Following the people and events that make up the research community at Duke

Students exploring the Innovation Co-Lab

Author: Karl Bates Page 3 of 18

Director of Research Communications, Duke University

Young Scientists, Making the Rounds

“Can you make a photosynthetic human?!” an 8th grader enthusiastically asks me while staring at a tiny fern in a jar.

He’s not the only one who asked me that either — another student asked if Superman was a plant, since he gets his power from the sun.

These aren’t the normal questions I get about my research as a Biology PhD candidate studying how plants get nutrients, but they were perfect for the day’s activity –A science round robin with Durham eighth-graders.

Biology grad student Leslie Slota showing Durham 8th graders some fun science.

After seeing a post under #scicomm on Twitter describing a public engagement activity for scientists, I put together a group of Duke graduate scientists to visit local middle schools and share our science with kids. We had students from biomedical engineering, physics, developmental biology, statistics, and many others — a pretty diverse range of sciences.

With help from David Stein at the Duke-Durham Neighborhood Partnership, we made connections with science teachers at the Durham School of the Arts and Lakewood Montessori school, and the event was in motion!

The outreach activity we developed works like speed dating, where people pair up, talk for 3-5 mins, and then rotate. We started out calling it “Science Speed Dating,” but for a middle school audience, we thought “Science Round-Robin” was more appropriate. Typically, a round-robin is a tournament where every team plays each of the other teams. So, every middle schooler got to meet each of us graduate students and talk to us about what we do.

The topics ranged from growing back limbs and mapping the brain, to using math to choose medicines and manipulating the different states of matter.

The kids were really excited for our visit, and kept asking their teachers for the inside scoop on what we did.

After much anticipation, and a little training and practice with Jory Weintraub from the Science & Society Initiative, two groups of 7-12 graduate students armed themselves with photos, animals, plants, and activities related to our work and went to visit these science classes full of eager students.

First-year MGM grad student Tulika Singh (top right) brought cardboard props to show students how antibodies match up with cell receptors.

“The kids really enjoyed it!” said Alex LeMay, middle- and high-school science teacher at the Durham School of the Arts. “They also mentioned that the grad students were really good at explaining ideas in a simple way, while still not talking down to them.”

That’s the ultimate trick with science communication: simplifying what we do, but not talking to people like they’re stupid.

I’m sure you’ve heard the old saying, “dumb it down.” But it really doesn’t work that way. These kids were bright, and often we found them asking questions we’re actively researching in our work. We don’t need to talk down to them, we just need to talk to them without all of the exclusive trappings of science. That was one thing the grad students picked up on too.

“It’s really useful to take a step back from the minutia of our projects and look at the big picture,” said Shannon McNulty, a PhD candidate in Molecular Genetics and Microbiology.

The kids also loved the enthusiasm we showed for our work! That made a big difference in whether they were interested in learning more and asking questions. Take note, fellow scientists: share your enthusiasm for what you do, it’s contagious!

Another thing that worked really well was connecting with the students in a personal way. According to Ms. LeMay, “if the person seemed to like them, they wanted to learn more.” Several of the grad students would ask each student their names and what they were passionate about, or even talk about their own passions outside of their research, and these simple questions allowed the students to connect as people.

There was one girl who shared with me that she didn’t know what she wanted to do when she grew up, and I told her that’s exactly where I was when I was in 8th grade too. We then bonded over our mutual love of baking, and through that interaction she saw herself reflected in me a little bit; making a career in science seem like a possibility, which is especially important for a young girl with a growing interest in science.

Making the rounds in these science classrooms, we learned just as much from the students we spoke to as they did from us. Our lesson being: science outreach is a really rewarding way to spend our time, and who knows, maybe we’ll even spark someone who loves Superman to figure out how to make the first photosynthesizing super-person!

Guest post by Ariana Eily , PhD Candidate in Biology, shown sharing her floating ferns at left.

 

Science Meets Policy, and Maybe They Even Understand Each Other!

As we’ve seen many times, when complex scientific problems like stem cells, alternative energy or mental illness meet the policy world, things can get a little messy. Scientists generally don’t know much about law and policy, and very few policymakers are conversant with the specialized dialects of the sciences.

A screenshot of SciPol’s handy news page.

Add the recent rapid emergence of autonomous vehicles, artificial intelligence and gene editing, and you can see things aren’t going to get any easier!

To try to help, Duke’s Science and Society initiative has launched an ambitious policy analysis group called SciPol that hopes to offer great insights into the intersection of scientific knowledge and policymaking. Their goal is to be a key source of non-biased, high-quality information for policymakers, academics, commercial interests, nonprofits and journalists.

“We’re really hoping to bridge the gap and make science and policy accessible,” said Andrew Pericak, a contributor and editor of the service who has a 2016 masters in environmental management from the Nicholas School.

The program also will serve as a practical training ground for students who aspire to live and work in that rarefied space between two realms, and will provide them with published work to help them land internships and jobs, said SciPol director Aubrey Incorvaia, a 2009 masters graduate of the Sanford School of Public Policy.

Aubrey Incorvaia chatted with law professor Jeff Ward (center) and Science and Society fellow Thomas Williams at the kickoff event.

SciPol launched quietly in the fall with a collection of policy development briefs focused on neuroscience, genetics and genomics. Robotics and artificial intelligence coverage began at the start of January. Nanotechnology will launch later this semester and preparations are being made for energy to come online later in the year. Nearly all topics are led by a PhD in that field.

“This might be a different type of writing than you’re used to!” Pericak told a meeting of prospective undergraduate and graduate student authors at an orientation session last week.

Some courses will be making SciPol brief writing a part of their requirements, including law professor Jeff Ward’s section on the frontier of robotics law and ethics. “We’re doing a big technology push in the law school, and this is a part of it,” Ward said.

Because the research and writing is a learning exercise, briefs are published only after a rigorous process of review and editing.

A quick glance at the latest offerings shows in-depth policy analyses of aerial drones, automated vehicles, genetically modified salmon, sports concussions and dietary supplements that claim to boost brain power.

To keep up with the latest developments, the SciPol staff maintains searches on WestLaw, the Federal Register and other sources to see where science policy is happening. “But we are probably missing some things, just because the government does so much,” Pericak said.

Post by Karl Leif Bates

Brain Makes Order From Disorder

A team of scientists from Duke, the National Institutes of Health and Johns Hopkins biomedical engineering has found that the formation and retrieval of new memories relies on disorganized brain waves, not organized ones, which is somewhat contrary to what neuroscientists have previously believed. Brain waves, or oscillations, are the brain’s way of organizing activity and are known to be important to learning, memory, and thinking.

Alex Vaz is a Duke MD/PhD student and biomedical engineering alumnus.

Although brain waves have been measured and studied for decades, neuroscientists still aren’t sure what they mean and whether or not they help cognition, said Alex Vaz, an M.D.-Ph.D. student at Duke who is the first author on the paper.

In a study appearing Jan. 6 in NeuroImage, the neuroscientists showed that brain activity became less synchronized during the formation and retrieval of new memories. This was particularly true in a brain region known as the medial temporal lobe, a structure thought to play a critical role in the formation of both short-term and long-term memories

Excessive synchronization of brain oscillations has been implicated in Parkinson’s disease, epilepsy, and even psychiatric disorders. Decreasing brain wave synchronization by electrical stimulation deep in the brain has been found to decrease the tremors of Parkinson’s. But the understanding of brain waves in movement disorders is ahead of the understanding of human memory.

The researchers had neurosurgeons at the National Institutes of Health implant recording electrodes onto the brain surface of 33 epileptic patients during seizure evaluation and then asked them to form and retrieve memories of unrelated pairs of words, such as ‘dog’ and ‘lime.’

They found that  during memory formation, brain activity became more disorganized in the frontal lobe, an area involved in

A graphical abstract from Alex’s paper.

executive control and attention, and in the temporal lobe, an area more implicated in memory and language.

“We think this study, and others like it, provide a good starting point for understanding possible treatments for memory disorders,” Vaz said. “The aging American population will be facing major neurocognitive disorders such as Alzheimer’s disease and vascular dementia and will be demanding more medical attention.”

CITATION: “Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex,” Alex P. Vaz, Robert B. Yaffe, John H. Wittig, Sara K. Inati, Kareem A. Zaghloul. NeuroImage, Online Jan. 6, 2017. DOI: 10.1016/j.neuroimage.2017.01.001

http://www.sciencedirect.com/science/article/pii/S1053811917300010

Post by Karl Leif Bates

Karl Leif Bates

Totally Tubular! Fluid forces that affect the development of biological tubes

Have you ever wondered how something as simple as fluid can impact the development of a large organism? How about the way tubes form in relation to each other? Or maybe you’ve wondered how it is possible for something as rigid as a spine to be formed from fluid?

Zebrafish embryos are relatively transparent, making them easier to study.

Zebrafish embryos are relatively transparent, making them easier to study.

Dr. Michel Bagnat and his lab work to analyze each of these questions and more in their research about how biological tubes are formed and how pressure exerted by these fluids affects the formation of these tubes.

Dr. Bagnat, an associate professor of cell biology, uses ‘forward genetics,’ a process by which genes are modified in order to see the effect and function of each gene in the organism. The technique enables them to identify and analyze the role of fluid secretion in zebrafish. Fluid secretion also plays a role in many human diseases, including cystic fibrosis and polycystic kidney disease.

The void in a blood vessel is called the lumen. Bagnat studies the cells lining the lumen.

The void in a blood vessel is called the lumen. Bagnat studies the cells lining the lumen.

One of the most interesting aspects of tubal formation is that biological tubes often form in relation to each other. Dr. Bagnat and his lab study this type of tubal formation through studying the lumen, or the thin membrane lining the intestinal tubes of zebrafish. There are many cellular mechanisms that can affect the formation of the lumen, and extensive research is conducted in order to better understand these mechanisms.

These same sorts of forces can even help build a structure as complex as the spine. Dr. Bagnat’s research covers this specific field. The notochord of zebrafish, or the scaffold which will develop into a spine, is heavily affected by the growth of vacuoles, or fluid-filled sacs in the cell. Dr. Bagnat’s research explores the deeper mechanisms behind the filling of these fluid vacuoles in cells and how each cell’s vacuole stops and starts filling with fluid.

This image of fluid-filled sacs forming a fish notochord was on the cover of a journal.

This image of fluid-filled sacs forming a fish notochord was on the cover of a journal.

Overall, Dr. Bagnat’s research holds strong implications for how we understand the development and formation of biological tubes not just in zebrafish but in our own human bodies.

Guest Post by Vaishnavi Siripurapu, North Carolina School of Math and Science, Class of 2018

bagnatselfie

 

 

 

Treating Traumatic Brain Injury

After a traumatic brain injury (TBI), the brain produces an inflammatory response. This prolonged swelling is known as cerebral edema and can be fatal. Unfortunately, the only medications available just address symptoms and cannot directly treat the inflammation.

Daniel Laskowitz

Daniel Laskowitz, M.D. M.H.S, is a professor of neurology.

Some people can walk out okay after suffering from this injury, yet others can become comatose or may even die. This raises the intriguing question: why do people with similar injuries end up with vastly different outcomes? TBI affects nearly 2 million Americans every year and nearly 52,000 of these injuries are fatal.

“To a certain extent, the way the body responds to injury is probably genetically hardwired,” said Dr. Daniel Laskowitz, a neurologist at Duke who has been working on the mysteries of traumatic brain injuries for two decades. He said in medical school, he preferred the approach of treating the whole body and not super specializing. He chose to work specifically with brain injury because he could treat patients with other conditions along with brain injury.

One of Dr. Laskowitz’s first publications was about brain injury. As a fellow training in neurology in the mid-1990s, he looked at genetic factors that could make a difference in the outcome of a brain injury and found that genetic variation in a protein called apolipoprotein E (apoE) played a role.  ApoE comes in three slightly different flavors, and one of the common forms of apoE (apoE4) was associated with bad outcomes after brain injury. This raised the question of what apoE was doing in the brain to affect outcome after injury.

In 1997, he published an article about the effect of apoE on mice suffering a stroke and found that mice with the apoE allele had a better recovery than mice with an apoE deficiency. These findings were later repeated in an article in 2001,which found that following traumatic brain injury, animals with apoE had better outcomes than animals without this protein.

Since it was found that apoE could improve an injured patient’s neurologic outcomes, it became a model for medication to treat brain injuries. However, apoE does not easily cross the blood-brain-barrier, making it a challenging molecule to dispense as a drug.

Dr. Laskowitz’s lab has spent almost a decade looking at how apoE works. They have recently developed a peptide made of 5 amino acids, CN-105, that is based off of this protein and is able to cross the blood-brain-barrier, giving it the potential to be distributed as a treatment. This has been tested in mice and shown to improve outcomes.

In July, CN-105  completed a first phase clinical trial and found that  drug administration was safe and well tolerated. In the coming year, a phase 2 study will look at whether  CN-105 improves outcomes in patients with brain hemorrhages.

The plan is to give the peptide through an IV every six hours for three days, the time period when most of the swelling happens after injury.

Dr. Laskowitz’s research has already had a significant impact on the treatment of brain injury, and hopefully, this new medication could be another great contribution to this field.

Ryan SheltonGuest Post by Ryan Shelton, North Carolina School of Math and Science, Class of 2017

Acoustic Metamaterials: Designing Plastic to Bend Sound

I recently toured Dr. Steven Cummer’s lab in Duke Engineering to learn about metamaterials, synthetic materials used to manipulate sound and light waves.

Acoustic metamaterials recently bent an incoming sound into the shape of an A, which the researchers called an acoustic hologram.

Acoustic metamaterials recently bent an incoming sound into the shape of an A, which the researchers called an acoustic hologram.

Cummer’s graduate student Abel Xie first showed me the Sound Propagator. It was made of small pieces that looked similar to legos stacked in a wall. These acoustic metamaterials were made of plastic and contained many winding pathways that delay and propagate, or change the direction, of sound waves. The pieces were configured in certain ways so they could design a sound field, a sort of acoustic hologram.

These metamaterials can be configured to direct a 4 kHz sound wave into the shape of a letter ‘A’. The researchers measured the outgoing sound wave using a 2D sweeping microphone that passed back and forth over the A-shaped sound like a lawnmower, moving to the right, then up, then left, etc. The arrangement of metamaterials that reconfigures sound waves is called a lens, because it can focus sound waves to one or more points like a light-bending lens.

Xie then showed me a version of the acoustic metamaterials 10 times smaller that propagated ultrasonic (40 KHz) sound waves. He told me that since 40 kHz was well out of the human range of hearing, it could be a viable option for the wireless non-contact charging of devices like phones. The smaller wave propagator could direct inaudible sound waves to your device, and then another piece of technology called a transfuser would convert acoustic energy into electrical energy.

This structure, with a microphone in the middle, can perform the "cocktail party" trick that humans can -- figuring out where in the room a sound is coming from.

This structure with a microphone in the middle can perform the “cocktail party” trick that humans can — picking out once voice among many.

Now that the waves have been directed, how do we read them? Xie directed me to what looked like a plastic cheesecake in the middle of the table. It was deep and beige and was split into many ‘slices.’ Each slice was further divided into a unique honeycomb of varying depth. The slices were separated from each by glass panes. This directed the soundwaves across the unique honeycomb of each slice towards the lone microphone in the middle. A microphone would be able to recognize where the sound was coming from based on how the wave had changed while it passed over the different honeycomb pattern of each slice.

Xie described the microphone’s ability to distinguish where a sound is coming from and comprehend that specific sound as the “cocktail party effect,” or the human ability to pick out one person speaking in a noisy room. This dense plastic sound sensor is able to distinguish up to three different people speaking and determine where they are in relation to the microphone. He explained how this technology could be miniaturized and implemented in devices like the Amazon Echo to make them more efficient.

Dr. Cummer and Abel Xie’s research is changing the way we think about microphones and sound, and may one day improve all kinds of technology ranging from digital assistants to wirelessly charging your phone.

Frank diLustro

Frank diLustro is a senior at the North Carolina School for Science and Math.

 

Using the Statistics of Disorder to Unravel Real-World Chaos

What do election polls, hospital records, and the Syrian conflict have in common? How can a hospital use a patient’s vital signs to calculate their risk of cardiac arrest in real time?

Duke statistical science professor Rebecca Steorts

Duke statistical science professor Rebecca Steorts

Statistician Rebecca Steorts is developing advanced data analysis methods to answer these questions and other pressing real-world problems. Her research has taken her from computer science to biostatistics and hospital care to human rights.

One major focus of Steorts’ research has been estimating death counts in the Syrian civil war. She is working with her research group at Duke and the Human Rights Data Analysis Group (https://hrdag.org/) on combining databases of death records into a single master list of deaths in the conflict, a task known as record linkage.

“The key problem of record linkage is this: you have this duplicated information, how do you remove it?” explained Steorts. For example, journalists from different organizations might independently record the same death in their databases. Those duplicates have to be removed before an accurate death toll can be determined.

At first glance, this might seem like an easy task. But typographic errors, missing information, and inconsistent record-keeping make hunting for duplicates a complex and time consuming problem; a simple algorithm would require days to sort through all the records. So Steorts and her collaborators designed software to sift through the different databases using powerful machine learning techniques. In 2015, she was named one of MIT Technology Review’s 35 Innovators Under 35 for her work on the Syrian conflict. She credits a number of colleagues and students for their contributions to the project, including Anshumali Shrivastava (Rice University), Megan Price (HRDAG), Brenda Betancourt and Abbas Zaid (Duke University), Jeff Miller (Harvard Biostatistics, formerly Duke University), Hanna Wallach (Microsoft Research), and Giacomo Zanella (University of Bocconi and Visitor of Duke University in 2016).

Steorts’ work towards estimating death counts in the Syrian conflict is still ongoing, but human rights isn’t the only field that she plans to study. “I think of my work as very interdisciplinary,” she said. “For me, it’s all about the applications.”

Recently, Steorts, colleague Ben Goldstein, and students Reuben McCreanor and Angie Shen have been applying statistical methods to medical data from the Duke healthcare system. Her ultimate goal is to find techniques that can be used for many different applications and data sets.

cof

Guest post by Angela Deng, North Carolina School of Science and Math, Class of 2017

Life Lessons from a Neuroscientist

I recently had the privilege of sitting down with Dr. Anne Buckley, a professor and  neuropathologist working in Dr. Chay Kuo’s cell biology lab at Duke. I got a first-hand account of her research on neuron development and function in mice. But just as fascinating to me were the life lessons she had learned during her time as a researcher.

Anne Buckley, M.D. Ph.D., is an assistant professor of pathology

Anne Buckley, M.D. Ph.D., is an assistant professor of pathology

Buckley’s research looks at brain tumors in mice. She recently found that some of the mice developed the tumors in an area full of neurons, the roof of the fourth ventricle, which is of particular interest because humans have developed tumors in the same location. This discovery could show how neurological pathways affect tumor formation and progression.

Buckley also gave me some critical words of advice, cautioning me that research isn’t for everyone.

“Research is not glamorous, and not always rewarding,” she warned me. When she first started research, Buckley learned a hard lesson: work doesn’t necessarily lead to results. “For every question I went after, I found ten more unresolved,” she said. “To be a researcher, it takes a lot of perseverance and resilience. A lot of long nights.”

But that’s also the beauty of research. Buckley says that she’s learned to find happiness in the small successes, and that she “enjoys the process, enjoys the challenge.”

And when discoveries happen?

“When I look at data, and I see something unexpected, I get really excited,” she says. “I know something that no one else knows. Tomorrow, everyone will know. But tonight, I’m the only person in the world who knows.”

kendra_zhong_headshotGuest Post by Kendra Zhong, North Carolina School of Science and Math, Class of 2017

Evolutionary Genetics Shaping Health and Behavior

Dr. Jenny Tung is interested in the connections between genes and behavior: How does behavior influence genetic variation and regulation and how do genetic differences influence behavior?

A young Amboseli baboon hitches a ride with its mother. (Photo by Noah Snyder-Mackler)

A young Amboseli baboon hitches a ride with its mother. (Photo by Noah Snyder-Mackler)

An assistant professor in the Departments of Evolutionary Anthropology and Biology at Duke, Tung is interested in evolution because it gives us a window into why the living world is the way it is. It explains how organisms relate to one another and their environment. Genetics explains the actual molecular foundation for evolutionary change, and it gives part of the answer for trait variation. Tung was drawn as an undergrad towards the combination of evolution and genetics to explain every living thing we see around us; she loves the explanatory power and elegance to it.

Tung’s longest collaborative project is the Amboseli Baboon Research Project (ABRP), located in the Amboseli ecosystem of East Africa. She co-leads it with Susan Alberts, chair of evolutionary anthropology at Duke, Jeanne Altmann at Princeton, and Beth Archie at Notre Dame.

Tung has spent months at a time on the savannah next to Mount Kilimanjaro for this project. The ABRP monitors hundreds of baboons in several social groups and studies social processes at several levels. Recently the project has begun to include genetics and other aspects of baboon biology, including the social behaviors within the social groups and populations, and how these behaviors have changed along with the changing Amboseli ecosystem. Tung enjoys different aspects of all of her projects, but is incredibly grateful to be a part of the long-term Amboseli study.

Jenny Tung

Jenny Tung is an assistant professor in evolutionary anthropology and biology.

The process of discovery excites Tung. It is hard for her to pin down a single thing that makes research worth it, but “new analyses, discussions with students who teach me something new, seeing a great talk that makes you think in a different way or gives you new research directions to pursue” are all very exciting, she said.

Depending on the project, the fun part varies for her; watching a student develop as a scientist through their own project is rewarding, and she loves collaborating with extraordinary scientists. Specific sets of collaborators make the research worth it. “When collaborations work, you really push each other to be better scientists and researchers,” Tung said.

Raechel ZellerGuest post by Raechel Zeller, North Carolina School of Science and Math, Class of 2017

Would You Expect a 'Real Man' to Tweet "Cute" or Not?

There’s nothing cute about stereotypes, but as a species, we seem to struggle to live without them.

In a clever new study led by Jordan Carpenter, who is now a postdoctoral fellow at Duke, a University of Pennsylvania team of social psychologists and computer scientists figured out a way to test just how accurate our stereotypes about language use might be, using a huge collection of real tweets and a form of artificial intelligence called “natural language processing.”

Wordclouds show the words in tweets that raters mistakenly attributed to Female authors (left) or Males (right).

Word clouds show the words in tweets that raters mistakenly attributed to Female authors (left) or Males (right). The larger the word appears, the more often the raters were fooled by it. Word color indicates the frequency of the word; gray is least frequent, then blue, and dark red is the most frequent. <url> means they used a link in their tweet.

Starting with a data set that included the 140-character bon mots of more than 67,000 Twitter users, they figured out the actual characteristics of 3,000 of the authors. Then they sorted the authors into piles using four criteria – male v. female; liberal v. conservative; younger v. older; and education (no college degree, college degree, advanced degree).

A random set of 100 tweets by each author over 12 months was loaded into the crowd-sourcing website Amazon Mechanical Turk. Intertubes users were then invited to come in and judge what they perceived about the author one characteristic at a time, like age, gender, or education, for 2 cents per rating. Some folks just did one set, others tried to make a day’s wage.

The raters were best at guessing politics, age and gender. “Everybody was better than chance,” Carpenter said. When guessing at education, however, they were worse than chance.

Jordan Carpenter is a newly-arrived Duke postdoc working with Walter Sinnott-Armstrong in philosophy and brain science.

Jordan Carpenter is a newly-arrived Duke postdoc working with Walter Sinnott-Armstrong in philosophy and brain science.

“When they saw the word S*** [this is a family blog folks, work with us here] they most often thought the author didn’t have a college degree. But where they went wrong was they overestimated the importance of that word,” Carpenter said. Raters seemed to believe that a highly-educated person would never tweet the S-word or the F-word. Unfortunately, not true! “But it is a road to people thinking you’re not a Ph.D.,” Carpenter wisely counsels.

The raters were 75 percent correct on gender, by assuming women would be tweeting words like Love, Cute, Baby and My, interestingly enough. But they got tricked most often by assuming women would not be talking about News, Research or Ebola or that the guys would not be posting Love, Life or Wonderful.

Female authors were slightly more likely to be liberal in this sample of tweets, but not as much as the raters assumed. Conservatism was viewed by raters as a male trait. Again, generally true, but not as much as the raters believed.

Youthful authors were correctly perceived to be more likely to namedrop a @friend, or say Me and Like and a few variations on the F-bomb, but they could throw the raters for a loop by using Community, Our and Original.

And therein lies the social psychology takeaway from all this: “An accurate stereotype should be one with accurate social judgments of people,” but clearly every stereotype breaks down at some point, leading to “mistaken social judgement,” Carpenter said. Just how much stereotypes should be used or respected is a hot area of discussion within the field right now, he said.

The other value of the paper is that it developed an entirely new way to apply the tools of Big Data analysis to a social psychology question without having to invite a bunch of undergraduates into the lab with the lure of a Starbucks gift card. Using tweets stripped of their avatars or any other identifier ensured that the study was testing what people thought of just the words, nothing else, Carpenter said.

The paper is “Real Men Don’t Say “Cute”: Using Automatic Language Analysis To Isolate Inaccurate Aspects Of Stereotypes.”  You can see the paper in Social Psychology and Personality Science, if you have a university IP address and your library subscribes to Sage journals. Otherwise, here’s a press release from the journal. (DOI: 10.1177/1948550616671998 )

Karl Leif BatesPost by Karl Leif Bates

Page 3 of 18

Powered by WordPress & Theme by Anders Norén