems, the better it will be for everyone.”

Post by Sophie Cox, Class of 2025

How Concerned Should You Be About AirTags?

Photograph of an AirTag from Wikimedia Commons. Image licensed under Creative Commons Attribution-Share Alike 4.0 International. Creator: KKPCW.

I didn’t even know what an AirTag was until I attended a cybersecurity talk by Nick Tripp, senior manager of Duke’s IT Security Office, but according to Tripp, AirTag technology is “something that the entire Duke community probably needs to be aware of.”

An AirTag is a small tracking device that can connect to any nearby Apple device using Bluetooth. AirTags were released by Apple in April 2021 and are designed to help users keep track of items like keys and luggage. Tripp himself has one attached to his keys. If he loses them, he can open the “Find My” app on his phone (installed by default on Apple devices), and if anyone else with an Apple device has been near his keys since he lost them, the Bluetooth technology will let him see where his keys were when the Apple device user passed them—or took them.

According to Tripp, AirTags have two distinct advantages over earlier tracking devices. First, they use technology that lets the “Find My” app provide “precise location tracking”—within an inch of the AirTag’s location. Second, because AirTags use the existing Apple network, “every iPhone and iPad in the world becomes a listening device.”

You can probably guess where this is going. Unfortunately, the very features that make AirTags so useful for finding lost or stolen items also make them susceptible to abuse. There are numerous reports of AirTags being used to stalk people. Tripp has seen that problem on Duke’s campus, too. He gives the example of someone going to a bar and later finding an AirTag in their bag or jacket without knowing who put it there. The IT Security Office at Duke sees about 2-3 suspected cyberstalking incidents per month, with 1-2 confirmed each year. Cyberstalking, Tripp emphasizes, isn’t confined to the internet. It “straddles the internet and the real world.” Not all of the cyberstalking reports Duke deals with involve tracking devices, but “the availability of low-cost tracking technology” is a concern. In the wrong hands, AirTags can enable dangerous stalking behavior.

As part of his IT security work, and with his wife’s permission, Tripp dropped an AirTag into his wife’s bag to better understand the potential for nefarious use of AirTags by attackers. Concerningly, he found that he was able to track her movement using the app on his phone—not constantly, but about every five minutes, and if a criminal is trying to stalk someone, knowing their location every five minutes is more than enough.

Fortunately, Apple has created certain safety features to help prevent the malicious use of AirTags. For instance, if someone has been near the same AirTag for several hours (such as Tripp’s wife while there was an AirTag in her bag), they’ll get a pop-up notification on their phone after a random period of time between eight and twenty-four hours warning them that “Your current location can be seen by the owner of this AirTag.” Also, an AirTag will start making a particular sound if it has been away from its owner for eight to twenty-four hours. (It will emit a different sound if the owner of the AirTag is nearby and actively trying to find their lost item using their app.) Finally, each AirTag broadcasts a certain Bluetooth signal, a “public key,” associated with the AirTag’s “private key.” To help thwart potential hackers, that public key changes every eight to twenty-four hours. (Are you wondering yet what’s special about the eight-to-twenty-four hour time period? Tripp says it’s meant to be “frequently enough that Apple can give some privacy to the owner of that AirTag” but “infrequently enough that they can establish a pattern of malicious activity.”)

But despite these safety features, a highly motivated criminal could get around them. Tripp and his team built a “DIY Stealth AirTag” in an attempt to anticipate what measures criminals might take to deactivate or counteract Apple’s built-in security features. (Except when he’s presenting to other IT professionals, Tripp makes a point of not revealing the exact process his team used to make their Stealth AirTag. He wants to inform the public about the potential dangers of tracking technology while avoiding giving would-be criminals any ideas.) Tripp’s wife again volunteered to be tracked, this time with a DIY Stealth AirTag that Tripp placed in her car. He found that the modified AirTag effectively and silently tracked his wife’s car. Unlike the original AirTag, their stealthy version could create a map of everywhere his wife had driven, complete with red markers showing the date, time, and coordinates of each location. An AirTag that has been modified by a skilled hacker could let attackers see “not just where a potential victim is going but when they go there and how often.”

“The AirTag cat is out of the bag, so to speak,” Tripp says. He believes Apple should update their AirTag design to make the safety features harder to circumvent. Nonetheless, “it is far more likely that someone will experience abuse of a retail AirTag” than one modified by a hacker to be stealthier. So how can you protect yourself? Tripp has several suggestions.

  1. Know the AirTag beep indicating that an AirTag without its owner is nearby, potentially in your belongings.
  2. If you have an iPhone, watch for AirTag alerts. If you receive a notification warning you about a nearby AirTag, don’t ignore it.
  3. If you have an Android, Tripp recommends installing the “Tracker Detect” app from Apple because unlike iPhone users, Android users don’t get automatic pop-up notifications if an AirTag has been near them for several hours. The “Tracker Detect” Android app isn’t a perfect solution—you still won’t get automatic notifications; you’ll have to manually open the app to check for nearby trackers. But Tripp still considers it worthwhile.
  4. For iPhone users, make sure you have tracking notifications configured in the “Find My” app. You can go into the app and click “Me,” then “Customize Tracking Notifications.” Make sure the app has permission to send you notifications.
  5. Know how to identify an AirTag if you find one. If you find an AirTag that isn’t yours, and you have an iPhone, go into the “Find My” app, click “Items,” and then swipe up until you see the “Identify Found Item” option. That tool lets you scan the AirTag by holding it near your phone. It will then show the AirTag’s serial number and the last four digits of the owner’s phone number, which can be useful for the police. “If I found one,” Tripp says, “I think it’s worth making a police report.”

It’s worth noting that owning an AirTag does not put you at higher risk of stalking or other malicious behavior. The concern, whether or not you personally use AirTags, is that attackers can buy AirTags themselves and use them maliciously. Choosing to use AirTags to keep track of important items, meanwhile, won’t hurt you and may be worth considering, especially if you travel often or are prone to misplacing things. Not all news about AirTags is bad. They’ve helped people recover lost items, from luggage and wallets to photography gear and an electric scooter.

“I actually think this technology is extremely useful,” Tripp says. It’s the potential for abuse by attackers that’s the problem.

Post by Sophie Cox, Class of 2025

Anyone Can Be a “Math Person”

Dr. Francis Su, a mathematician and professor at Harvey Mudd College and the author of “Mathematics for Human Flourishing,” wants you to know that math can be beautiful. As these “infinitely quartered” squares show, 1/4 + 1/(42) + 1/(43) + … = 1/3. Image attribution: Tdadamemd, via Wikimedia Commons, under Creative Commons CC0 1.0 Universal Public Domain Dedication

Francis Su, Ph.D., visited Duke to talk about math. He began by talking about art.

Su, a mathematician and professor at Harvey Mudd College, displayed “Hope,” an 1886 painting by George Frederic Watts. He asked the audience to look at it, really look at it, and think about what’s happening in the painting. At first glance, it shows a blindfolded woman holding a wooden object. She seems to be in pain. But the more time we spend looking, the more we notice. We might notice that there’s a single star above her. We might notice that the wooden object is a lyre with only one string left attached. We might notice, too, that the woman is plucking that final string and straining to hear its music. 

If we take the time to explore the history of the painting, we might learn that Martin Luther King, Jr., talked about the same painting in a sermon. Su quoted a line from that sermon: “Who has not had to face the agony of blasted hopes and shattered dreams?” We find beauty in art, and often we find it relatable as well. Art invites us to look closer, to wonder, to feel, to ask questions, to imagine.

“Why,” Su asks then, “don’t we approach mathematics the way that we approach art?”

Professor Francis Su’s book, “Mathematics for Human Flourishing.”

Whether we consider ourselves “math people” or not, we rarely if ever hear mathematics discussed as an affirmation of human virtues and desires—love, beauty, truth, the “expectation of enchantment.” Su wants to change that. In his book “Mathematics for Human Flourishing” and in his talk at Duke, he envisions mathematics as beautiful, inclusive, and accessible to anyone.

Along with the painting “Hope,” Su’s first slide shows a quote by Simone Weil: “Every being cries out silently to be read differently.” Simone Weil, according to Su, was a “French religious mystic” and “widely revered philosopher,” but she also had a deep interest in math. Her older brother, André Weil, was an influential mathematician whose mathematical achievements often overshadowed her own. In a letter to a friend published posthumously in the book “Waiting for God,” Simone Weil wrote: “I did not mind having no visible successes, but what did grieve me was the idea of being excluded from that transcendent kingdom to which only the truly great have access and wherein truth abides.” Su sometimes wonders how Simone’s relationship to mathematics would have been different if André had not been her brother. Again, “Every being cries out silently to be read differently.” According to Su, when Simone Weil speaks of “reading” someone, she means “to interpret or make a judgment about them.”

Su has a friend, Christopher Jackson, who is an inmate in a high-security prison, serving a thirty-two year sentence for involvement in armed robberies as a teenager. When you think about people who do math, Su asks, would you think of Chris?  “We create societal norms about who does math,” and Chris doesn’t fit those norms. And yet he has been studying mathematics for years. After studying algebra, geometry, trigonometry, and calculus while in prison, he sent a letter to Su requesting help in furthering his mathematics education. The two men still correspond regularly, and Chris is now studying topology and other branches of mathematics.

“Every being cries out silently to be read differently.”

Why do math in the first place? Just as you can take your car to a mechanic without fully understanding how it works yourself, we might think of math as “only for the elite few” or perhaps as “a means to an end,” a tool “to make you ‘college and career ready.’” Su sees it differently. He views math in terms of human flourishing, “a wholeness of being and doing.” He points to three words from other languages: eudaemonia, a Greek term for “the overarching good in life”; shalom, a Hebrew word often used as a greeting and roughly translated as “peace”; and salaam, an Arabic word with a similar meaning to shalom.

The pattern on Romanesco broccoli is a fractal, common in both math and nature. Image credit: Francis Su

“What attracts me to music,” Su says, “isn’t playing scales over and over again.” But once you “experience a symphony,” you might see the value in playing scales. Can we learn to think of math the same way? Here, Su quoted mathematician Olga Taussky-Todd: “The yearning for and the satisfaction gained from mathematical insight brings the subject near to art.”

Beauty and awe probably aren’t the first words that come to mind when most of us think of math, but Su believes math can unlock “transcendent beauty.” He references a quote by C.S. Lewis: “the scent of a flower we have not found, the echo of a tune we have not heard, news from a country we have never yet visited.” That is what math at its best can do for us. It can help us see the big picture and realize that we’re “just scratching the surface of something really profound.”

“Math is not a single ‘ability,’” Su says. “In reality, math is a multi-dimensional set of virtues.” When learning or teaching math, we often focus more on skills like recalling facts and algorithms, factoring polynomials, or taking a derivative. But Su believes more important lessons are at play: virtues like persistence, creativity, a thirst for deep knowledge, and what he calls the expectation of enchantment. And, he says, employers are often much more interested in virtues than in skills. “If you want to be really practical about this—and I don’t, with mathematics, but if you do—then it’s actually the virtues that are more important than the skills,” Su says.

One basic human desire that Su believes math can help fulfill is the desire for truth, which, in turn, can help build virtues like a thirst for deep knowledge and the ability to think for oneself, which can help us figure out what’s true instead of just blindly trusting authorities. “Truth is under attack,” Su says. “Misinformation is everywhere.” Su wants to teach his students “to think, to be ‘that person who doesn’t need to look at the Ikea instructions.’” But he also wants them to view math as more than just a means to an end. “It’s my responsibility to help my students remember the beauty” in math and to understand that their dignity as human beings isn’t dependent on their grades.

Along with truth and beauty, he believes math can and should bring opportunities for exploration and discovery. “My role isn’t to be a teacher,” he says. “My role is to be a co-explorer.” He recalls his own excitement when he first saw a Menger cube, or Menger sponge, cut along its diagonal. The resulting cross-section is beautiful and, yes, enchanting. “What would it look like for classrooms to be like that?” During the pandemic, Su started adding more reflection-focused questions to his exams, questions like “Consider one mathematical idea from the course that you have found beautiful, and explain why it is beautiful to you.” Even more traditional math questions can be phrased in an “exploratory” way. Su gives the example of a question that asks students to make two rectangles, one with a bigger perimeter and one with a bigger area.

A visual representation of Nicomachus’s Theorem.
Image from Cmglee, via Wikimedia Commons, licensed under Creative Commons Attribution-Share Alike 3.0 Unported.

Another desire or virtue important in the field of mathematics is justice. Su wants math to be accessible to all, but not everyone has had positive experiences with math or feels like they belong there. As an analogy, Su talks about receiving dishes from a “secret menu” when visiting certain Chinese restaurants with friends who are fluent in Chinese. When he goes there on his own and requests the “secret menu,” however, he is sometimes turned away or told that he wouldn’t like those dishes. “Are people side-by-side in the same restaurant having different experiences” in math, too? “Who are you to say they do or don’t belong in mathematics?”

Even Su himself hasn’t always had wholly positive experiences in math. One of his professors once told him he didn’t “have what it takes to become a successful mathematician,” and he almost quit his Ph.D. program. Instead, he switched to a different advisor who had encouraged him to stick with it. Meanwhile, he surrounded himself with people who could remind him why he loved math. Math as a field can be competitive, but “if you think of mathematics as human flourishing… then that’s not a zero-sum game anymore.” 

In Su’s words, “we’re all math teachers” because “we all pass on attitudes about math to others.” He says studies show that parents can pass on “math anxiety” to their kids. But Su encourages people to “believe that you and everyone can flourish in mathematics.” Simone Weil. Christopher Jackson. And you. 

Who will you read differently?

Post by Sophie Cox, Class of 2025

Why Do Some Dogs Need High Chairs, and How Can Genetics Help?

Jake, a German shepherd dog in a Bailey chair. Dogs with megaesophagus must eat in a vertical position to help food travel to their stomachs.
Photo credit: Beth Grant

Some dogs have to eat in a high chair—or, more specifically, a Bailey Chair. The chair keeps them in a vertical position while they eat so that gravity can do the work their bodies can’t: moving food from the mouth to the stomach.

These dogs have megaesophagus, an esophagus disorder that can prevent dogs from properly digesting food and absorbing nutrients. When you swallow a bite of food, it travels down a muscular tube, the esophagus, to the stomach. In humans, the esophagus is vertical, so our esophageal muscles don’t have to fight against gravity. But because dogs are quadrupeds, a dog’s esophagus is more horizontal, so “there is a greater burden on peristaltic contractions to transport the food into the stomach.” In dogs with megaesophagus, the esophagus is dilated, and those contractions are less effective. Instead of moving properly into the stomach, food can remain in the esophagus, exacerbating the problem and preventing proper digestion and nutrient absorption. 

Leigh Anne Clark, Ph.D., an associate professor at Clemson University, recently spoke at Duke about megaesophagus in dogs and its genetic underpinnings. She has authored dozens of publications on dog genetics, including five cover features. Her research primarily involves “[mapping] alleles and genes that underlie disease in dogs.” In complex diseases like megaesophagus, that’s easier said than done. “This disease has a spectrum,” Clark says, and “Spoiler: that makes it more complicated to map.”

Clinical signs of megaesophagus, or mega for short, include regurgitation, coughing, loss of appetite, and weight loss. (We might use the word “symptom” to talk about human conditions, but “a symptom is something someone describes—e.g., I feel nauseous. But dogs can’t talk, so we can only see ‘clinical signs.’”) Complications of mega can include aspiration pneumonia and, in severe cases, gastroesophageal intussusception, an emergency situation in which dogs “suck their stomach up into their esophagus.”

Leigh Anne Clark of Clemson University

Sometimes megaesophagus resolves on its own with age, but when it doesn’t it requires lifelong management. Mega has no cure, but management can involve vertical feeding, smaller and more frequent meals, soft foods, and sometimes medication. Even liquid water can cause problems, so some dogs with mega receive “cubed water,” made by adding a “gelatinous material” to water, instead of a normal water bowl.

In dogs, mega can be either congenital, meaning present at birth, or acquired. In cases of acquired megaesophagus, the condition is “usually secondary to something else,” and the root cause is often never determined. (Humans can get mega, too, but as with acquired mega in dogs, mega in humans is usually caused by a preexisting condition. The best human comparison, according to Clark, might be achalasia, a rare disorder that causes difficulty swallowing.) Clark’s current research focuses on the congenital form of the disease in dogs.

Her laboratory recently published a paper investigating the genetic foundation of mega. Unlike some diseases, mega isn’t caused by just one genetic mutation, so determining what genes might be at play required some genetic detective work. “You see mega across breeds,” Clark says, which suggests an environmental component, but the disease is more prevalent in some breeds than others. For instance, 28 percent of all diagnoses are in German shepherds. That was a “red flag” indicating that genes were at least partly responsible.

Clark and her collaborators chose to limit their research study to German shepherds. Despite including a wide range of dogs in the study, they noticed that males were significantly overrepresented. Clark thinks that estrogen, a hormone more abundant in females, may have a protective effect against mega.

Clark and her team performed a genome-wide association study (GWAS) to look for alleles that are more common in dogs with mega. One allele that turned out to be a major risk factor was a variant of the MCHR2 gene, which plays a role in feeding behaviors. In breeds where mega is overrepresented, like German shepherds, “we have a situation where the predominant allele in the population is also the risk allele,” says Clark.

Using the results of the study, they developed a test that can identify which version of the gene a given dog has. The test, available at veterinary testing companies, is designed “to help breeders reduce the frequency of the risk allele and to plan matings that are less likely to produce affected puppies.”

Post by Sophie Cox, Class of 2025

“Of Sound Mind”: a Discussion of the Hearing Brain

“To me [this image] captures the wonder, the awe, the beauty of sound and the brain that tries to make sense of it,” said professor Nina Kraus, Northwestern University researcher and author of “Of Sound Mind: How Our Brain Constructs a Meaningful Sonic World.”

Stop. What do you hear?

We might not always think about the sounds around us, but our brains are always listening, said Northwestern University professor Nina Kraus.

Kraus, auditory researcher and author of “Of Sound Mind: How Our Brain Constructs a Meaningful Sonic World,” spoke via Zoom to a Duke audience in October. She has published more than four hundred papers on the auditory system in humans and other animals and how it’s affected by conditions like autism, aging, and concussion. She discussed some of her findings and how “the sound mind” affects us in our day-to-day lives.

One of the slides from Kraus’s presentation. We can think of sound as having many “ingredients.”

“I think of the sound mind as encompassing how we think, how we move, how we sense, and how we feel,” Kraus said. We live in a “visually dominated world,” but for hearing people, sound plays an important role in language, music, rhythm, and how we perceive the world.

One of the slides from Kraus’s presentation. The human auditory system involves not just the ears but also several regions of the brain. The “hearing brain” engages movement, cognition, and emotions along with interpreting direct sensory input from all senses.

Kraus discussed the auditory system and how much of what we think of as hearing takes place in the brain. We can think of sound as signals outside the head and electricity as signals inside the head (neural processing). When those two merge, learning occurs, and we can make sound-to-meaning connections.

Another slide from Kraus’s presentation. In an experiment, teaching rabbits to associate a sound with meaning (in this case, more carrots) changed patterns of neuron firing in the auditory cortex, even in individual neurons. “Same sound, same neuron, and yet the neuron responded differently… because now there’s a sound-to-meaning connection,” Kraus said.

Despite how sensitive our neurons and brains are to sound, things can get lost in translation. Kraus studies how conditions like concussions and hearing loss can adversely affect auditory processing. Even among healthy brains, we all hear and interpret sounds differently. People have unique “sonic fingerprints” that are relatively stable over time within an individual brain but differ between people. These patterns of sound recognition are apparent when scientists record brain responses to music or other sounds.

“One of the biological measures that we have been using in human and in animal models,” Kraus said, is FFR (frequency following response) to speech. FFR-to-speech can be used to analyze an individual’s auditory processing system. It also allows scientists to convert brain responses back into sound waves. “The sound wave and the brainwave resemble each other, which is just remarkable.”

One of Kraus’s slides. Technology called frequency following response (FFR) can be used to convert brain waves back into original sound (like a song).

This technology helps reveal just how attuned our brains are to sound. When we hear a song, our brain waves respond to everything from the beat to the melody. Those brain waves are so specific to that particular song or sound that when scientists convert the brain waves back into sound, the resulting music is still recognizable.

When scientists try this on people who have experienced a concussion, for instance, the recreated music can sound different or garbled. Experiments that compare healthy and unhealthy brains can help reveal what concussions do to the brain and our ability to interpret sound. But not everything that affects auditory processing is bad.

Musical training is famously good for the brain, and experiments done by Kraus and other scientists support that conclusion. “The musician signature—something that develops over time—” has specific patterns, and it can enhance certain components of auditory processing over time. Making music might also improve language skills. “The music and language signatures really overlap,” Kraus said, “which is why making music is so good for strengthening our sound mind.” Kids who can synchronize to a beat, for example, tend to have better language skills according to some of the experiments Kraus has been involved with.

Musicians are also, on average, better at processing sound in noisy environments. Musicians respond well in quiet and noisy environments. Non-musicians, on the other hand, respond well in quiet environments, but that response “really breaks down” in noisy ones.

Interestingly, “Making music has a lifelong impact. Making music in early life can strengthen the sound mind when one is seventy or eighty years old.”

A slide from Kraus’s presentation. Musicians tend to be better at processing sounds in noisy environments.

Exercise, too, can improve auditory processing. “Elite division 1 athletes have especially quiet brains” with less neural noise. That’s a good thing; it lets incoming information “stand out more.”

In experiments, healthy athletes also have a more consistent response over time across multiple trials, especially women.

These benefits aren’t limited to elite athletes, though. According to Kraus, “Being fit and flexible is one of the best things you can do for your brain,” Kraus said.

Kraus and her team have a regularly updated website about their work. For those who want to learn more about their research, they have a short video about their research approach and an online lecture Kraus gave with the Kennedy Center.

Nina Kraus with a piano. “Science is a deeply human endeavor,” she said, “and I think we often forget that. It’s made by people.”
Photo courtesy of Kraus and colleague Jenna Cunningham, Ph.D.
Post by Sophie Cox, Class of 2025

Do Snakes Have Tails? and Other Slithery Questions

Dhruv Rungta, a member of the Wild Ones club, with a ring-necked snake during a herpetology walk with Dr. Nicki Cagle in the Duke Forest.
Upper left: Dr. Nicki Cagle holding a ring-necked snake. Photo by Montana Lee, another Wild Ones member.

On a sunny Friday in September, Dr. Nicki Cagle led a herpetology walk in the Duke Forest with the Wild Ones. The Wild Ones is an undergraduate club focused on increasing appreciation for the natural world through professor-led outings. Herpetology is the study of reptiles and amphibians.

Dr. Cagle is a senior lecturer in the Nicholas School of the Environment at Duke and the Associate Dean of Diversity, Equity, and Inclusion. Along with teaching courses on environmental education and natural history, she is also the science advisor for a citizen science project focused on reptiles and amphibians, or herpetofauna, in the Duke Forest. Volunteers monitor predetermined sites in the Duke Forest and collect data on the reptiles and amphibians they find.

“We get a sense of abundance, seasonality… and how the landscape is affecting what we’re seeing,” Dr. Cagle says. There is evidence that herp populations in the Duke Forest and elsewhere are decreasing.

Dr. Nicki Cagle flipping over a cover board with members of the Wild Ones. The cover boards are used to monitor reptiles and amphibians for a citizen science project in the Duke Forest.

The project relies on transects, “a sampling design… where you have a sampling spot at various intervals” along a line of a predetermined length. In this case, the sampling spots are “traps” meant to attract reptiles and amphibians without harming them. Each site has a large board lying on the ground. “Different herps are more likely to be found under different objects,” Dr. Cagle explains, so the project uses both wooden and metal cover boards.

But why would snakes and other herps want to hide under cover boards, anyway? Reptiles and amphibians are “cold-blooded” animals, or ectotherms. They can’t regulate their own body temperature, so they have to rely on their environment for thermoregulation. Snakes might sun themselves on a rock on cold days, for instance, or hide under a conveniently placed wooden board to escape the heat.

Salamanders that use the cover boards might be attracted to the moist environment, while “snakes will tend to go under cover boards either to hide — like if they’re about to molt and they’re more vulnerable — to look for prey, or just to maintain the proper temperature,” Dr. Cagle says.

Citizen scientists typically check the boards once a week and not more than twice a week. Volunteers have to avoid checking the traps too often because of a phenomenon called “trap shyness,” where animals might start avoiding the traps because they’ve learned to associate them with pesky humans flipping the boards over and exposing their otherwise cozy resting places. By checking the traps less frequently, scientists can reduce the likelihood of that and minimize disturbance to the animals they’re studying.

The first snake we saw was a redbelly snake (Storeria occipitomaculata), dark above with a pink stomach.

Dr. Cagle gave the Wild Ones a behind-the-scenes tour of some of the cover boards. Using a special, hooked tool conveniently stashed in a PVC pipe next to the first cover board, we flipped each board over and looked carefully underneath it for slithery movements. We didn’t find any under the first several cover boards.

But then, under a large sheet of metal, we saw a tiny snake squirming around in the leaf litter. There was a collective intake of breath and exclamations of “snake!”

Dr. Cagle captured it and held it carefully in her hands. Snakes, especially snakes as young as this one, can be all too easily crushed. We gathered around to look more closely at the baby snake, a species with the adorable name “worm snake.” It was dark above with a strikingly pink underside. The pink belly is a key field mark of worm snakes. Earth snakes are also found around here and look similar, but they tend to have tan bellies.

After a minute or two, the worm snake made a successful bid for freedom and wriggled back under the board, disappearing from sight almost immediately.

Crossing over a dry “intermittent stream,” which Dr. Cagle describes as “the running-water equivalent of a vernal pool.” A vernal pool is a temporary wetland that is dry for much of the year.

Some of the cover boards revealed other animals as well. We found a caterpillar chrysalis attached to one and several holes — probably made by small mammals — under another.

Whatever made the holes, we can safely assume it wasn’t a snake. According to Dr. Cagle, the term “snakehole” is misleading. Most snakes don’t make their own holes, though some of them do use existing holes made by other animals. One exception is the bull snake, which is known for digging.

We found a young five-lined skink sunning itself on top of one of the metal cover boards. (Thermoregulation!) Juvenile five-lined skinks are colloquially known as blue-tailed skinks, but the name is somewhat misleading — the adults don’t have blue tails at all.

The snakes we were looking for, meanwhile, were often elusive. Some vanished under the leaf litter before we could catch them. Sometimes it was hard to tell whether we were even looking at a snake at all.

“What are you?” Dr. Cagle muttered at one point, crouching down to get a better look at what was either a stick-esque snake or a snake-esque stick. “Are you an animal? Or are you just a wet something?” (Just a wet something, it turned out.)

The Duke Forest is a valuable community resource with a complicated history. “We know that slavery was practiced on at least four properties” in the Duke Forest, Dr. Cagle says, and the forest is located on the traditional hunting grounds of several indigenous peoples. Today, the Duke Forest is used for research, recreation, timber management, and wildlife management and conservation.

Later on, we found at least three young ring-necked snakes (Diadophis punctatus) under different cover boards. One of them was particularly cooperative, so we passed it around the group. (“All snakes can bite,” Dr. Cagle reminded us, but “some have the tendency to bite less,” and this species “has the tendency not to bite.”) Its small, lithe body was surprisingly strong. The little snake wrapped tightly around one of my fingers and seemed content to chill there. A living, breathing, reptilian ring. That was definitely a highlight of my day.

The faint, dark line on this ring-necked snake’s underside (on the bottom of the loop) is the anal vent. Everything below that point (farther from the head) is considered the official tail of a snake.

If you’ve ever wondered if snakes have tails, the answer is yes. The official cut-off point, Dr. Cagle says, is the anal vent. Everything below that is tail. In between flipping over cover boards and admiring young snakes, we learned about other herps. Near the beginning of our walk, someone asked what the difference is between a newt and a salamander.

“A newt is a type of salamander,” Dr. Cagle says, “but newts have an unusual life cycle where they spend part of their life cycle on land… and that is called their eft phase.” As adults, they return to the water to breed.

We learned that copperheads “tend to be fatter-bodied for their length” and that spotted salamanders cross forest roads in large numbers on warm, rainy nights in early spring when they return to wetlands to breed.

Students holding a ring-necked snake. Above: Kelsey Goldwein (left), Gurnoor Majhail (one of the co-presidents of the Wild Ones), and Simran Sokhi (background on right). Below: Emily Courson (left) and Barron Brothers.

Perhaps the most interesting herp fact of the day came near the end of our walk when one of the students asked how you can tell the sex of a snake. Apparently there are two ways. You can measure a snake’s tail (males usually have longer tails), or you can insert a metal probe, blunted at the end, into a snake’s anal vent. Scientists can determine the sex of the snake by how deep the probe goes. It goes farther into the anal vent if the snake is a male. Why is that? Because male snakes have hemipenes — not two penises, exactly, but “an analogous structure that allows the probe to slide between the two and go farther” than it would in a female snake. The more you know…

Looking for snakes on a herpetology outing with Dr. Cagle and the Wild Ones. Photograph by Gurnoor Majhail.

Disclaimer: Handling wild snakes may result in snake bites. It can also be stressful to the snakes. Furthermore, some snakes in this area are venomous, and it’s probably best to familiarize yourself with those before getting close to snakes rather than afterward. Snakes are amazing, but please observe wildlife safely and responsibly.

Bonus snake! I saw this adorable fellow on the Duke Campus and thought it was an earthworm at first. Dr. Cagle thinks it might be a rough earth snake. I did not check to see if it had a tan belly.
Post by Sophie Cox, Class of 2025

What Are Lichens, and Why Does Duke Have 160,000 of Them?

Saxicolous lichens (lichens that grow on stones) from the Namib Desert, and finger lichen, Dactylina arctica (bottom left insert), common in the Arctic, on display in Dr. Jolanta Miadlikowska’s office. The orange color on some of the lichen comes from metabolites, or secondary chemicals produced by different lichen species. The finger lichen is hollow.

Lichens are everywhere—grayish-green patches on tree bark on the Duke campus, rough orange crusts on desert rocks, even in the Antarctic tundra. They are “pioneer species,” often the first living things to return to barren, desolate places after an extreme disturbance like a lava flow. They can withstand extreme conditions and survive where nearly nothing else can. But what exactly are lichens, and why does Duke have 160,000 of them in little envelopes? I reached out to Dr. Jolanta Miadlikowska and Dr. Scott LaGreca, two lichen researchers at Duke, to learn more.

Dr. Jolanta Miadlikowska looking at lichen specimens under a dissecting microscope. The pale, stringy lichen on the brown bag is whiteworm lichen (Thamnolia vermicularis), used to make “snow tea” in parts of China.

According to Miadlikowska, a senior researcher, lab manager, and lichenologist in the Lutzoni Lab (and one of the Instructors B for the Bio201 Gateway course) at Duke, lichens are “obligate symbiotic associations,” meaning they are composed of two or more organisms that need each other. All lichens represent a symbiotic relationship between a fungus (the “mycobiont”) and either an alga or a cyanobacterium or both (the “photobiont”). They aren’t just cohabiting; they rely on each other for survival. The mycobiont builds the thallus, which gives lichen its structure. The photobiont, on the other hand, isn’t visible—but it is important: it provides “food” for the lichen and can sometimes affect the lichen’s color. The name of a lichen species refers to its fungal partner, whereas the photobiont has its own name.

Lichen viewed through a dissecting microscope. The black speckles visible on some of the orange lichen lobes are a “lichenicolous” fungus that can grow on top of lichen. There are also “endolichenic fungi… very complex fungal communities that live inside lichen,” Miadlikowska says. “We don’t see them, but they are there. And they are very interesting.”

Unlike plants, fungi can’t perform photosynthesis, so they have to find other ways to feed themselves. Many fungi, like mushrooms and bread mold, are saprotrophs, meaning they get nutrients from organic matter in their environment. (The word “saprotroph” comes from Greek and literally means “rotten nourishment.”) But the fungi in lichens, Miadlikowska says, “found another way of getting the sugar—because it’s all about the sugar—by associating with an organism that can do photosynthesis.” More often than not, that organism is a type of green algae, but it can also be a photosynthetic bacterium (cyanobacteria, also called blue-green algae). It is still unclear how the mycobiont finds the matching photobiont if both partners are not dispersed together. Maybe the fungal spores (very small fungal reproductive unit) “will just sit and wait” until the right photobiont partner comes along. (How romantic.) Some mycobionts are specialists that “can only associate with a few or a single partner—a ‘species’ of Nostoc [a cyanobacterium; we still don’t know how many species of symbiotic and free-living Nostoc are out there and how to recognize them], for example,” but many are generalists with more flexible preferences. 

Two species of foliose (leaf-like) lichens from the genus Peltigera. In the species on the left (P. canina), the only photobiont is a cyanobacterium from the genus Nostoc, making it an example of bi-membered symbiosis. In the species on the right (P. aphthosa), on the other hand, the primary photobiont is a green alga (which is why the thallus is so green when wet). In this case, Nostoc is a secondary photobiont contained only in the cephalodia—the dark, wart-like structures on the surface. With two photobionts plus the mycobiont, this is an example of tri-membered symbiosis.

Lichens are classified based on their overall thallus shape. They can be foliose (leaf-like), fruticose (shrubby), or crustose (forming a crust on rocks or other surfaces). Lichens that grow on trees are epiphytic, while those that live on rocks are saxicolous; lichens that live on top of mosses are muscicolous, and ground-dwelling lichens are terricolous. Much of Miadlikowska’s research is on a group of cyanolichens (lichens with cyanobacteria partners) from the genus Peltigera. She works on the systematics and evolution of this group using morphology-, anatomy-, and chemistry-based methods and molecular phylogenetic tools. She is also part of a team exploring biodiversity, ecological rules, and biogeographical patterns in cryptic fungal communities associated with lichens and plants (endolichenic and endophytic fungi). She has been involved in multiple ongoing NSF-funded projects and also helping graduate students Ian, Carlos, Shannon, and Diego in their dissertation research. She spent last summer collecting lichens with Carlos and Shannon and collaborators in Alberta, Canada and Alaska. If you walk in the sub basement of the Bio Sciences building where Bio201 and Bio202 labs are located, check out the amazing photos of lichens (taken by Thomas Barlow, former Duke undergraduate) displayed along the walls! Notice Peltigera species, including some new to science, described by the Duke lichen team.

Lichens have value beyond the realm of research, too. “In traditional medicine, lichens have a lot of use,” Miadlikowska says. Aside from medicinal uses, they have also been used to dye fabric and kill wolves. Some are edible. Miadlikowska herself has eaten them several times. She had salad in China that was made with leafy lichens (the taste, she says, came mostly from soy sauce and rice vinegar, but “the texture was coming from the lichen.”). In Quebec, she drank tea made with native plants and lichens, and in Scandinavia, she tried candied Cetraria islandica lichen (she mostly tasted the sugar and a bit of bitterness, but once again, the lichen’s texture was apparent).

In today’s changing world, lichens have another use as well, as “bioindicators to monitor the quality of the air.” Most lichens can’t tolerate air pollution, which is why “in big cities… when you look at the trees, there are almost no lichens. The bark is just naked.” Lichen-covered trees, then, can be a very good sign, though the type of lichen matters, too. “The most sensitive lichens are the shrubby ones… like Usnea,” Miadlikowska says. Some lichens, on the other hand, “are able to survive in anthropogenic places, and they just take over.” Even on “artificial substrates like concrete, you often see lichens.” Along with being very sensitive to poor air quality, lichens also accumulate pollutants, which makes them useful for monitoring deposition of metals and radioactive materials in the environment.

Dr. Scott LaGreca with some of the 160,000 lichen specimens in Duke’s herbarium.

LaGreca, like Miadlikoska, is a lichenologist. His research primarily concerns systematics, evolution and chemistry of the genus Ramalina. He’s particularly interested in “species-level relationships.” While he specializes in lichens now, LaGreca was a botany major in college. He’d always been interested in plants, in part because they’re so different from animals—a whole different “way of being,” as he puts it. He used to take himself on botany walks in high school, and he never lost his passion for learning the names of different species. “Everything has a name,” he says. “Everything out there has a name.” Those names aren’t always well-known. “Some people are plant-blind, as they call it…. They don’t know maples from oaks.” In college he also became interested in other organisms traditionally studied by botanists—like fungi. When he took a class on fungi, he became intrigued by lichens he saw on field trips. His professor was more interested in mushrooms, but LaGreca wanted to learn more, so he specialized in lichens during grad school at Duke, and now lichens are central to his job. He researches them, offers help with identification to other scientists, and is the collections manager for the lichens in the W.L. and C.F. Culberson Lichen Herbarium—all 160,000 of them.

The Duke Herbarium was founded in 1921 by Dr. Hugo Blomquist. It contains more than 825,000 specimens of vascular and nonvascular plants, algae, fungi, and, of course, lichens. Some of those specimens are “type” specimens, meaning they represent species new to science. A type specimen essentially becomes the prototype for its species and “the ultimate arbiter of whether something is species X or not.” But how are lichens identified, anyway?

Lichenologists can consider morphology, habitat, and other traits, but thanks to Dr. Chicita Culberson, who was a chemist and adjunct professor at Duke before her retirement, they have another crucial tool available as well. Culbertson created a game-changing technique to identify lichens using their chemicals, or metabolites, which are often species-specific and thus diagnostic for identification purposes. That technique, still used over fifty years later, is a form of thin-layer chromatography. The process, as LaGreca explains, involves putting extracts from lichen specimens—both the specimens you’re trying to identify and “controls,” or known samples of probable species matches—on silica-backed glass plates. The plates are then immersed in solvents, and the chemicals in the lichens travel up the paper. After the plates have dried, you can look at them under UV light to see if any spots are fluorescing. Then you spray the plates with acid and “bake it for a couple hours.” By the end of the process, the spots of lichen chemicals should be visible even without UV light. If a lichen sample has traveled the same distance up the paper as the control specimen, and if it has a similar color, it’s a match. If not, you can repeat the process with other possible matches until you establish your specimen’s chemistry and, from there, its identity. Culberson’s method helped standardize lichen identification. Her husband also worked with lichens and was a director of the Duke Gardens.

Thin-layer chromatography plates in Dr. LaGreca’s office. The technique, created by Dr. Chicita Culberson, helps scientists identify lichens by comparing their chemical composition to samples of known identity. Each plate was spotted with extracts from different lichen specimens, and then each was immersed in a different solvent, after which the chemicals in the extracts travel up the plate . Each lichen chemical travels a characteristic distance (called the “Rf value”) in each solvent. Here, the sample in column 1 on the rightmost panel matches the control sample in column 2 in terms of distance traveled up the page, indicating that they’re the same species. The sample in column 4, on the other hand, didn’t travel as far as the one in column 5 and has a different color. Therefore, those chemicals (and species) do not match.

LaGreca shows me a workroom devoted to organisms that are cryptogamic, a word meaning “hidden gametes, or hidden sex.” It’s a catch-all term for non-flowering organisms that “zoologists didn’t want to study,” like non-flowering plants, algae, and fungi. It’s here that new lichen samples are processed. The walls of the workroom are adorned with brightly colored lichen posters, plus an ominous sign warning that “Unattended children will be given an espresso and a free puppy.” Tucked away on a shelf, hiding between binders of official-looking documents, is a thin science fiction novel called “Trouble with Lichen” by John Wyndham.

The Culberson Lichen Herbarium itself is a large room lined with rows of cabinets filled with stacks upon stacks of folders and boxes of meticulously organized lichen samples. A few shelves are devoted to lichen-themed books with titles like Lichens De France and Natural History of the Danish Lichens.

Each lichen specimen is stored in an archival (acid-free) paper packet, with a label that says who collected it, where, and on what date. (“They’re very forgiving,” says LaGreca. “You can put them in a paper bag in the field, and then prepare the specimen and its label years later.”) Each voucher is “a record of a particular species growing in a particular place at a particular time.” Information about each specimen is also uploaded to an online database, which makes Duke’s collection widely accessible. Sometimes, scientists from other institutions find themselves in need of physical specimens. They’re in luck, because Duke’s lichen collection is “like a library.” The herbarium fields loan requests and trades samples with herbaria at museums and universities across the globe. (“It’s kind of like exchanging Christmas presents,” says LaGreca. “The herbarium community is a very generous community.”)

Duke’s lichen collection functions like a library in some ways, loaning specimens to other scientists and trading specimens with institutions around the world.

Meticulous records of species, whether in databases of lichens or birds or “pickled fish,” are invaluable. They’re useful for investigating trends over time, like tracking the spread of invasive species or changes in species’ geographic distributions due to climate change. For example, some lichen species that were historically recorded on high peaks in North Carolina and elsewhere are “no longer there” thanks to global warming—mountain summits aren’t as cold as they used to be. Similarly, Henry David Thoreau collected flowering plants at Walden Pond more than 150 years ago, and his samples are still providing valuable information. By comparing them to present-day plants in the same location, scientists can see that flowering times have shifted earlier due to global warming. So why does Duke have tens of thousands of dried lichen samples? “It comes down to the reproducibility of science,” LaGreca says. “A big part of the scientific method is being able to reproduce another researcher’s results by following their methodology. By depositing voucher specimens generated from research projects in herbaria like ours, future workers can verify the results” of such research projects. For example, scientists at other institutions will sometimes borrow Duke’s herbarium specimens to verify that “the species identification is what the label says it is.” Online databases and physical species collections like the herbarium at Duke aren’t just useful for scientists today. They’re preserving data that will still be valuable hundreds of years from now.

Page 2 of 3

Powered by WordPress & Theme by Anders Norén