From the miniscule particles underlying matter, to vast amounts of data from the far reaches of outer space, Chris Walter, a professor of physics at Duke, pursues research into the great mysteries of the universe, from the infinitesimal to the infinite.

Chris Walter is a professor of physics

As an undergraduate at the University of California at Santa Cruz, he thought he would become a theoretical physicist, but while continuing his education at the California Institute of Technology (Caltech), he found himself increasingly drawn to experimental physics, deriving knowledge of the universe by observing its phenomena.

Neutrinos — miniscule particles emitted during radioactive decay — captured his attention, and he began work with the KamiokaNDE (Kamioka Nucleon Decay Experiment, now typically written as Kamiokande) at the Kamioka Observatory in Hida, Japan. Buried deep underground
in an abandoned mine to shield the detectors from cosmic rays and submerged in water, Kamiokande offered Walter an opportunity to study a long-supposed but still unproven hypothesis: that neutrinos were massless.

Recalling one of his most striking memories from his time in the lab, he described observing and finding answers in Cherenkov light – a ‘sonic boom’ of light. Sonic booms are created by breaking the sound barrier in air.  However, the speed of light changes in different media – the speed of light in water is less than the speed of light in a vacuum — and a particle accelerator could accelerate particles beyond the speed of light in water.  Walter described it like a ring of light bursting out of the darkness.

In his time at the Kamioka Observatory, he was a part of groundbreaking neutrino research on the mass of neutrinos. Long thought to have been massless, Kamiokande discovered the property of neutron oscillation – that neutrinos could change from flavor to flavor, indicating that, contrary to popular belief, they had mass. Seventeen years later, in 2015, the leader of his team, Takaaki Kajita, would be co-awarded the Nobel Prize for Physics, citing research from their collaboration.

Chris Walter (left) and his Duke physics collaborator and partner, Kate Scholberg (right), on a lift inside the Super-Kamiokande neutrino detector.

Neutrinos originated from the cosmic rays in outer space, but soon another mystery from the cosmos captured Walter’s attention.

“If you died and were given the chance to know the answer to just one question,” he said, “for me, it would be, ‘What is dark energy?’”

Observations made in the 1990s, as Walter was concluding his time at the Kamioka Observatory, found that the expansion of the universe was accelerating. The nature of the dark energy causing this accelerating expansion remained unknown to scientists, and it offered a new course of study in the field of astrophysics.

Walter has recently joined the Large Synoptic Survey Telescope (LSST) as part of a 10-year, 3D survey of the entire sky, gathering over 20 terabytes of data nightly and detecting thousands of changes in the night sky, observing asteroids, galaxies, supernovae, and other astronomical phenomena. With new machine learning techniques and supercomputing methods to process the vast quantities of data, the LSST offers incredible new opportunities for understanding the universe. 

To Walter, this is the next big step for research into the nature of dark energy and the great questions of science.

A rendering of the Large Synoptic Survey Telescope. (Note the naked humans for scale)

Guest Post by Thomas Yang, NCSSM 2019