“Our technology is tailored towards scanning animals. In fact, we can run scans on entire organisms!” 

Image from the Photoacoustic Imaging Lab that made it onto the front page of Science: glassfrog transparency!

Excitedly, Soon-Woo Cho, a postdoctoral associate in the Photoacoustic Imaging Lab, referred me to the standing poster at the Nov. 20 Invented at Duke showcase. While I stood puzzled looking intensely at the articulate images, I suddenly realized that the jumble of blue and red outlined the shape of a frog! 

As one could imagine, this technology, the masterpiece invention of biomedical engineering professor Junjie Yao and his team, is too advanced for a first-semester undergraduate to understand.

Soon-Woo  Cho
Soon-Woo Cho, postdoctoral fellow with the Photoacoustic Imaging Lab.

Nonetheless, Cho patiently explained its basic mechanisms to me in simpler terms. One of the technology’s key attributes was its speed; while traditional imaging counterparts were known for their long processing times, Yao’s team was able to reduce that time to mere seconds.

Another accomplishment is the product’s versatility and widespread application. Not only can the system distinguish between arteries and veins, coloring them as red and blue respectively, it can also play an important role in diagnosing cancer cells, as these malignant cells are known for inducing abnormal growth of surrounding blood vessels. 

After hearing this inspirational work, I traveled a few steps to another booth. While both research projects take place within the biomedical engineering department, their focus could not be more different. Ruth Verrinder, a current PhD student working in Jonathan Viventi’s lab, explained to me how the flexible electrode strips on display are part of an effort to address a significant medical need.

Ruth Verrinder
Ruth Verrinder, PhD student and member of the Viventi Lab.

Today, many surgeries to treat epilepsy are disappointingly unsuccessful. Even after a lengthy medical process including diagnosis and highly intensive treatment and procedures, such failures are simply too much to bear for many patients and families. The Viventi Lab believes that through improving the quality and quantity of data collected by medical electrodes, more surgical successes would naturally follow.

Their current product is already in use at Duke, and the team has ambitious plans for further developing the product.  The top priority is to build implantable electrodes so brain signals could be tracked for weeks to months before prospective surgeries, better informing surgeons and medical professionals on the specific patient’s conditions.  

While the booths hosting major inventions attracted the most fanfare, many other organizations were also present. One can hardly avoid the history exhibition: the bending, wave-like wall of “A Century of Innovation at Duke” greeted every visitor as they walked in the Penn Pavilion doors. On the other side of the wall, a history table curated by the Rubenstein Library displayed remarkable patents from Blue Devils across time, not to mention the popular button-making station that touted designs like “I love patents!”  

Although the acclaimed Dr. Robert Califf, director of the Food and Drug Administration, did not make it to the event, the occasion was nonetheless an overwhelming success. As a biomedical engineering student, I got to witness some of the most advanced research occurring in my field of study and meet prominent faculty. In the crowd of attendees, many students, regardless of undergraduate or graduate, studying humanities or the sciences, huddled around posters while inquisitively listening to inventors. Even academics from other institutions came to attend the sixth annual Invented at Duke: while I was learning more about the Viventi Lab’s research, a scholar from the University of Georgia joined the huddle and posed questions. 

Even as all attendees, including myself, were astounded by the ingenious discoveries presented, I think there is a deeper takeaway than simply being “wowed” by incredibly advanced brain electrodes or imaging systems.

As stressed by the Office of Translation and Commercialization, Office of Innovation and Entrepreneurship, and Nucleate, a student-led organization focused on biotechnology innovation, groundbreaking development is feasible and not a feat to be done alone. For those with bold ideas, there are innumerable resources on campus to help bring those visions into reality.

For those interested in innovation but do not have the “sparks,” there are countless ways to get involved with existing projects and find one that suits your passions. Above all, those whose interest lies beyond biomedical sciences should not be discouraged: if there are current initiatives aimed at improving satellite images, there are surely many other non-biomedical endeavors for you to explore! 

Let us not only celebrate what’s invented, but also the thriving spirit of invention here at Duke. Onwards! 

Stone Yan, class of 2028